JPH0577334B2 - - Google Patents

Info

Publication number
JPH0577334B2
JPH0577334B2 JP62179706A JP17970687A JPH0577334B2 JP H0577334 B2 JPH0577334 B2 JP H0577334B2 JP 62179706 A JP62179706 A JP 62179706A JP 17970687 A JP17970687 A JP 17970687A JP H0577334 B2 JPH0577334 B2 JP H0577334B2
Authority
JP
Japan
Prior art keywords
deep
level
current
photoexcitation
phcap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62179706A
Other languages
Japanese (ja)
Other versions
JPS6423545A (en
Inventor
Junichi Nishizawa
Shinzo Kasai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17970687A priority Critical patent/JPS6423545A/en
Publication of JPS6423545A publication Critical patent/JPS6423545A/en
Publication of JPH0577334B2 publication Critical patent/JPH0577334B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、結晶中の欠陥が形成する深い準位な
どの測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for measuring deep levels formed by defects in a crystal.

〔従来の技術〕[Conventional technology]

従来、結晶中の欠陥が形成する深い準位を、電
流又は静電容量を利用して評価する方法として熱
励起法により電流を測る方法(TSC、
Thermally Stimulated Current)があり、静電
容量を測定する方法としてDLTS(Deep Level
Transient Spectroscopy)及びTSCMP
(Thremally Stimulated Capacitance)があつ
た。
Conventionally, a method of measuring current using thermal excitation method (TSC,
Thermally Stimulated Current) and DLTS (Deep Level
Transient Spectroscopy) and TSCMP
(Thremally Stimulated Capacitance).

〔発明が解決そようとする問題点〕[Problem that the invention attempts to solve]

前項で述べた種々の欠陥評価装置のうち、
DLTS法等の熱励起法は、試料中の深い準位を熱
で励起し、熱励起によるキヤリア放出あるいは捕
獲の結果生じる電荷状態変化に起因する静電容量
変化あるいは電流を測定しているため、試料の絶
対温度測定の確度が、そのまま深い準位のエネル
ギー準位ETの誤差に効き、しかも一般に熱電導
等の影響により、光励起に較べて急峻な温度変化
を与えることはできないため、正確なスペクトラ
ムの測定は困難であり、又実際の試料温度の変化
率dT/dtは、光照射による励起速度dL/dTに較
べて格段に遅い。その結果深い準位から励起され
るキヤリアによる電荷の変化率dQ/dtは、dt=
βdTが大きいから、信号が小さく正確なスペクト
ラムが得難い原因の1つとなる。一方光励起によ
る測定法は熱励起法に較べ励起のmotive force
が量子効果を用いているから、ほとんど瞬時に励
起することが可能であり、極めて単色性のよい単
色光が分光器等を用いて容易に得られる為、熱励
起法に較べてdtが小さいだけdQ/dtも大きいか
ら、得られる信号強度も大きく、より正確なET
の測定も可能となることが明らかである。
Among the various defect evaluation devices mentioned in the previous section,
Thermal excitation methods such as the DLTS method use heat to excite deep levels in the sample and measure capacitance changes or currents caused by changes in charge state as a result of carrier emission or capture due to thermal excitation. The accuracy of measuring the absolute temperature of the sample directly affects the error in the deep energy level E It is difficult to measure the spectrum, and the actual sample temperature change rate dT/dt is much slower than the excitation rate dL/dT due to light irradiation. As a result, the charge change rate dQ/dt due to carriers excited from deep levels is dt=
The large βdT is one of the reasons why the signal is small and it is difficult to obtain an accurate spectrum. On the other hand, the measurement method using optical excitation has a higher motive force than the thermal excitation method.
Because it uses quantum effects, it is possible to excite almost instantaneously, and monochromatic light with extremely good monochromaticity can be easily obtained using a spectrometer, so the dt is smaller than that of thermal excitation methods. Since dQ/dt is also large, the signal strength obtained is also large and more accurate E T
It is clear that it also becomes possible to measure

このような利点をもつ、例えば一定バイアス法
によるPHCAP法は、光励起による深い準位の荷
電状態変化に起因するCの変化を波長を変えて測
定することによつて、そのCの変化の方向と大き
さ及びΔCの閾値のhνを測定することにより、光
エネルギーhνで生じる深い準位の励起が生じる
ことが分る。しかしながら一般的には遷移が深い
準位と伝導帯あるいは充満帯の間でおこるとは限
らず、深い準位の遷移で生じるかもしれないか
ら、その遷移過程に関する情報は、PHCAP測定
単独では、直接には得られない欠点があつた。
For example, the PHCAP method using a constant bias method, which has such advantages, measures changes in C caused by changes in the charge state of deep levels due to photoexcitation at different wavelengths, and thereby determines the direction of changes in C. By measuring the magnitude and the threshold value hv of ΔC, it is found that excitation of deep levels occurs with optical energy hv. However, in general, transitions do not necessarily occur between deep levels and conduction bands or filling bands, but may occur at deep level transitions, so information about the transition process cannot be directly obtained from PHCAP measurements alone. It had some disadvantages that were not available.

〔発明の目的〕[Purpose of the invention]

上述の熱励起法及び光励起法がもつ問題点を解
決するために、本発明ではPHCAP測定をすると
同時に光励起電流を測定する装置を提供すること
を目的とする。
In order to solve the problems of the above-mentioned thermal excitation method and optical excitation method, an object of the present invention is to provide a device that measures a photoexcitation current at the same time as PHCAP measurement.

〔作 用〕[Effect]

前述のように構成された欠陥評価装置では、
PHCAP測定によつて深い準位ETの正確な値と、
その密度NTを深さ分解能をもつて測定するとと
もに、十分低温で光励起電流を測れば、例えばn
型半導体結晶中深いドナー準位を例にとれば、充
満した深いドナー準位からコンダクシヨンバンド
への励起であれば、hν=EL−ETで光励起電流が
検出されるし、励起された後の空いた深いドナー
準位の充満帯からの励起であればhν=Eg−ET
光励起電流が流れる。更にこの電流をカレントイ
ンテグレータで積算して電荷量を求めればNT
求まる。
In the defect evaluation device configured as described above,
Accurate value of deep level E T by PHCAP measurement,
If we measure the density N T with depth resolution and measure the photoexcitation current at a sufficiently low temperature, for example, n
Taking a deep donor level in a type semiconductor crystal as an example, if the conduction band is excited from a filled deep donor level, a photoexcitation current is detected at hν = E L −ET , and the excited If the excitation is from the filled zone of the later vacant deep donor level, the photoexcitation current flows as hν=E g −ET . Furthermore, by integrating this current with a current integrator to find the amount of charge, N T can also be found.

一方、深いdonor levelと例えば他のdeep
levelとの遷移であれば、PHCAPではΔVphの変
化で検出されるが、光励起電流は検出されないこ
とになる。
On the other hand, deep donor level and other deep e.g.
If it is a transition with the level, it will be detected by PHCAP as a change in ΔV ph , but the photoexcitation current will not be detected.

〔実施例〕〔Example〕

以下、図面に基づいて本発明を更に詳しく説明
する。本実施例は、n型の伝導性をもつGaAs結
晶板を0.50〜1.60eVの波長範囲で測定した例につ
いて述べている。第1図は本発明のブロツク図を
示し、光源は、実施例の波長範囲でハロゲンラ
ンプを用い、単色光照射装置は、グレーテイン
グモノクロメータであり、光学系は、試料上
に光を収束して照射するミラー系を用いている。
試料は、本実施例では、n型GaAs基板結晶を
用い、試料裏面に500μmφのAuGeNi/Auを1mm
間隔でマスク蒸着し、450℃30秒間Hz中のシンタ
ーによつてオーム性接触を得たのち、表面には、
電子ビーム蒸着法によりAlを蒸着した構造のシ
ヨツトキダイオードを用いた。実施例では、試料
裏面から単色光照射がおこなわれた。
Hereinafter, the present invention will be explained in more detail based on the drawings. This example describes an example in which a GaAs crystal plate with n-type conductivity was measured in a wavelength range of 0.50 to 1.60 eV. FIG. 1 shows a block diagram of the present invention, in which the light source uses a halogen lamp in the wavelength range of the embodiment, the monochromatic light irradiation device is a grating monochromator, and the optical system focuses the light onto the sample. A mirror system is used to irradiate the area.
In this example, the sample used was an n-type GaAs substrate crystal, and 1 mm of AuGeNi/Au with a diameter of 500 μm was placed on the back surface of the sample.
After mask deposition at intervals and ohmic contact obtained by sintering at 450°C for 30 seconds in Hz, the surface is
A Schottky diode with a structure in which Al was deposited by electron beam evaporation was used. In the example, monochromatic light was irradiated from the back surface of the sample.

測定は試料を暗所で、順バイアスを印加して空
乏層を縮めたまま、45Kまで冷却し、低温で、逆
バイアス電圧VRを印加して低エネルギーから波
長掃引される。従つて、n型半導体中のdeep
donorは電子で充満されて中性の状態にある。こ
こで、今、試料結晶中に第2図に示されるよう
に、ET1とET2なる活性化エネルギーを持つ深いド
ナー準位が存在する場合を考える。そして、ET2
は、発明者の考察によれば、GaAs結晶中の格子
間As原子が関与する欠陥準位であるEL2準位で、
その励起状態ET2を第2図のように形成している。
通常のPHCAP測定のように、hν=EC−ET1の光
を照射すると、ET1の荷電状態は中性からプラス
に荷電する状態に変化し、ET1から励起された電
子は、伝導帯に励起されて、接合に印加されてい
る逆バイアス電圧によつて、中性領域に流れ込
む。この時、本発明の構成で同時に電流を測定し
ていれば、深い準位の光励起に伴い、電流が流れ
るから、確かに深いドナー準位と伝導帯の間の遷
移であることが確認できる。一方、hν2=ET2 *
ET2の光を照射すると、深い準位ET2の荷電状態が
中性からプラスの状態に変化し、PHCAP測定に
よつて、ET2の励起が生じた事が分るが、この場
合はET2の基底状態と励起状態間の遷移であるの
で、光励起された電子は伝導帯に存在せず、本発
明の構成で、光励起電流は流れないから、
PHCAP測定と同時に、いわゆるintra−center遷
移であることを確認できる。
For measurements, the sample is cooled to 45 K in the dark while a forward bias is applied to keep the depletion layer short, and at a low temperature, a reverse bias voltage V R is applied to sweep the wavelength from low energy. Therefore, deep in the n-type semiconductor
The donor is filled with electrons and is in a neutral state. Now, let us consider the case where deep donor levels with activation energies E T1 and E T2 exist in the sample crystal, as shown in FIG. 2. And E T2
According to the inventor's considerations, is the E L2 level, which is a defect level involving interstitial As atoms in the GaAs crystal,
The excited state E T2 is formed as shown in Figure 2.
As in normal PHCAP measurement, when irradiated with light hν = E C - E T1 , the charge state of E T1 changes from neutral to positively charged, and the excited electrons from E T1 move into the conduction band. is excited to flow into the neutral region by the reverse bias voltage applied to the junction. At this time, if the current is measured at the same time using the configuration of the present invention, a current flows as the deep level is photoexcited, so it can be confirmed that there is indeed a transition between the deep donor level and the conduction band. On the other hand, hν 2 = E T2 *
When irradiated with E T2 light, the charge state of the deep level E T2 changes from neutral to positive, and PHCAP measurements show that E T2 is excited. Since this is a transition between the ground state and the excited state of T2 , photoexcited electrons do not exist in the conduction band, and with the configuration of the present invention, no photoexcited current flows.
At the same time as the PHCAP measurement, it can be confirmed that this is a so-called intra-center transition.

加えてhν=EC−ETの光照射では熱励起が無視
し得ればET1→ECへの光学遷移だけが生まれるか
ら光励起電流は、深いドナー準位が励起されて空
になるまで流れるが、定常的には流れず、第3図
のような時間変化を示す。そして、深い準位密度
NTは NT=∫tmax 0idt で与えられる。一方、hν1′=Eg−ET1の光照射で
は第2図中に示されるように充満帯から空いた深
いドナーヘ電子が励起される過程も生じ得るか
ら、第4図のように光励起電流はほぼ定常的に流
れhν1による励起過程と区別される。第5図は定
常状態のPHCAP測定結果の一例であり、図中
ET3,ET4,ET5,ET6,ET7の深い準位が検出され
ている。このうちETSは発明者の考察によれば、
いわゆるGaAs結晶中のEL2準位のsingle
charge stateからdouble charge stateへの光学
遷移に伴つて生じるフオトクエンチング現象であ
つて、ET6はその光励起エネルギー領域となる光
励起エネルギーをもつEL2準位とは異なる深い
準位である。またET3,ET4,ET7もEL2準位とは
異なる準位であつて、特にET4はthermal
emission cross sectionが10-14cm-2と小さく、熱
励起法の一種であるDLTS法で測定すると第6図
のように信号強度が非常に小さくなつてまうもの
である。一方ET3及びET5(EL2)のαt/nは10-13cm
-2と大きいため、DLTS signalはET4よりは大き
い。第7図は、本発明の構成で同時に測定した光
励起電流であつて、ET6が励起されると同時に定
常的に電流が流れていることが分る。従つてこの
ことから第5図中 ET6responseはV.B→D+e → C.B. の光励起が生じていると考えられる。
In addition, in light irradiation with hν = E CE T , if thermal excitation can be ignored, only an optical transition from E T1 → E C is generated, so the photo-excited current will increase until the deep donor level is excited and becomes empty. It flows, but it does not flow steadily and shows a time change as shown in Fig. 3. and deep level density
N T is given by N T =∫ tmax 0 idt. On the other hand, in the light irradiation of hν 1 ′=E g −E T1 , as shown in Figure 2, a process may occur in which electrons are excited from the filled zone to the empty deep donor, so the photoexcitation current is increased as shown in Figure 4. is distinguished from the excitation process due to the nearly steady flow hν 1 . Figure 5 shows an example of steady-state PHCAP measurement results.
Deep levels of E T3 , E T4 , E T5 , E T6 , and E T7 have been detected. According to the inventor's consideration, ETS is
A single EL2 level in the so-called GaAs crystal
This is a photoquenching phenomenon that occurs along with the optical transition from a charge state to a double charge state, and E T6 is a deep level different from the EL2 level, which has photoexcitation energy and is the photoexcitation energy region. In addition, E T3 , E T4 , and E T7 are also levels different from the EL2 level, and E T4 in particular is a thermal level.
The emission cross section is as small as 10 -14 cm -2 , and when measured using the DLTS method, which is a type of thermal excitation method, the signal intensity becomes extremely small as shown in Figure 6. On the other hand, α t/n of E T3 and E T5 (EL2) is 10 -13 cm
-2 , so the DLTS signal is larger than E T4 . FIG. 7 shows the photoexcitation current measured simultaneously with the configuration of the present invention, and it can be seen that the current flows steadily at the same time as E T6 is excited. Therefore, from this, it is considered that the E T6 response in FIG. 5 is caused by optical excitation of VB→D + e → CB.

以上述べた様に、本発明によればPHCAP測定
によつて、熱励起法では得難いエネルギー分解能
をもつスペクトラムが得られると同時に関係する
深い準位の光学遷移についてもPHCAP単独では
得られない重要な知見を得ることができる。
As described above, according to the present invention, PHCAP measurement provides a spectrum with energy resolution that is difficult to obtain with the thermal excitation method, and at the same time, important optical transitions in related deep levels that cannot be obtained with PHCAP alone can be obtained. You can gain knowledge.

本実施例では、金属半導体接触を有するGaAs
結晶を試料として用いた場合についてだけ示した
が、金属半導体接触のみならず、少なくとも1つ
のp−n接合あるいは同伝導型のn+n接合やヘテ
ロ接合を有する構造であれば適用できることは言
うまでもなく、各種半導体装置をデバイスのまま
非破壊で評価でき、その深い準位に関する知見が
もたらす工業的利用価値は高い。
In this example, a GaAs with metal-semiconductor contact is used.
Although only the case where a crystal is used as a sample is shown, it goes without saying that it can be applied not only to metal-semiconductor contact but also to any structure having at least one p-n junction, n + n junction of the same conductivity type, or heterojunction. , various semiconductor devices can be evaluated non-destructively as they are, and the knowledge of deep levels has high industrial value.

〔発明の効果〕〔Effect of the invention〕

本発明は以上詳しく説明したように単色光照射
による試料電流を測定し、同時に接合容量変化を
測定する事により、結晶欠陥が形成する深い準位
の光励起エネルギー、及びその密度を求めるとと
もに、光励起過程に関する詳しい情報を得る事に
多大の効果を有する。
As explained in detail above, the present invention measures the sample current due to monochromatic light irradiation and simultaneously measures the change in junction capacitance, thereby determining the photoexcitation energy and its density of deep levels formed by crystal defects, as well as determining the photoexcitation process. It has a great effect on obtaining detailed information about.

例えば、深い準位と伝導帯の間のみの遷移が充
満帯から深い準位と、深い準位から伝導帯への遷
移がおきているか、あるいは準位間遷移が生じて
いるかを光励起エネルギー等の測定と同時に知る
ことができる効果をする。
For example, it can be determined whether there is a transition between only a deep level and a conduction band, a transition from a filled band to a deep level, a transition from a deep level to a conduction band, or a transition between levels, using photoexcitation energy, etc. The effect can be known at the same time as the measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成のブロツク図、第2図は
深い準位を有する半導体中の光学遷移図、第3図
は深いドナー準位と伝導帯間の光学遷移のみが生
じる場合の光励起電流の時間経過を示す図、第4
図は充満帯と深いドナー準位及び深いドナー準位
と伝導帯の間の光学遷移が同時に生じる場合の光
励起電流の時間経過を示す図、第5図はGaAsバ
ルク結晶のPHCAPスペクトラム、第6図は
GaAsバルク結晶のDLTSスペクトラム、第7図
はGaAsバルク結晶の光励起電流スペクトラムで
ある。
Figure 1 is a block diagram of the configuration of the present invention, Figure 2 is an optical transition diagram in a semiconductor with a deep level, and Figure 3 is a photoexcitation current when only optical transition between the deep donor level and the conduction band occurs. Figure 4 showing the time course of
The figure shows the time course of the photoexcitation current when optical transitions between the full band and the deep donor level and between the deep donor level and the conduction band occur simultaneously. Figure 5 is the PHCAP spectrum of GaAs bulk crystal. Figure 6 teeth
DLTS spectrum of GaAs bulk crystal. Figure 7 shows the photoexcitation current spectrum of GaAs bulk crystal.

Claims (1)

【特許請求の範囲】 1 半導体接合、前記半導体接合を少なくとも一
つの一定温度に保つ温度制御装置、前記半導体接
合に持続した単色光を照射する装置を備え、前記
半導体接合に単色光を照射した時に生じる電流の
飽和値或いは時間積分値を記録する装置を備えた
光照射測定装置。 2 前記時間積分値を記録する装置はカレントイ
ンテグレータで有る事を特徴とした前記特許請求
の範囲第1項記載の光照射測定装置。 3 前記半導体接合の静電容量を測定する容量測
定装置を備えた事を特徴とする前記特許請求の範
囲第1項又は第2項記載の光照射測定装置。
[Scope of Claims] 1. A semiconductor junction comprising: a temperature control device that maintains the semiconductor junction at at least one constant temperature; and a device that irradiates the semiconductor junction with sustained monochromatic light; A light irradiation measuring device equipped with a device for recording the saturation value or time integral value of the generated current. 2. The light irradiation measuring device according to claim 1, wherein the device for recording the time integral value is a current integrator. 3. The light irradiation measuring device according to claim 1 or 2, further comprising a capacitance measuring device for measuring the capacitance of the semiconductor junction.
JP17970687A 1987-07-17 1987-07-17 Device for measuring light irradiation Granted JPS6423545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17970687A JPS6423545A (en) 1987-07-17 1987-07-17 Device for measuring light irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17970687A JPS6423545A (en) 1987-07-17 1987-07-17 Device for measuring light irradiation

Publications (2)

Publication Number Publication Date
JPS6423545A JPS6423545A (en) 1989-01-26
JPH0577334B2 true JPH0577334B2 (en) 1993-10-26

Family

ID=16070453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17970687A Granted JPS6423545A (en) 1987-07-17 1987-07-17 Device for measuring light irradiation

Country Status (1)

Country Link
JP (1) JPS6423545A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114834A (en) * 1982-12-21 1984-07-03 Agency Of Ind Science & Technol Method for measuring deep impurity level or crystal defect level contained in semiconductor device
JPS6034028A (en) * 1983-08-06 1985-02-21 Tokyo Daigaku Adaptive measurement of semiconductor trapping center

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114834A (en) * 1982-12-21 1984-07-03 Agency Of Ind Science & Technol Method for measuring deep impurity level or crystal defect level contained in semiconductor device
JPS6034028A (en) * 1983-08-06 1985-02-21 Tokyo Daigaku Adaptive measurement of semiconductor trapping center

Also Published As

Publication number Publication date
JPS6423545A (en) 1989-01-26

Similar Documents

Publication Publication Date Title
US6693286B2 (en) Method for evaluating the quality of a semiconductor substrate
US4758786A (en) Method of analyzing semiconductor systems
Lile et al. Semiconductor profiling using an optical probe
Johnson et al. Picosecond time‐resolved photoluminescence using picosecond excitation correlation spectroscopy
JPH03276659A (en) Carrier lifetime measurement of iv compound semiconductor
Kirino et al. Noncontact energy level analysis of metallic impurities in silicon crystals
JPS63250835A (en) Inspection of epitaxial wafer
US6670820B2 (en) Method and apparatus for evaluating electroluminescence properties of semiconductor materials and devices
Mandelis et al. Highly resolved separation of carrier‐and thermal‐wave contributions to photothermal signals from Cr‐doped silicon using rate‐window infrared radiometry
JPH0577334B2 (en)
Lee et al. Measurement time reduction for generation lifetimes
JPS60123038A (en) Measurement of photo capacitance using constantly held capacitance of depletion layer
Toney et al. Photocurrent mapping as a probe of transport properties and electric field distributions in cadmium zinc telluride detectors
Davidson et al. Detection statistics of deep levels in minority carrier transient spectroscopy
JPH07240450A (en) Method for measuring carrier life
Janzen et al. Fourier photo‐admittance spectroscopy
Jastrzebski et al. Deep levels study in float zone Si used for fabrication of CCD imagers
Mandelis et al. Noncontact photothermal infrared radiometric deep‐level transient spectroscopy of GaAs wafers
McKinley et al. Free-electron lasers and semiconductor physics: first results on nonlinear optics, interfaces, and desorption
RU2080611C1 (en) Method for determining electrophysical properties of semiconductors
Werheit et al. Ambipolar Diffusion of Electron–Hole Pairs in β‐Rhombohedral Boron
US4217547A (en) Method for determining the compensation density in n-type narrow-gap semiconductors
Gaw et al. Measurement by cathodoluminescence spectroscopy of epitaxial layer compositions in (Al, Ga) As double heterostructures
Yu et al. Measurement of the Al mole fraction of bulk AlGaN and AlGaN/GaN heterostructure by photoconductance method
Nishino et al. A Method of Measuring Differential Photovoltage Spectrum at Schottky Barrier

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 14