JP4007305B2 - Method for evaluating resolution of electron microscope and method for adjusting electron microscope - Google Patents

Method for evaluating resolution of electron microscope and method for adjusting electron microscope Download PDF

Info

Publication number
JP4007305B2
JP4007305B2 JP2003358740A JP2003358740A JP4007305B2 JP 4007305 B2 JP4007305 B2 JP 4007305B2 JP 2003358740 A JP2003358740 A JP 2003358740A JP 2003358740 A JP2003358740 A JP 2003358740A JP 4007305 B2 JP4007305 B2 JP 4007305B2
Authority
JP
Japan
Prior art keywords
resolution
sample
electron microscope
secondary charged
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003358740A
Other languages
Japanese (ja)
Other versions
JP2004111401A (en
Inventor
泰治 北川
佐藤  貢
五六 下間
忠範 高橋
直人 吉田
正幸 雪井
隆典 二宮
立夫 堀内
啓介 川目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003358740A priority Critical patent/JP4007305B2/en
Publication of JP2004111401A publication Critical patent/JP2004111401A/en
Application granted granted Critical
Publication of JP4007305B2 publication Critical patent/JP4007305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、電子顕微鏡の分解能、解像度等の定量評価を目的とする試料と、その試料用いて分解能、解像度等を評価する電子顕微鏡の分解能評価方法および調整方法および電子顕微鏡、及びその電子顕微鏡を用いた半導体製造方法に関するものである。   The present invention relates to a sample for quantitative evaluation of resolution, resolution, etc. of an electron microscope, a resolution evaluation method and adjustment method of the electron microscope for evaluating resolution, resolution, etc. using the sample, an electron microscope, and an electron microscope thereof. The present invention relates to the semiconductor manufacturing method used.

従来、電子顕微鏡の分解能の評価は、目視確認できる試料の2点間の距離で評価され、特開平5−45265のようにカーボン上に金粒子を蒸着した試料を電子顕微鏡で観察し、分離されている二つの金粒子間の最小隙間を分解能としている。また電子顕微鏡の解像度評価は粒子境界のぼけ具合によって評価されている。   Conventionally, the resolution of an electron microscope is evaluated by the distance between two points of a sample that can be visually confirmed, and a sample in which gold particles are vapor-deposited on carbon as in JP-A-5-45265 is observed and separated. The resolution is the minimum gap between two gold particles. Moreover, the resolution evaluation of the electron microscope is evaluated by the degree of blur of the particle boundary.

特開平5−45265号公報JP-A-5-45265

従来の分解能評価では、電子顕微鏡の撮像画像は金粒子などを撮像する際には
、金粒子の大きさ、形状にばらつきがあり、測定に個人差が生じ、さらにおなじ試料を再現することができないため正確な定量評価は望まれない。また電子顕微鏡で観察中の金粒子の隙間を正確に測定する方法がない。また、電子顕微鏡の分解能は装置ごとによって機差がある。このため半導体製造等の場合、複数の電子顕微鏡を用いて半導体各部の寸法を計測するような半導体の製造においてこれら電子顕微鏡間での観察像が異り、欠陥等が観察する電子顕微鏡によって見えたり
、見えなかったし、一元的かつ一定の管理値に基づいた製造が行えない等の問題がある。
In the conventional resolution evaluation, when the image captured by the electron microscope captures gold particles, the size and shape of the gold particles vary, resulting in individual differences in measurement, and the same sample cannot be reproduced. Therefore, accurate quantitative evaluation is not desired. Also, there is no method for accurately measuring the gap between gold particles being observed with an electron microscope. The resolution of the electron microscope varies depending on the device. For this reason, in the case of semiconductor manufacturing etc., the observation images between these electron microscopes differ in the manufacture of semiconductors in which the dimensions of each part of the semiconductor are measured using a plurality of electron microscopes. However, there is a problem that the manufacturing cannot be performed based on a centralized and constant control value.

本発明の目的は、上記課題を解決するようにした電子顕微鏡の分解能評価方法および電子顕微鏡の調整方法を提供することにある。   An object of the present invention is to provide a method for evaluating the resolution of an electron microscope and a method for adjusting an electron microscope that solve the above-described problems.

上記目的を達成するために、本発明では、電子顕微鏡の分解能評価方法において、2次電子または反射電子または透過電子等の2次荷電粒子の発生効率が異なる材料を表面に交互に複数配置して形成した繰返しパターンを有する試料に電子線を照射し、該電子線の照射により前記試料の表面から発生する2次荷電粒子を検出して前記試料の表面の2次荷電粒子像を得、該2次荷電粒子像の波形データをフーリエ変換を用いて周波数解析処理することにより電子顕微鏡の分解能の定量評価を行うようにした。   In order to achieve the above object, according to the present invention, in a method for evaluating the resolution of an electron microscope, a plurality of materials having different generation efficiency of secondary charged particles such as secondary electrons, reflected electrons or transmitted electrons are alternately arranged on the surface. The formed sample having a repetitive pattern is irradiated with an electron beam, and secondary charged particles generated from the surface of the sample by the irradiation of the electron beam are detected to obtain a secondary charged particle image on the surface of the sample. The waveform data of the next charged particle image is subjected to frequency analysis processing using Fourier transform to perform quantitative evaluation of the resolution of the electron microscope.

また、上記目的を達成するために、本発明では、電子顕微鏡の調整方法において、2次電子または反射電子または透過電子等の2次荷電粒子の発生効率が異なる材料を表面に交互に配置して形成した繰返しパターンを有する試料に電子顕微鏡から電子線を照射し、該電子線の照射により前記試料の表面から発生する2次荷電粒子を検出して前記試料の表面の2次荷電粒子像を得、該2次荷電粒子像の波形データをフーリエ変換を用いて周波数解析処理することにより前記電子顕微鏡の分解能を評価し、該評価した分解能に応じて前記電子顕微鏡の光学系または真空系または電子銃を調整するようにした。   In order to achieve the above object, in the present invention, in the method of adjusting an electron microscope, materials having different generation efficiency of secondary charged particles such as secondary electrons, reflected electrons, or transmitted electrons are alternately arranged on the surface. A sample having a repetitive pattern is irradiated with an electron beam from an electron microscope, and secondary charged particles generated from the surface of the sample by the irradiation of the electron beam are detected to obtain a secondary charged particle image on the surface of the sample. The waveform data of the secondary charged particle image is subjected to frequency analysis processing using Fourier transform to evaluate the resolution of the electron microscope, and according to the evaluated resolution, the optical system, vacuum system, or electron gun of the electron microscope Was adjusted.

本発明によれば、SEMの分解能、解像度を、あらかじめ寸法の分かった、多層薄膜試料を用いて、SEMによる撮像結果を周波数解析等の手段で定量的に評価することにより、SEMの性能や経時変化を正確に把握することが可能となる
。これは特に半導体検査など、複数のSEMを用いる製造プロセスにおいて、SEM間の個体差を低減し、検査の正確性を向上させることができる。
According to the present invention, the resolution and resolution of the SEM are evaluated by using a multilayer thin film sample whose dimensions are known in advance, and quantitatively evaluating the imaging results of the SEM by means such as frequency analysis. It becomes possible to grasp changes accurately. In particular, in a manufacturing process using a plurality of SEMs such as semiconductor inspection, individual differences between SEMs can be reduced and inspection accuracy can be improved.

また本発明によれば作成された試料を用いてSEMの性能を測定すれば、従来のカーボン上に金蒸着した試料を用いた場合に比べ、金粒子の大きさに性能が左右されず、常に定量的に安定した性能測定ができる。またSEM像の膨らみ量の測長から、分解能の自動計測ができる。   In addition, if the performance of the SEM is measured using a sample prepared according to the present invention, the performance is not affected by the size of the gold particles, and the performance is always less than that in the case of using a gold-deposited sample on conventional carbon. Quantitatively stable performance measurement is possible. In addition, the resolution can be automatically measured by measuring the bulge amount of the SEM image.

本発明の実施形態について図を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る分解能を測定して調整する電子顕微鏡の一実施の形態である走査形電子顕微鏡(以下SEMと呼ぶ)の概略構成を示す図である。電子光学系は、電子銃13、偏向器12および電磁レンズ14等によって構成される。そして、電子銃13から所望の加速電圧によって発せられる電子線8を電磁レンズ14により集束させ、偏向器12等によってX−Y−Zステージ17上に搭載された試料1上の表面を任意の順序で走査するように構成される。更に電子線の照射により試料1の表面において発生する2次電子または反射電子は検出器15により検出され、画像入力装置16に画像データとして入力される。被検査物である試料1は、X−Y−Zステージ17により3次元方向すべての方向に移動可能である。ステージ移動に同期した電子ビームの照射および画像入力が可能であり、ステージの移動は制御用計算機20により制御される。図1では2次電子像を用いたSEMの例を示しているが、試料を観察する手段は2次電子以外に、反射電子、透過電子等による像を用いてもよい。透過電子を検出するものは、STEMと称される。   FIG. 1 is a diagram showing a schematic configuration of a scanning electron microscope (hereinafter referred to as SEM) which is an embodiment of an electron microscope that measures and adjusts resolution according to the present invention. The electron optical system includes an electron gun 13, a deflector 12, an electromagnetic lens 14, and the like. Then, the electron beam 8 emitted from the electron gun 13 with a desired acceleration voltage is focused by the electromagnetic lens 14, and the surface on the sample 1 mounted on the XYZ stage 17 by the deflector 12 or the like is in any order. It is comprised so that it may scan with. Further, secondary electrons or reflected electrons generated on the surface of the sample 1 by the irradiation of the electron beam are detected by the detector 15 and input to the image input device 16 as image data. The sample 1 that is the object to be inspected can be moved in all three-dimensional directions by the XYZ stage 17. Electron beam irradiation and image input synchronized with the stage movement are possible, and the movement of the stage is controlled by the control computer 20. Although FIG. 1 shows an example of SEM using a secondary electron image, the means for observing the sample may use an image of reflected electrons, transmitted electrons, etc. in addition to the secondary electrons. Those that detect transmitted electrons are referred to as STEM.

SEMの分解能を評価するための試料21について説明する。試料21は、例えばTa膜とSi膜、W膜とC膜、Ru膜とC膜、Mo膜とB4C膜、W膜とS
i膜等のように原子番号の差異の大きい物質材料の薄膜を、メッキやCVD(Chemical Vaper Deposition)、PVD(Physical Vaper Deposition) 等の公知の薄膜形成技術により単結晶シリコン基板上に厚さを制御して交互に積層して多層に形成し、この多層薄膜を形成した基板をへき開してその断面表面22を用いる。これを撮像すると、2次電子の発生効率の違いから、例えば、Ta膜、W膜
、Ru膜、Mo膜からの2次電子の発生効率が高く白、Si膜、C膜、B4C膜
からの2次電子の発生効率が低く黒のコントラストの顕著な画像となる。
A sample 21 for evaluating the resolution of the SEM will be described. Sample 21 includes, for example, Ta film and Si film, W film and C film, Ru film and C film, Mo film and B4C film, W film and S film.
A thin film of a material with a large difference in atomic number such as an i-film is formed on a single crystal silicon substrate by a known thin film forming technique such as plating, CVD (Chemical Vaper Deposition), PVD (Physical Vaper Deposition), etc. The substrates are alternately stacked to form a multilayer, and the substrate on which the multilayer thin film is formed is cleaved and the cross-sectional surface 22 is used. When this is imaged, for example, the generation efficiency of secondary electrons from the Ta film, W film, Ru film, and Mo film is high due to the difference in the generation efficiency of secondary electrons, and from the white, Si film, C film, and B4C film. The secondary electron generation efficiency is low, and the image has a remarkable black contrast.

これらの物質を用いた多層薄膜の断面構造をえるためには、へき開面(結晶鉱物がある一定の方向に容易に割れて平滑な面すなわちへき開面を作る。)を利用
する等の方法があるが、評価する分解能に比べて断面表面22の凹凸が大きすぎる場合には例えば100nm以下の研磨粒子をすず製の定盤に埋没させ、そのすず製の定盤で断面22を研磨し、断面22の凹凸を数nm以下にする等の処理を行う。
In order to obtain a cross-sectional structure of a multilayer thin film using these materials, there are methods such as using a cleavage plane (a crystal mineral is easily cracked in a certain direction to form a smooth surface, that is, a cleavage plane). However, when the unevenness of the cross-sectional surface 22 is too large compared to the resolution to be evaluated, for example, abrasive particles of 100 nm or less are buried in a tin plate, and the cross-section 22 is polished by the tin plate. A process such as making the unevenness of the surface to be several nm or less is performed.

SEMの分解能を調べるためには、例えば図2に示す試料21aを使用する。電子ビーム8の集束スポットの径より十分に大きな例えば100nm程度の厚さのTa層23aとSi層23bとを作成した断面表面22上を、SEMの電子銃13から所望の加速電圧によって出て集束された電子ビームのスポットを走査したとき、電子ビームのエネルギー分布と検出器15で検出されて画像入力装置16に入力される2次電子の強度32aを模式すると図3に示すようになる。演算処理装置19は、画像入力装置16から入力される2次電子の強度信号32aについて例えば微分をとって微分信号33を得ることにより、この微分信号33から電子ビームのスポットがTa層23aとSi層23bとの境界面24を走査し始める位置35sと走査しおわる位置35eを知ることができる。そして、演算処理装置19は、この2つの位置35s、35eの差をとることにより電子ビームの形状であるスポット径を求めることができる。また、演算処理装置19は、2次電子の出力変化の微分が描く曲線33の半値幅φ1等を電子ビーム径としてもよい。   In order to examine the resolution of the SEM, for example, a sample 21a shown in FIG. 2 is used. For example, the Ta layer 23a and the Si layer 23b having a thickness of about 100 nm, which is sufficiently larger than the diameter of the focused spot of the electron beam 8, are formed on the cross-sectional surface 22 and focused by a desired acceleration voltage from the electron gun 13 of the SEM. When the electron beam spot is scanned, the energy distribution of the electron beam and the intensity 32a of the secondary electrons detected by the detector 15 and input to the image input device 16 are schematically shown in FIG. The arithmetic processing unit 19 obtains a differential signal 33 by, for example, differentiating the intensity signal 32a of the secondary electrons input from the image input device 16 to obtain a differential signal 33, and the spot of the electron beam from the differential signal 33 is changed to the Ta layer 23a and Si layer. It is possible to know a position 35 s where scanning of the boundary surface 24 with the layer 23 b starts and a position 35 e where scanning ends. And the arithmetic processing unit 19 can obtain | require the spot diameter which is the shape of an electron beam by taking the difference of these two positions 35s and 35e. Further, the arithmetic processing unit 19 may use the half width φ1 of the curve 33 drawn by the differentiation of the output change of the secondary electrons as the electron beam diameter.

電子ビーム径は、分解能と等価と見ることができ、これによりSEMの性能を定量評価できる。この場合、2次電子の強度32aを、Bスプライン近似、あるいは微分信号33を正規分布関数近似等により、近似することで、信号のノイズ成分を低減させ、電子ビーム径を再現性良く計測することが可能となる。この場合2つの層は例えばSi基板上に必ずしも成膜プロセスでSi層23bとTa層23aとを交互に積層して作る必要はなく、2次電子の発生効率の差が顕著な複数の物質を圧着、接着等で積層してもよい。   The electron beam diameter can be regarded as equivalent to the resolution, whereby the SEM performance can be quantitatively evaluated. In this case, the noise component of the signal is reduced and the electron beam diameter is measured with good reproducibility by approximating the secondary electron intensity 32a by B-spline approximation or the differential signal 33 by normal distribution function approximation or the like. Is possible. In this case, for example, the two layers do not necessarily have to be formed by alternately laminating the Si layer 23b and the Ta layer 23a on the Si substrate by a film forming process, and a plurality of substances having a remarkable difference in the generation efficiency of secondary electrons are formed. You may laminate | stack by crimping | bonding, adhesion | attachment, etc.

SEMの分解能を測定するために図4に示す試料21bを用いた場合の方法を説明する。この試料21bは例えば電子ビーム径より十分に大きなSi層23bの間に例えば1nmぐらいの薄いTa層23aを重ねて断面を形成したもので、この試料21bの断面表面22を、SEMの電子銃13から所望の加速電圧によって出て集束された電子ビームのスポットを走査したとき、電子ビームのエネルギー分布と検出器15で検出されて画像入力装置16に入力される2次電子の強度32bを模式すると図5に示すようになる。そして、演算処理装置19は、このときの2次電子の出力の描く曲線からバックグラウンド(Si層23bから得られる2次電子の強度)の値を引けばその曲線は電子ビームがTaの層を走査し始める位置35sと走査しおわる位置35eを知ることができる。この2つの位置35s、35eの差からさらにTaの膜厚を差し引くことにより電子ビームの径を算出することができる。この場合も図2に示した試料21aを用いたときと同じように半値幅φ2を算出し、その後にTaの膜厚を差し引いて電子ビームの径としてもよい。この場合薄いTa層の膜厚を例えば0.5nm、2nm、3nmと変化させ、その結果に応じた2次電子の発生強度の変化の状態から演算処理装置19は、電子ビーム単体のエネルギー分布が精度良く求めることができる。   A method when the sample 21b shown in FIG. 4 is used to measure the resolution of the SEM will be described. This sample 21b has a cross section formed by superposing a thin Ta layer 23a of, for example, about 1 nm between Si layers 23b sufficiently larger than the electron beam diameter, for example. , When the electron beam spot focused and emitted by a desired acceleration voltage is scanned, the electron beam energy distribution and the secondary electron intensity 32b detected by the detector 15 and input to the image input device 16 are schematically illustrated. As shown in FIG. Then, the processor 19 subtracts the value of the background (intensity of secondary electrons obtained from the Si layer 23b) from the curve drawn by the secondary electron output at this time, and the curve shows the layer with the electron beam Ta. It is possible to know the position 35s where scanning starts and the position 35e where scanning ends. The diameter of the electron beam can be calculated by further subtracting the Ta film thickness from the difference between the two positions 35s and 35e. In this case as well, the full width at half maximum φ2 may be calculated in the same manner as when using the sample 21a shown in FIG. 2, and then the Ta film thickness may be subtracted to obtain the electron beam diameter. In this case, the thickness of the thin Ta layer is changed to, for example, 0.5 nm, 2 nm, and 3 nm, and the arithmetic processing unit 19 determines the energy distribution of the electron beam alone from the state of change of the generation intensity of secondary electrons according to the result. It can be obtained with high accuracy.

SEMの分解能、解像度を測定するために図6に示す試料21cを用いた場合の方法を説明する。図6に示すように黒地に白の細いスリットパターンが描かれたような試料21cを用いると、走査形電子顕微鏡で走査したときには、一般的な光学系において2つのピンホールを観察したときの回折像との光の強度分布と同様の信号が得られる。光学的には、岩波書店出版「波動光学」p359-377等に示されるように、レーリーによる解像限界が定義されており、このような信号の中央部の極小値が極大値の74%以下のとき2つのピンホールの像は分離されているとみなしている。   A method when the sample 21c shown in FIG. 6 is used to measure the resolution and resolution of the SEM will be described. As shown in FIG. 6, when using a sample 21c in which a white thin slit pattern is drawn on a black background, when scanning with a scanning electron microscope, diffraction is observed when two pinholes are observed in a general optical system. A signal similar to the light intensity distribution with the image is obtained. Optically, the limit of resolution by Rayleigh is defined as shown in Iwanami Shoten's “Wave Optics” p359-377, etc. The minimum value at the center of such a signal is 74% or less of the maximum value In this case, the two pinhole images are considered to be separated.

この定義をSEMに応用するために、図6に示す様な黒地に白の細いスリットパターン(縞模様パターン;例えば、黒地はSi層で、白いスリットはTaでけいせいする)が描かれたような試料21cを作成する。スリットの間隔は例えば設定したい分解能の大きさと同じにして1nmの分解能をもつSEMに調整したい場合は1nmに膜厚を制御して試料21cを作成する。そして、演算処理装置19は、図7に示すような、この試料21cをSEMで撮像したときに得られる2次電子の強度変化の信号32cの最大値と中央部の極小値からバックグラウンド(Si層23bから得られる2次電子の強度)を差し引き、例えば極小値と最大値の比を取ったとき、74%であったとき、分解能、もしくは解像限界が1nmと定義することができる。   In order to apply this definition to SEM, it appears that a white thin slit pattern (striped pattern; for example, the black background is Si layer and the white slit is Ta) as shown in FIG. A sample 21c is prepared. For example, when the slit interval is the same as the resolution desired to be set and the SEM having a resolution of 1 nm is to be adjusted, the film thickness is controlled to 1 nm to prepare the sample 21c. Then, the arithmetic processing unit 19 obtains the background (Si) from the maximum value of the secondary electron intensity change signal 32c obtained when the sample 21c is imaged by SEM and the local minimum value as shown in FIG. When the intensity of secondary electrons obtained from the layer 23b) is subtracted and the ratio between the minimum value and the maximum value is taken, for example, when it is 74%, the resolution or resolution limit can be defined as 1 nm.

このような構成の試料を用いれば、スリットの間隔を変えることによって、評価する分解能を変えることができる。また異なった分解能または解像限界を有する各SEMに対して、上記の方法を用いて図13に示すように異なったスリット間隔の試料で定量化しておけば、演算処理装置19は、ある一定のスリット間隔の試料のみを用いて、分解能、解像限界を定量評価することができる。即ち、演算処理装置19は、定量化しておいた分解能、解像限界とを関数近似等で図12のように関連づけておき、性能評価チャートを作成しておけば、スリット間隔が例えば1nmの同じ試料で極小値と最大値の値を計測することによって、分解能
、解像限界を定量評価することができる。
If the sample having such a configuration is used, the resolution to be evaluated can be changed by changing the interval between the slits. If each SEM having a different resolution or resolution limit is quantified with samples having different slit intervals as shown in FIG. 13 by using the above-described method, the arithmetic processing unit 19 has a certain fixed value. The resolution and resolution limit can be quantitatively evaluated using only the sample with the slit interval. That is, the arithmetic processing unit 19 associates the quantified resolution and resolution limit with function approximation or the like as shown in FIG. 12 and creates a performance evaluation chart, so that the slit interval is the same, for example, 1 nm. By measuring the minimum and maximum values on the sample, the resolution and resolution limit can be quantitatively evaluated.

SEMの解像度を測定するために図8に示すような試料21dを撮像し、フーリエ変換を用い周波数解析した場合の方法を説明する。   A method in the case where a sample 21d as shown in FIG. 8 is imaged and frequency analysis is performed using Fourier transform in order to measure the SEM resolution will be described.

図8に示すように均等間隔に縞模様の観察像の得られる多層薄膜材料をSEMで撮像した画面のデータを、演算処理装置19において、1次元または2次元にフーリエ変換する。フーリエ変換によって得られるパワースペクトルについて、縞模様の周波数と信号強度の関係をグラフ化すると図9の様になる。なお、直流成分が最大となる原点は周波数が0であることを示す。   As shown in FIG. 8, screen data obtained by imaging a multilayer thin film material with a striped observation image obtained at equal intervals with an SEM is Fourier-transformed in one or two dimensions in the arithmetic processing unit 19. FIG. 9 is a graph showing the relationship between the frequency of the stripe pattern and the signal intensity for the power spectrum obtained by the Fourier transform. The origin at which the direct current component is maximum indicates that the frequency is zero.

周波数は、原点を中心して左右に進むに従って、大きくなることを示す。そして、演算処理装置19は、この縞模様の周波数でのピークの信号強度から解像度を定量的に評価できる。また演算処理装置19は、直流成分の信号強度と縞模様のピークの信号強度の比または差から解像度を定量的に評価できる。即ち、縞模様のピークの信号強度が増大するに従って、直流成分の信号強度に近づくに従って、解像度が向上することを示している。   The frequency indicates that the frequency increases as it moves left and right around the origin. The arithmetic processing unit 19 can quantitatively evaluate the resolution from the peak signal intensity at the frequency of the stripe pattern. The arithmetic processing unit 19 can quantitatively evaluate the resolution from the ratio or difference between the signal intensity of the DC component and the signal intensity of the peak of the stripe pattern. That is, as the signal intensity at the peak of the stripe pattern increases, the resolution improves as it approaches the signal intensity of the DC component.

またSEMの解像度を測定するために図8に示すような試料21dを撮像し、CTF(Contrast Transfer Function)を求めることもできる。この場合撮像した画面のデータの縞模様部分の最大輝度の値をmaxL、最小輝度の値をminLとしたとき、解像度を(maxL−minL)/(maxL+minL)×100 (%)の値で定量評価できる。   Further, in order to measure the SEM resolution, a sample 21d as shown in FIG. 8 can be imaged to obtain a CTF (Contrast Transfer Function). In this case, when the maximum luminance value of the striped pattern portion of the imaged screen data is maxL and the minimum luminance value is minL, the resolution is quantitatively evaluated with a value of (maxL−minL) / (maxL + minL) × 100 (%). it can.

また図8に示す試料の場合、電子光学系の倍率、加速電圧が一定の場合、図10、図11に示すようにSEM像を観察すると白い部分の像が一定の大きさで膨張してみえる。例えば、SEMの電子光学系の倍率、加速電圧が、図10のように10nm間隔の縞状の試料を観察したときのSEM像で白いパターンの部分が14nmと膨張して見えるとき、同じ条件で20nm間隔の縞状の試料を観察すると、図11に示すように、白い部分は24nmに膨張して見える。このように膨張の大きさが同じであることから、この膨張の大きさを分解能と、例えば上記例では4nmを分解能と定義することもできる。   In the case of the sample shown in FIG. 8, when the magnification of the electron optical system and the acceleration voltage are constant, when the SEM image is observed as shown in FIGS. 10 and 11, the white portion image appears to expand with a constant size. . For example, the magnification and acceleration voltage of the electron optical system of the SEM are as follows when the white pattern portion appears to expand to 14 nm in the SEM image when a striped sample with an interval of 10 nm is observed as shown in FIG. When a striped sample with an interval of 20 nm is observed, the white portion appears to expand to 24 nm as shown in FIG. Since the magnitude of the expansion is the same in this way, the magnitude of the expansion can be defined as the resolution, for example, 4 nm in the above example.

図13に分解能、解像度を評価するサンプルの例を示す。図2、図4、図6、図8に示す縞パターンを1枚の試料上にならべることによって、サンプルを交換することなく複数の方法で分解能、解像度の評価を行うことができる。   FIG. 13 shows an example of resolution and a sample for evaluating the resolution. By arranging the fringe patterns shown in FIGS. 2, 4, 6, and 8 on one sample, the resolution and resolution can be evaluated by a plurality of methods without exchanging the samples.

図14に試料1、分解能評価用の試料21を取り付けるステージまたは試料ホルダー24の一実施の形態を示す。例えば半導体検査に用いる場合、円形のウェハを取り付けるため四角いステージまたは試料ホルダー24だと四隅に場所が空いている。この場所に例えば図15に示す様な試料ホルダー41を取り付ける。試料ホルダー41は試料21を間に挟む形で通電可能にしておく。試料21は通常SEMで一度観察した時に生じる場所は帯電や、表面汚染のため再び使うことができないが、試料を例えば1000℃以上に通電加熱すると帯電や、表面汚染が除去され、試料の交換回数が少なくなるか、または不要となる。   FIG. 14 shows an embodiment of a stage or sample holder 24 to which the sample 1 and the sample 21 for resolution evaluation are attached. For example, when used for semiconductor inspection, a square stage or sample holder 24 has a space in the four corners for mounting a circular wafer. For example, a sample holder 41 as shown in FIG. The sample holder 41 is made energizable with the sample 21 sandwiched therebetween. Although the sample 21 usually cannot be used again due to electrification or surface contamination once observed with an SEM, charging and surface contamination are removed when the sample is heated to, for example, 1000 ° C. or more, and the number of times the sample is replaced. Is reduced or unnecessary.

分解用評価用の試料51の構成を図16に示す。Siウエハー52の上にW膜53とC膜54を、間隔A55間にC膜54の膜厚を6nmの寸法で、W膜53の膜厚は3〜10nm程度の寸法で繰り返して積層し、次に間隔B56間にC膜54の膜厚を5nmの寸法で、W膜53の膜厚は3〜10nm程度の寸法で繰り返して積層し、次に間隔C57間にC膜54の膜厚を4nmの寸法で、W膜53の膜厚は3〜10nm程度の寸法で繰り返して積層する。W膜53膜厚は、必ずしも3〜10nm程度でなくてもよいことは明らかである。そして、この試料51をSEMで観察した場合、そのSEM像を表示手段30に表示することによって図16に示すごとくSEM像58のように見える。このSEM像58を見ると
、間隔57の部分は、本来4nmずつC膜54が積層していたにも関らず、W膜3が膨らみ、暗部であるC膜4が観察できなくなっている。この意味するところは、このSEMは5nmのものは、分離して観察できるが、4nmのものは分離できない、すなわち分解能5nmの性能だということが観察によってわかる。
The structure of the sample 51 for evaluation for decomposition is shown in FIG. The W film 53 and the C film 54 are repeatedly laminated on the Si wafer 52 with a thickness of the C film 54 having a dimension of 6 nm and a thickness of the W film 53 of about 3 to 10 nm between the intervals A55. Next, the C film 54 is repeatedly laminated with a thickness of 5 nm between the intervals B56 and the W film 53 is approximately 3 to 10 nm, and then the C film 54 is increased between the intervals C57. With the dimensions of 4 nm, the W film 53 is repeatedly laminated with a thickness of about 3 to 10 nm. Obviously, the thickness of the W film 53 is not necessarily about 3 to 10 nm. Then, when the sample 51 is observed with an SEM, the SEM image is displayed on the display means 30 so that it looks like an SEM image 58 as shown in FIG. When this SEM image 58 is seen, the W film 3 swells and the C film 4 which is a dark part cannot be observed in the portion of the interval 57 although the C film 54 is originally laminated by 4 nm. This means that the SEM of 5 nm can be observed separately, but the 4 nm cannot be separated, that is, it has a resolution of 5 nm.

SEMの分解能を測定する方法の別の例として、図12のような解像度チャートを使用せずに、図17に示す試料61を用いる場合について説明する。   As another example of the method for measuring the resolution of the SEM, a case where the sample 61 shown in FIG. 17 is used without using the resolution chart as shown in FIG. 12 will be described.

試料61は、例えば次の様に作成する。Siウエハー62の上にRu膜63
とC膜54を、間隔A65間にC膜64の膜厚を10nmの寸法で、Ru膜63の膜厚は3〜10nm程度の寸法で繰り返して積層し、次に間隔B66間にC膜64の膜厚を6nmの寸法で、W膜63の膜厚は3〜10nm程度の寸法で繰り返して積層し、次に間隔C67間にC膜64の膜厚を5nmの寸法で、W膜63の膜厚は3〜10nm程度の寸法で繰り返して積層する。W膜63膜厚は、必ずしも3〜10nm程度でなくてもよいことは明らかである。
The sample 61 is created as follows, for example. Ru film 63 on Si wafer 62
And the C film 54 are repeatedly laminated with the C film 64 having a thickness of 10 nm between the intervals A65 and the Ru film 63 with a thickness of about 3 to 10 nm, and then the C film 64 between the intervals B66. The thickness of the W film 63 is repeatedly laminated with a dimension of about 3 to 10 nm, and then the thickness of the C film 64 is 5 nm between the intervals C67. The film thickness is repeatedly laminated with a dimension of about 3 to 10 nm. Obviously, the film thickness of the W film 63 is not necessarily about 3 to 10 nm.

例えば、この試料61のSEM像を得た場合、そのSEM像に対してフーリエ変換すると、図8と同様のパワースペクトルが得られる。図8における縞模様の周波数での信号、この場合、間隔D65、間隔E66、間隔F67の周波数成分のみを取り出す。これは図18のフーリエ変換像81に現れる複数のスポット82を取り出すことになる。この複数のスポット82を取り出し、フーリエ逆変換を行い、バンドパスフィルターをかけたSEM像を再現する。そのSEM像の輝度プロファイルが図19である。   For example, when an SEM image of the sample 61 is obtained, if the SEM image is Fourier transformed, a power spectrum similar to that in FIG. 8 is obtained. A signal at the frequency of the striped pattern in FIG. 8, in this case, only frequency components of the interval D65, the interval E66, and the interval F67 are extracted. This means that a plurality of spots 82 appearing in the Fourier transform image 81 of FIG. 18 are extracted. The plurality of spots 82 are taken out, inverse Fourier transform is performed, and an SEM image to which a band pass filter is applied is reproduced. The brightness profile of the SEM image is shown in FIG.

輝度の明暗の振幅が、間隔D65、間隔E66、間隔F67の部分において、振幅D、振幅E、振幅Fの順に小さくなる。これは間隔が狭くなると完全に解像しなくなるためである。間隔Dが完全に解像しているとき、図18の振幅Dと振幅E、振幅Fの比をとり、横軸を間隔(nm)、縦軸を振幅比(%)とするグラフ
にプロットすると、図20のような解像度曲線または解像度直線が得られる。レイリーの光学的解像限界を適用すると、この曲線、または直線が26%に下がる位置の横軸の値を解像限界、分解能と定義することができる。この26%は目視相関実験等により機種ごとに変えても良い。
The brightness amplitude of brightness decreases in the order of amplitude D, amplitude E, and amplitude F in the interval D65, interval E66, and interval F67. This is because when the interval is narrowed, the image is not completely resolved. When the interval D is completely resolved, the ratio of the amplitude D to the amplitude E and the amplitude F in FIG. 18 is taken, and plotted on a graph with the horizontal axis as the interval (nm) and the vertical axis as the amplitude ratio (%). A resolution curve or a resolution straight line as shown in FIG. 20 is obtained. When Rayleigh's optical resolution limit is applied, the value of the horizontal axis at the position where this curve or straight line falls to 26% can be defined as the resolution limit and resolution. This 26% may be changed for each model by a visual correlation experiment or the like.

積層する材料の組合せとしてW膜/C膜以外には、W膜/Si膜、Ru膜/C膜、Mo膜/B4C膜、Ta膜/Si膜などがある。   In addition to the W film / C film, there are W film / Si film, Ru film / C film, Mo film / B4C film, Ta film / Si film, etc. as a combination of materials to be laminated.

また、これらの材料の薄膜を形成する基板として、単結晶シリコン基板を用いたが、基板の材料は、これに限られるものではない。   Further, although a single crystal silicon substrate is used as a substrate on which a thin film of these materials is formed, the material of the substrate is not limited to this.

これらSEMの分解能用試料51は、SEM製作時の性能評価に使用できるばかりでなく、日常の点検やメンテナンス時の経時評価に使用することができる。   These SEM resolution samples 51 can be used not only for performance evaluation at the time of SEM production, but also for aging evaluation during daily inspection and maintenance.

また前記の現象を利用すれば、演算処理装置19において画像処理技術を加えて像の膨らみ量を自動測長することで、SEMの性能の1つである分解能の自動計測、および分解能の定量的評価ができる。このためSEMに試料51を搭載しておけば、装置自身がSEMの分解能性能を常時管理することができる。   If the above-described phenomenon is used, the processing unit 19 adds an image processing technique to automatically measure the bulge amount of the image, thereby automatically measuring the resolution, which is one of the SEM performances, and quantitatively determining the resolution. Can be evaluated. Therefore, if the sample 51 is mounted on the SEM, the apparatus itself can always manage the resolution performance of the SEM.

以上の説明は、一次元(X軸方向)について説明したが、2次元に個別に適用することができることは明らかである。また、加速電圧を変えると分解能も変化することは明らかである。   The above description has been given for one dimension (X-axis direction), but it is obvious that it can be applied individually to two dimensions. It is clear that the resolution also changes when the acceleration voltage is changed.

また、分解能が満足できない場合には、電子光学系14を制御する条件設定値を入力手段31を用いて入力することによってフォーカス条件を調整することができる。また真空制御系32を制御する条件設定値を入力手段31を用いて入力することによって真空度を調整することができる。電子銃13の条件が悪い場合も考えられるので、その場合には電子銃13を調整することが必要となる。   When the resolution cannot be satisfied, the focus condition can be adjusted by inputting the condition setting value for controlling the electron optical system 14 using the input means 31. Further, the degree of vacuum can be adjusted by inputting a condition set value for controlling the vacuum control system 32 using the input means 31. Since the condition of the electron gun 13 may be poor, it is necessary to adjust the electron gun 13 in that case.

また演算処理処理装置19に接続された記憶装置には分解能に関する履歴データが格納されているので、いつでも例えば表示手段30を用いることによって、ユーザに知らせることができる。   In addition, since history data relating to resolution is stored in the storage device connected to the arithmetic processing unit 19, it is possible to notify the user at any time by using the display means 30, for example.

走査形電子顕微鏡の概略構成図である。It is a schematic block diagram of a scanning electron microscope. 2つの層からなる性能評価試料の例を示す図である。It is a figure which shows the example of the performance evaluation sample which consists of two layers. 図1の試料による性能評価方法の説明図である。It is explanatory drawing of the performance evaluation method by the sample of FIG. 1つの薄膜を2つの層で挟みこんだ性能評価試料の例を示す図である。It is a figure which shows the example of the performance evaluation sample which pinched | interposed one thin film with two layers. 図3の試料による性能評価方法の説明図である。It is explanatory drawing of the performance evaluation method by the sample of FIG. 2つの薄膜を3つの層で挟みこんだ性能評価試料の例を示す図である。It is a figure which shows the example of the performance evaluation sample which pinched | interposed two thin films with three layers. 図5の試料による性能評価方法の説明図である。It is explanatory drawing of the performance evaluation method by the sample of FIG. 縞状に成膜した性能評価試料の例を示す図である。It is a figure which shows the example of the performance evaluation sample formed into a film | membrane in stripe form. 周波数解析による性能評価方法の説明図である。It is explanatory drawing of the performance evaluation method by frequency analysis. 10nm間隔で縞状に成膜した性能評価試料と撮像結果の説明図である。It is explanatory drawing of the performance evaluation sample and the imaging result which were formed into the striped form at intervals of 10 nm. 20nm間隔で縞状に成膜した性能評価試料と撮像結果の説明図である。It is explanatory drawing of the performance-evaluation sample formed into a stripe at 20 nm space | interval, and an imaging result. SEM分解能評価チャート図である。It is a SEM resolution evaluation chart figure. 性能評価サンプル構成例を示す図である。It is a figure which shows the performance evaluation sample structural example. 試料ステージを示す図である。It is a figure which shows a sample stage. 通電加熱用試料ホルダーを示す図である。It is a figure which shows the sample holder for electric heating. 本発明に係る2次電子の発生効率に差のある金属を、ある間隔ごとに寸法を変えて積層した試料の構成とSEM像とを示す図である。It is a figure which shows the structure and SEM image of the sample which laminated | stacked the metal which has a difference in the generation | occurrence | production efficiency of the secondary electron which concerns on this invention, changing a dimension for every certain space | interval. 本発明に係る2次電子の発生効率に差のある金属を、ある間隔ごとに寸法を変えて積層した試料の構成の例を示す図である。It is a figure which shows the example of a structure of the sample which laminated | stacked the metal which has a difference in the generation | occurrence | production efficiency of the secondary electron which concerns on this invention, changing a dimension for every certain space | interval. 解像度評価試料をフーリエ変換した像である。It is the image which carried out the Fourier transform of the resolution evaluation sample. SEM像をフーリエ変換した後、バンドパスフィルターをかけて逆変換した像のプロファイルを示す図である。It is a figure which shows the profile of the image which carried out the inverse transformation after applying the band pass filter after Fourier-transforming a SEM image. SEM分解能評価曲線を示す図である。It is a figure which shows a SEM resolution evaluation curve.

符号の説明Explanation of symbols

1…試料、8…電子線、13…電子銃、14…電磁レンズ、15…2次電子検出器、16…画像入力装置、17…X-Y-Zステージ、19…演算処理装置、20
…制御用計算機、24…試料ホルダー
DESCRIPTION OF SYMBOLS 1 ... Sample, 8 ... Electron beam, 13 ... Electron gun, 14 ... Electromagnetic lens, 15 ... Secondary electron detector, 16 ... Image input device, 17 ... XYZ stage, 19 ... Arithmetic processing device, 20
... Control computer, 24 ... Sample holder

Claims (4)

電子顕微鏡の分解能評価方法であって、2次電子または反射電子または透過電子の何れかの2次荷電粒子の発生効率が異なる材料を表面に交互に複数配置して形成した繰返しの方向の幅寸法が既知の繰返しパターンを有する試料に電子線を走査して照射し、該電子線を走査して照射することにより前記試料の表面から各材料の2次荷電粒子発生効率に応じて発生する2次荷電粒子を検出して前記材料に応じて2次荷電粒子発生効率が異なることにより生ずる前記試料の表面のコントラストが顕著な2次荷電粒子像を得、該材料に応じたコントラストが顕著な2次荷電粒子像の波形データをフーリエ変換を用いて周波数解析処理して前記繰り返しパターンの周波数でのピークの強度信号から電子顕微鏡の分解能の定量評価を行うことを特徴とする電子顕微鏡の分解能評価方法。 A method for evaluating the resolution of an electron microscope, the width dimension in a repetitive direction formed by alternately arranging a plurality of materials having different generation efficiency of secondary charged particles of secondary electrons , reflected electrons, or transmitted electrons on the surface. secondary but which irradiated by scanning the electron beam to a sample having a known repetitive pattern, generated in response to the secondary charged particle generating efficiency of each material from the surface of the specimen by irradiating by scanning the electron beam detecting the charged particles to obtain a contrast marked secondary charged particle image of the surface of the sample caused by the different secondary charged particle generating efficiency depending on the material, 2 contrast according to the materials significant primary and performing quantitative evaluation of resolution of the electron microscope from the peak intensity signal at the frequency of the repeated pattern and the frequency analysis processing using a Fourier transform of the waveform data of the charged particle image Resolution evaluation method of child microscope. 前記試料の表面には、繰返しパターンが複数形成されており、該複数のパターン間で、
該繰返しパターンを構成する2次荷電粒子の発生効率が異なるそれぞれの材料のうちの少
なくとも一方の材料の繰返しの方向の幅寸法が異なることを特徴とする、請求項1記載の
電子顕微鏡の分解能評価方法。
A plurality of repetitive patterns are formed on the surface of the sample, and between the plurality of patterns,
2. The resolution evaluation of an electron microscope according to claim 1, wherein the width dimension in the repeating direction of at least one of the materials having different generation efficiency of the secondary charged particles constituting the repeating pattern is different. Method.
前記繰返しパターンが、タンタル(Ta)とシリコン(Si)とで形成されていること
を特徴とする請求項1記載の電子顕微鏡の分解能評価方法。
2. The resolution evaluation method for an electron microscope according to claim 1, wherein the repetitive pattern is formed of tantalum (Ta) and silicon (Si).
電子顕微鏡の調整方法であって、2次電子または反射電子または透過電子の何れかの2次荷電粒子の発生効率が異なる材料を表面に交互に配置して形成した繰返しパターンを有する試料に電子顕微鏡から電子線を走査して照射し、該電子線を走査して照射することにより前記試料の表面から各材料の2次荷電粒子発生効率に応じて発生する2次荷電粒子を検出して前記材料に応じて2次荷電粒子発生効率が異なることにより生ずる前記試料の表面のコントラストが顕著な2次荷電粒子像を得、該材料に応じたコントラストが顕著な2次荷電粒子像の波形データをフーリエ変換を用いて周波数解析処理して前記繰り返しパターンの周波数でのピークの強度信号から前記電子顕微鏡の分解能を評価し、該評価した分解能が満足できない場合には前記電子顕微鏡の光学系のフォーカス条件を調整することを特徴とする電子顕微鏡の調整方法。 An electron microscope adjustment method, in which an electron microscope is applied to a sample having a repetitive pattern formed by alternately arranging materials with different generation efficiency of secondary charged particles of secondary electrons , reflected electrons, or transmitted electrons on the surface from irradiated by scanning the electron beam, by detecting the secondary charged particles generated in accordance with the secondary charged particle generating efficiency of each material from the surface of the specimen by irradiating by scanning electron line said material contrast of the surface of said sample to obtain a significant secondary charged particle image caused by the different secondary charged particle generating efficiency, contrast according to the material of the waveform data of significant secondary charged particle image Fourier according to when said by frequency analysis processing using the converted evaluate the resolution of the electron microscope from the intensity signal of the peak at the frequency of the repeated pattern, the resolution was the evaluation can not be satisfied Adjustment method for an electronic microscope and adjusting the focus condition of an optical system of a child microscope.
JP2003358740A 1997-05-08 2003-10-20 Method for evaluating resolution of electron microscope and method for adjusting electron microscope Expired - Fee Related JP4007305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358740A JP4007305B2 (en) 1997-05-08 2003-10-20 Method for evaluating resolution of electron microscope and method for adjusting electron microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11849497 1997-05-08
JP2003358740A JP4007305B2 (en) 1997-05-08 2003-10-20 Method for evaluating resolution of electron microscope and method for adjusting electron microscope

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9316811A Division JPH1125898A (en) 1997-05-08 1997-11-18 Evaluation method for resolving power of electron microscope and sample for it

Publications (2)

Publication Number Publication Date
JP2004111401A JP2004111401A (en) 2004-04-08
JP4007305B2 true JP4007305B2 (en) 2007-11-14

Family

ID=32299903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358740A Expired - Fee Related JP4007305B2 (en) 1997-05-08 2003-10-20 Method for evaluating resolution of electron microscope and method for adjusting electron microscope

Country Status (1)

Country Link
JP (1) JP4007305B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427921C (en) * 2005-09-12 2008-10-22 电子科技大学 Thin-membrane section positioning method of scanning probe microscope
EP2284524B1 (en) * 2009-08-10 2014-01-15 FEI Company Microcalorimetry for X-ray spectroscopy
US9562846B2 (en) * 2013-07-10 2017-02-07 Kla-Tencor Corporation Particle suspensions used as low-contrast standards for inspection of liquids

Also Published As

Publication number Publication date
JP2004111401A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
KR100695978B1 (en) Method and apparatus for measuring physical properties of micro region
KR100345362B1 (en) Resolving power evaluation method of electron microscope and specimen for resolving power evaluation
Postek et al. Submicrometer microelectronics dimensional metrology: scanning electron microscopy
TW461964B (en) Voltage contrast method and apparatus for semiconductor inspection using low voltage particle beam
US7372051B2 (en) Electric charged particle beam microscopy, electric charged particle beam microscope, critical dimension measurement and critical dimension measurement system
US6768324B1 (en) Semiconductor device tester which measures information related to a structure of a sample in a depth direction
JP4988444B2 (en) Inspection method and apparatus
JP4987486B2 (en) Thin film sample measurement method and apparatus, and thin film sample preparation method and apparatus
EP1238405B1 (en) Method and system for the examination of specimen using a charged particle beam
JP2006332296A (en) Focus correction method in electronic beam applied circuit pattern inspection
EP1081742B1 (en) Charged particle beam evaluation method
JP2003014667A (en) Apparatus and method for observing using electron beam
JPH09184714A (en) Pattern dimension measuring method
JP4504946B2 (en) Charged particle beam equipment
JP2022109320A (en) Apparatus and method for determining position of element on photolithographic mask
JP4007305B2 (en) Method for evaluating resolution of electron microscope and method for adjusting electron microscope
WO1997047023A1 (en) Spin-split scanning electron microscope
JPH11224640A (en) Electron microscope, its resolution evaluating method and manufacture of semiconductor therewith
JP7040496B2 (en) Sample observation method in electron microscope, image analyzer for electron microscope, image analysis method for electron microscope and electron microscope
KR101018724B1 (en) Method for fabricating semiconductor device
JP2002062270A (en) Method of displaying face analysis data in surface analyzer using electron beam
Senesac et al. Fabrication of integrated diffractive micro-optics for MEMS applications
JPH02216748A (en) Sample surface unevenness observation method by reflection electron beam diffraction
Young et al. The Measurement and Characterization of Surface Finish
JPS6119044A (en) Stereoscanning-type electron microscope

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees