JPH11224640A - Electron microscope, its resolution evaluating method and manufacture of semiconductor therewith - Google Patents

Electron microscope, its resolution evaluating method and manufacture of semiconductor therewith

Info

Publication number
JPH11224640A
JPH11224640A JP2806998A JP2806998A JPH11224640A JP H11224640 A JPH11224640 A JP H11224640A JP 2806998 A JP2806998 A JP 2806998A JP 2806998 A JP2806998 A JP 2806998A JP H11224640 A JPH11224640 A JP H11224640A
Authority
JP
Japan
Prior art keywords
resolution
electron microscope
image
frequency
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2806998A
Other languages
Japanese (ja)
Inventor
Taiji Kitagawa
泰治 北川
Takanori Ninomiya
隆典 二宮
Minoru Noguchi
稔 野口
Tatsuo Horiuchi
立夫 堀内
Keisuke Kawame
啓介 川目
Goroku Shimoma
五六 下間
Tadanori Takahashi
忠範 高橋
Masayuki Yukii
正幸 雪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2806998A priority Critical patent/JPH11224640A/en
Publication of JPH11224640A publication Critical patent/JPH11224640A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure, evaluate and adjust resolution by incorporating an arithmetic processor evaluating the image of an acquired deposition sample by a frequency analysis or the like in a scanning electron microscope, quantifying the signal characteristic from the result of the frequency analysis, and calculating the resolution. SOLUTION: Generated secondary electrons are detected by a secondary electron detector 15, the intensity is inputted to an image input device 16, and a two-dimensional gray image is obtained and inputted to an arithmetic processor 19. Two-dimensional Fourier transformation is applied to multiple images to obtain a power spectrum, averaging is made for each frequency, and a smoothing process, e.g. moving averaging and median filtering, is applied. The intersection of the obtained power spectrum and a resolution calculating curve calculated in advance is obtained, and the resolution is calculated based on the frequency. If the resolution is unsatisfactory, the condition set value controlling an electromagnetic lens 14 is inputted to a control computer 20, and the focus condition is optionally changed to make an adjustment until the desired resolution is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走査形電子顕微鏡
の分解能、解像度等を均一にすることを目的とする試料
とその試料を内蔵した走査形電子顕微鏡、及びその走査
形電子顕微鏡を用いた半導体製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample for the purpose of making the resolution, resolution, etc. of a scanning electron microscope uniform, a scanning electron microscope incorporating the sample, and the scanning electron microscope. The present invention relates to a semiconductor manufacturing method.

【0002】[0002]

【従来の技術】従来、電子顕微鏡の分解能の評価は、目
視確認できる試料の2点間の距離で評価され、特開平5
−45265号公報のようにカーボン上に金粒子を蒸着
した試料を電子顕微鏡で観察し、分離されている二つの
金粒子間の最小隙間を分解能としている。また電子顕微
鏡の解像度評価は粒子境界のぼけ具合によって評価され
ている。
2. Description of the Related Art Conventionally, the resolution of an electron microscope has been evaluated based on the distance between two points of a sample that can be visually confirmed.
A sample obtained by depositing gold particles on carbon as in Japanese Patent No. 45265 is observed with an electron microscope, and the minimum gap between two separated gold particles is defined as the resolution. The resolution of the electron microscope is evaluated based on the degree of blurring of the grain boundaries.

【0003】[0003]

【発明が解決しようとする課題】従来の分解能評価にお
いては、電子顕微鏡の撮像画像は金粒子などを撮像する
際に、金粒子の大きさ、形状にばらつきがあり、測定に
個人差が生じ、さらにおなじ試料を再現することができ
ないため正確な定量評価は望めない。また電子顕微鏡で
観察中の金粒子の隙間の評価は目視でおこなわれるた
め、高い再現精度が得られない。また、電子顕微鏡の分
解能は装置ごとによって機差がある。このため半導体製
品の製造プロセスにおいて、複数の電子顕微鏡を用いて
半導体各部の寸法を計測する場合、これらの電子顕微鏡
間で観察像が異り、欠陥等が観察する電子顕微鏡によっ
て見えたり、見えなかったし、一元的かつ一定の管理値
に基づいた製造が行えない等の問題がある。
In the conventional resolution evaluation, when an image captured by an electron microscope captures gold particles and the like, the size and shape of the gold particles vary, and individual differences occur in the measurement. Furthermore, since the same sample cannot be reproduced, accurate quantitative evaluation cannot be expected. In addition, since the evaluation of the gap between the gold particles during observation with an electron microscope is performed visually, high reproducibility cannot be obtained. Further, the resolution of an electron microscope varies from machine to machine. For this reason, when measuring the dimensions of each part of the semiconductor using a plurality of electron microscopes in a semiconductor product manufacturing process, the observed images differ among these electron microscopes, and defects and the like are visible or invisible by the observed electron microscope. However, there is a problem that manufacturing cannot be performed based on a unified and fixed control value.

【0004】本発明の目的は、上記課題を解決するべく
電子顕微鏡の分解能計測用試料および電子顕微鏡の分解
能評価方法およびその調整方法を提供することにある。
An object of the present invention is to provide a sample for measuring the resolution of an electron microscope, a method for evaluating the resolution of an electron microscope, and a method for adjusting the same in order to solve the above-mentioned problems.

【0005】[0005]

【課題を解決するための手段】上記の課題を達成するた
めに、本発明ではSEMに蒸着試料と、SEM撮像画像
取得する画像入力装置と、取得した画像を周波数解析等
により評価する演算処理装置等を内蔵させる。周波数解
析結果から信号特性の定量化を行い電子顕微鏡の解像度
を算出する。このような試料を内蔵した複数の電子顕微
鏡は、各電子顕微鏡のフォーカス電圧等を調整すること
により同じ分解能、解像度に揃えることが可能となり、
異なる機種の電子顕微鏡でも同じ条件の観察が可能とな
る。
In order to achieve the above-mentioned object, the present invention provides a vapor deposition sample on an SEM, an image input device for acquiring an SEM image, and an arithmetic processing device for evaluating the acquired image by frequency analysis or the like. And so on. The signal characteristics are quantified from the frequency analysis result, and the resolution of the electron microscope is calculated. A plurality of electron microscopes incorporating such a sample can be adjusted to the same resolution and resolution by adjusting the focus voltage and the like of each electron microscope.
Observations under the same conditions can be made with different types of electron microscopes.

【0006】[0006]

【発明の実施の形態】本発明の実施形態の例とする走査
形電子顕微鏡(以下SEMと呼ぶ)の概略図を図1を用
いて説明する。図1の電子光学系は電子銃13から発せ
られる電子線を電磁レンズ14により集束させ試料表面
を任意の順序で走査することができる。電子線の照射に
より試料1の表面において発生する2次電子信号は2次
電子検出器15により検出され画像入力装置16に画像
データとして入力される。被検査物である試料1はX−
Y−Zステージ17により3次元方向すべての方向に移
動可能である。ステージ移動に同期した電子ビームの照
射および画像入力が可能であり、ステージの移動は制御
用計算機20により制御される。図1では2次電子像を
用いたSEMの例を示しているが、試料を観察する手段
は2次電子以外に、後方散乱電子、反射電子、透過電子
等による像を用いてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A schematic diagram of a scanning electron microscope (hereinafter, referred to as SEM) as an example of an embodiment of the present invention will be described with reference to FIG. The electron optical system shown in FIG. 1 can focus the electron beam emitted from the electron gun 13 by the electromagnetic lens 14 and scan the sample surface in an arbitrary order. Secondary electron signals generated on the surface of the sample 1 by the irradiation of the electron beam are detected by the secondary electron detector 15 and input to the image input device 16 as image data. Sample 1 which is the inspection object is X-
The YZ stage 17 can move in all three-dimensional directions. The irradiation of the electron beam and the image input synchronized with the movement of the stage are possible, and the movement of the stage is controlled by the control computer 20. Although FIG. 1 shows an example of the SEM using the secondary electron image, the means for observing the sample may use an image of backscattered electrons, reflected electrons, transmitted electrons, and the like in addition to the secondary electrons.

【0007】SEMの分解能を評価するための試料につ
いて説明する。カーボン等の被蒸着材に対し、原子番号
の大きな金粒子等を蒸着させると、図2に見られるよう
なコントラストのはっきりとした像が得られる。従来の
分解能評価法を示す。カーボン面と蒸着金粒子を横から
見た模式図を図3のようにあらわしたときSEM像の中
からもっとも小さい隙間Wを探して、分解能と定義して
いる。
A sample for evaluating the resolution of the SEM will be described. When gold particles having a large atomic number are vapor-deposited on a material to be vapor-deposited such as carbon, an image having a clear contrast as shown in FIG. 2 is obtained. 1 shows a conventional resolution evaluation method. When the schematic view of the carbon surface and the deposited gold particles as viewed from the side is shown in FIG. 3, the smallest gap W is searched from the SEM image and defined as the resolution.

【0008】本発明ではこのような画像に対し2次元フ
ーリエ変換等の手法により周波数解析を行うことにより
SEMの分解能を計測する。画像を取得する手段を図1
において説明する。金蒸着粒子を試料ホルダー24の上
に設置し、電子銃13から電子ビームを照射し、2次元
的に走査させる。走査したときに試料表面から発生する
電子を2次電子検出器15で検出し、その強度を画像入
力装置16に入力し、2次元の濃淡画像を得る。得た濃
淡画像はディジタルの画像データとして演算処理装置1
9に入力する。
In the present invention, the resolution of the SEM is measured by performing frequency analysis on such an image by a technique such as two-dimensional Fourier transform. Figure 1 shows the means for acquiring images
Will be described. The gold vapor-deposited particles are placed on the sample holder 24, irradiated with an electron beam from the electron gun 13, and scanned two-dimensionally. Electrons generated from the sample surface when scanning are detected by the secondary electron detector 15 and the intensity is input to the image input device 16 to obtain a two-dimensional gray image. The obtained grayscale image is converted into digital image data by the arithmetic processing unit 1.
Enter 9

【0009】画像データは必要に応じて制御用計算機2
0のメモリ内に保存したり、制御用計算機20を介して
表示装置30に取得した画像データを表示することがで
きる。また試料表面の蒸着粒子の大きさは不均一である
ため、試料上の異なる部位を繰り返し取得する。この
時、測定部位が試料上の近傍であれば、電磁レンズ14
で発生させる磁界を調節し、測定部位を変えることがで
きる。大きく測定部位を変えるときはX−Y−Zステー
ジ17を駆動させる。試料を繰り返し測定し、周波数解
析の結果の平均をとることによって分解能の測定精度を
向上させることが可能となる。
The image data is transferred to the control computer 2 if necessary.
0, or the acquired image data can be displayed on the display device 30 via the control computer 20. Further, since the size of the vapor deposition particles on the sample surface is not uniform, different portions on the sample are repeatedly obtained. At this time, if the measurement site is near the sample, the electromagnetic lens 14
The measurement field can be changed by adjusting the magnetic field generated in step (1). When the measurement site is largely changed, the XYZ stage 17 is driven. The measurement accuracy of the resolution can be improved by repeatedly measuring the sample and averaging the results of the frequency analysis.

【0010】図4、図5、図6を用いて分解能の定量評
価方式を述べる。図2は金蒸着粒子像を512画素×5
12画素でディジタル画像にしたものである。この画像
を2次元フーリエ変換し、実部と虚部の平方和をとり、
さらに各画素の値の対数をとった像が図4である。たと
えば図4の中心部を通る水平軸Aの部分のプロファイル
をとった結果が図5である。これが図2の画像における
水平方向の周波数スペクトルであり、パワースペクトル
と呼ぶ。図5には分解能4nm,4.5nm,5nmと
目視等級判別等で判定された図2の3枚分にあたるSE
Mのパワースペクトルを表示している。パワースペクト
ルは中心を通る任意の面で得ることができる。このため
任意の角度での分解能を得ることができる。
A quantitative evaluation method of the resolution will be described with reference to FIGS. FIG. 2 shows an image of a gold vapor deposition particle at 512 pixels × 5.
This is a digital image composed of 12 pixels. This image is subjected to a two-dimensional Fourier transform to obtain a sum of squares of a real part and an imaginary part.
FIG. 4 shows an image obtained by taking the logarithm of the value of each pixel. For example, FIG. 5 shows a result obtained by taking a profile of a portion of the horizontal axis A passing through the center of FIG. This is the frequency spectrum in the horizontal direction in the image of FIG. 2 and is called a power spectrum. FIG. 5 shows SEs corresponding to the three images in FIG. 2 which were determined to have resolutions of 4 nm, 4.5 nm, and 5 nm by visual classification and the like.
The power spectrum of M is displayed. The power spectrum can be obtained at any plane passing through the center. Therefore, a resolution at an arbitrary angle can be obtained.

【0011】図5では縦軸が信号強度、横軸が周波数を
あらわす。この場合の周波数とは像内で1周期の明暗を
繰り返しである。よって水平方向での最高周波数は51
2画素×512画素の像の場合では256周期となる。
図5の状態では、分解能4nm,4.5nm,5nmと
判定されたSEMのパワースペクトルは互いに重なり合
っており、分解能の評価は困難である。このため金蒸着
粒子像を繰り返し取得し、パワースペクトルの平均値を
とる。またさらに移動平均やメディアンフィルタなどの
平滑化処理を施す等の処理を行うと図6のようにSEM
のパワースペクトルは分解能の違いにより容易に分離可
能となる。
In FIG. 5, the vertical axis represents signal strength and the horizontal axis represents frequency. The frequency in this case is one cycle of light and dark in the image. Therefore, the highest frequency in the horizontal direction is 51
In the case of an image of 2 pixels × 512 pixels, there are 256 periods.
In the state of FIG. 5, the power spectra of the SEMs determined to have resolutions of 4 nm, 4.5 nm, and 5 nm overlap each other, and it is difficult to evaluate the resolution. For this reason, the image of the gold vapor deposition particles is repeatedly obtained, and the average value of the power spectrum is obtained. Further, when processing such as smoothing processing such as moving average or median filter is performed, as shown in FIG.
Can be easily separated due to the difference in resolution.

【0012】実験によってあらかじめSEMの分解能を
従来の方式や薄膜層の断面の見え方により、4nm,
4.5nm,5nm等定義しておき、その値をパワース
ペクトルの周波数に換算し、その周波数でのパワースペ
クトルの値を分解能にプロットして行くと図6の中に示
した分解能判定曲線または分解能判定直線を得ることが
できる。たとえば、水平方向での分解能Rを波長と考え
れば、その周波数Fとの関係は画像の幅(512画素)
をLとしたとき、以下の関係にある。
Through experiments, the resolution of the SEM was previously set to 4 nm, depending on the conventional method and the appearance of the cross section of the thin film layer.
4.5 nm, 5 nm, etc. are defined, the values are converted to the frequency of the power spectrum, and the value of the power spectrum at that frequency is plotted on the resolution. A determination straight line can be obtained. For example, assuming that the resolution R in the horizontal direction is the wavelength, the relationship with the frequency F is the width of the image (512 pixels).
Is L, the following relationship is established.

【0013】[0013]

【数1】 F=L/R (式1) つぎに金粒子間の最小隙間を分解能Rとするときには、
金粒子間の最小隙間は暗部であり、明暗繰り返し1回を
1周期とすることから、これを2倍することにより1周
期の波長とする。この全長を分解能Rの波長で割ること
により、任意の分解能に対し、2次元フーリエ変換時の
相当する周波数を算出することができる。周波数の算出
式は
F = L / R (Equation 1) Next, when the minimum gap between the gold particles is defined as the resolution R,
Since the minimum gap between the gold particles is a dark portion, and one cycle of light / dark repetition is one cycle, the wavelength is doubled to obtain a wavelength of one cycle. By dividing this total length by the wavelength of the resolution R, it is possible to calculate the corresponding frequency in the two-dimensional Fourier transform for an arbitrary resolution. The formula for calculating the frequency is

【0014】[0014]

【数2】 F=L/(2×R) (式2) で表わされる。この式より逆に分解能Rの算出式F = L / (2 × R) (Equation 2) Conversely to this formula, the formula for calculating the resolution R

【0015】[0015]

【数3】 R=L/(2×F) (式3) が成立し、任意のSEMの解像度を計測することができ
る。例えば図6においては、Lが1140nmであり、
その値から解像度4nm,4.5nm,5nmを周波数
に換算すると114Hz,126Hz,142Hzとな
る。ただし、ここで定義するHzとは全長L内に存在す
る波の数である。
R = L / (2 × F) (Equation 3) holds, and the resolution of an arbitrary SEM can be measured. For example, in FIG. 6, L is 1140 nm,
When the resolutions of 4 nm, 4.5 nm, and 5 nm are converted into frequencies from the values, they are 114 Hz, 126 Hz, and 142 Hz. However, Hz defined here is the number of waves existing in the entire length L.

【0016】解像度を算出する手順を図7のフローに示
す。まず異なる部位での複数の金蒸着試料像を取得する
(100)。次に複数の画像について2次元フーリエ変
換を行いパワースペクトルを得る(102)。得られた
パワースペクトルは周波数毎に加算平均を行う(10
4)。さらに、移動平均やメディアンフィルタ等の平滑
化処理を行う(106)。その結果得られたパワースペ
クトルとあらかじめ算出しておいた解像度算出曲線との
交点を算出する(108)。その周波数を[数3]のF
に代入し、該当SEMの解像度Rが算出される(11
0)。
The procedure for calculating the resolution is shown in the flowchart of FIG. First, a plurality of gold-deposited sample images at different sites are obtained (100). Next, two-dimensional Fourier transform is performed on a plurality of images to obtain a power spectrum (102). The obtained power spectrum is averaged for each frequency (10
4). Further, smoothing processing such as a moving average and a median filter is performed (106). The intersection of the power spectrum obtained as a result and the previously calculated resolution calculation curve is calculated (108). The frequency is represented by F in [Equation 3].
And the resolution R of the corresponding SEM is calculated (11
0).

【0017】これによりSEMに試料を搭載しておけ
ば、装置自身がSEMの解像度を常時管理することがで
きる。
Thus, if the sample is mounted on the SEM, the apparatus itself can always manage the resolution of the SEM.

【0018】以上の説明は、一次元(X軸方向)につい
て説明したが、2次元に個別に適用することができるこ
とは明らかである。また、加速電圧を変えると解像度も
変化することは明らかである。
Although the above description has been made in one dimension (X-axis direction), it is apparent that the present invention can be applied to two dimensions individually. It is clear that changing the acceleration voltage also changes the resolution.

【0019】また、解像度が満足できない場合には、電
磁レンズ14を制御する条件設定値を制御用計算機20
に入力することによってフォーカス条件を任意に変え
て、所望の解像度が選られるように最適調整することが
できる。また真空制御系を制御する条件設定値を入力す
ることによって真空制御条件を任意に変えて、所望の解
像度が選られるよう真空度を調整することができる。電
子銃13の条件が悪い場合も考えられるので、その場合
には電子銃13にかける電圧等を所望の解像度が選られ
るように調整することが必要となる。
If the resolution is not satisfactory, the condition setting value for controlling the electromagnetic lens 14 is changed to the control computer 20.
, The focus condition can be arbitrarily changed and the optimum adjustment can be made so that a desired resolution can be selected. Further, by inputting condition setting values for controlling the vacuum control system, the degree of vacuum can be adjusted so that a desired resolution can be selected by arbitrarily changing the vacuum control conditions. Since the condition of the electron gun 13 may be bad, it is necessary to adjust the voltage applied to the electron gun 13 so that a desired resolution can be selected.

【0020】また演算処理装置19に接続された記憶装
置には分解能に関する履歴データが格納されているの
で、いつでも例えば制御用計算機20と表示装置30と
を用いることによって、ユーザに知らせることができ
る。
Since the storage device connected to the arithmetic processing unit 19 stores the history data relating to the resolution, the user can be notified at any time by using the control computer 20 and the display device 30, for example.

【0021】また、半導体製品等の生産ラインにおいて
制御用計算機20を介して複数台のSEMをネットワー
ク接続することにより、複数のSEMを同時に管理し、
性能差を計測し、差異が認められた場合には、上記の解
像度調整手段を用いて調整することから、各工程間の生
産品質の差異を低減し、製品の品質の安定化が可能とな
る。また、異なる場所にある工場とも通信を行い、同様
に品質の安定した製品を生産することが可能となる。図
8を用いて半導体製品等の生産ラインにおける本発明の
実施形態を説明する。
Further, by connecting a plurality of SEMs via a control computer 20 in a production line of a semiconductor product or the like via a network, the plurality of SEMs are simultaneously managed,
The performance difference is measured, and if a difference is found, the difference is adjusted by using the above-mentioned resolution adjusting means, so that the difference in production quality between each process can be reduced, and the quality of the product can be stabilized. . In addition, it is possible to communicate with factories located in different places, and similarly produce a product with stable quality. An embodiment of the present invention in a production line for semiconductor products and the like will be described with reference to FIG.

【0022】図8はSEM検査を、ウェハ投入、成膜、
露光、エッチング、ウェハテスト等の後または前に行う
半導体製品の生産ラインの概略図である。
FIG. 8 shows the SEM inspection including wafer input, film formation,
1 is a schematic diagram of a semiconductor product production line performed after or before exposure, etching, wafer test, and the like.

【0023】解像度評価をライン上のすべてのSEMに
おいて行い、ネットワークサーバー40へ分解能、フォ
ーカス設定条件、電子ビーム設定条件、電磁レンズ設定
条件、真空度設定条件等のデータをLAN(Local Ar
ea Network)を介して送る。全SEMの分解能が一致
していない場合は、一致しないSEMに対して、ネット
ワークサーバー40からフォーカス設定条件、電子ビー
ム設定条件、電磁レンズ設定条件、真空度設定条件を変
化させて、SEMを制御し、所望の分解能が得られるま
でフィードバック調整を行う。ネットワークサーバー4
0にはライン上のSEMのいずれかを代用しても良い。
The resolution evaluation is performed in all SEMs on the line, and data such as resolution, focus setting conditions, electron beam setting conditions, electromagnetic lens setting conditions, and vacuum degree setting conditions are sent to the network server 40 via a LAN (Local Arrangement).
ea Network). If the resolutions of all the SEMs do not match, the network server 40 changes the focus setting conditions, electron beam setting conditions, electromagnetic lens setting conditions, and vacuum degree setting conditions for the SEMs that do not match, and controls the SEM. Feedback adjustment is performed until a desired resolution is obtained. Network server 4
For 0, any of the SEMs on the line may be substituted.

【0024】また、他の場所にある半導体製品の生産ラ
インに対しても同様に、複数SEMの分解能調整をネッ
トワークサーバー40によって行うことができる。
Similarly, the resolution of a plurality of SEMs can be adjusted by the network server 40 for a semiconductor product production line at another location.

【0025】上記発明により、工場間、工程間のSEM
検査の安定性向上の結果、生産製品の品質の差異を低減
し、生産ラインの異常等を正確に把握することが可能と
なり、製品の品質の安定化が可能となる。
According to the above invention, SEM between factories and processes
As a result of improving the stability of the inspection, it is possible to reduce the difference in the quality of the produced product, to accurately grasp the abnormality of the production line, and to stabilize the quality of the product.

【0026】[0026]

【発明の効果】本発明によれば、電子顕微鏡の分解能、
解像度を、金蒸着試料を用いて、電子顕微鏡による撮像
結果を周波数解析等の手段で定量的に評価することによ
り、異なる電子顕微鏡間の性能差や経時変化を正確に把
握することが可能となる。これは特に半導体検査など、
複数の電子顕微鏡を用いる製造プロセスにおいて、電子
顕微鏡間の個体差を低減し、検査の正確性を向上させる
ことができる。
According to the present invention, the resolution of an electron microscope,
By using a gold vapor-deposited sample to quantitatively evaluate the resolution by means of frequency analysis or the like, using a gold-deposited sample, it is possible to accurately grasp the performance difference between different electron microscopes and changes over time. . This is especially true for semiconductor inspection
In a manufacturing process using a plurality of electron microscopes, individual differences between electron microscopes can be reduced, and the accuracy of inspection can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】走査形電子顕微鏡の概略図。FIG. 1 is a schematic diagram of a scanning electron microscope.

【図2】本発明の実施例である金蒸着試料の電子顕微鏡
撮像結果の図。
FIG. 2 is a view of an electron microscope imaging result of a gold vapor-deposited sample according to an example of the present invention.

【図3】本発明の金蒸着試料の模式図。FIG. 3 is a schematic view of a gold vapor deposition sample of the present invention.

【図4】図2の金蒸着試料の電子顕微鏡像を周波数変換
した結果の図。
4 is a diagram showing a result of frequency conversion of an electron microscope image of the gold vapor-deposited sample of FIG.

【図5】本発明の金蒸着試料の電子顕微鏡像を周波数変
換した結果のプロファイル図。
FIG. 5 is a profile diagram showing the result of frequency conversion of an electron microscope image of a gold-deposited sample of the present invention.

【図6】本発明の電子顕微鏡の分解能評価法を説明する
図。
FIG. 6 is a diagram illustrating a method for evaluating the resolution of an electron microscope according to the present invention.

【図7】本発明の電子顕微鏡の分解能評価フロー図。FIG. 7 is a flowchart for evaluating the resolution of the electron microscope of the present invention.

【図8】本発明の半導体製品製造ラインにおけるSEM
ネットワーク概略図。
FIG. 8 is an SEM in the semiconductor product manufacturing line of the present invention.
Network schematic diagram.

【符号の説明】[Explanation of symbols]

1…試料、 8…電子線、 13…
電子銃、14…電磁レンズ、 15…2次電子検出器、
16…画像入力装置、17…X−Y−Zステージ、
19…演算処理装置、20…制御
用計算機、24…試料ホルダー、 30…表示装
置、40…ネットワークサーバ。
1 ... sample, 8 ... electron beam, 13 ...
Electron gun, 14 ... electromagnetic lens, 15 ... secondary electron detector,
16 image input device, 17 XYZ stage,
19: arithmetic processing unit, 20: control computer, 24: sample holder, 30: display device, 40: network server.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀内 立夫 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 川目 啓介 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 下間 五六 茨城県ひたちなか市市毛882番地株式会社 日立製作所計測器事業部内 (72)発明者 高橋 忠範 茨城県ひたちなか市市毛882番地株式会社 日立製作所計測器事業部内 (72)発明者 雪井 正幸 茨城県ひたちなか市市毛882番地株式会社 日立製作所計測器事業部内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tatsuo Horiuchi 292 Yoshidacho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside the Hitachi, Ltd.Production Technology Research Institute (72) Keisuke Kawame 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Within Hitachi, Ltd. Production Technology Research Laboratories (72) Inventor Goro Shimoma 882 Ma, Hitachinaka-shi, Ibaraki Pref., Ltd.Measurement Division, Hitachi, Ltd. (72) Inventor Tadanori Takahashi 882 Mao, Hitachinaka-shi, Ibaraki Pref. Within Hitachi Measuring Instruments Division (72) Inventor Masayuki Yukiti 882 Ma, Hitachinaka-shi, Ibaraki Prefecture Within Hitachi Instruments Measuring Instruments Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電子顕微鏡の分解能および解像度の計測、
調整のために微粒子を蒸着させた試料を1回または複数
回撮像する手段と、前記撮像した画像を記憶する手段
と、前記記憶された画像のデータを周波数解析等の手順
を用いて解析する演算手段と、前記解析結果より分解能
および解像度を定量評価する手段を有する電子顕微鏡。
1. Resolution of an electron microscope and measurement of the resolution,
Means for imaging the sample on which fine particles are deposited once or more than once for adjustment, means for storing the captured image, and operation for analyzing the data of the stored image using a procedure such as frequency analysis An electron microscope comprising means and means for quantitatively evaluating resolution and resolution from the analysis result.
【請求項2】電子顕微鏡の分解能および解像度の計測、
調整のために微粒子を蒸着させた試料を1回または複数
回撮像する過程と、前記撮像した画像を記憶する過程
と、前記記憶された画像のデータを周波数解析等を用い
て解析する演算過程と、前記解析結果より分解能および
解像度を定量評価する過程よりなる電子顕微鏡の分解能
評価方法。
2. Resolution of an electron microscope and measurement of resolution.
A step of imaging the sample on which fine particles are deposited once or a plurality of times for adjustment, a step of storing the captured image, and an arithmetic step of analyzing data of the stored image using frequency analysis or the like. And a method for evaluating the resolution of an electron microscope, comprising a step of quantitatively evaluating the resolution and the resolution based on the analysis result.
【請求項3】請求項1記載の走査形電子顕微鏡を1台ま
たは複数台用いて、半導体の複数の製造工程における半
導体製品を同一の条件で検査する半導体製造方法。
3. A semiconductor manufacturing method for inspecting semiconductor products in a plurality of semiconductor manufacturing processes under the same conditions by using one or more scanning electron microscopes according to claim 1.
【請求項4】請求項2記載の方式により、性能を同一に
調整した走査形電子顕微鏡を1台または複数台用いて、
半導体の複数の製造工程における半導体製品を同一の条
件で検査する半導体製造方法。
4. The method according to claim 2, wherein one or a plurality of scanning electron microscopes having the same adjusted performance are used.
A semiconductor manufacturing method for inspecting semiconductor products in a plurality of semiconductor manufacturing processes under the same conditions.
JP2806998A 1998-02-10 1998-02-10 Electron microscope, its resolution evaluating method and manufacture of semiconductor therewith Pending JPH11224640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2806998A JPH11224640A (en) 1998-02-10 1998-02-10 Electron microscope, its resolution evaluating method and manufacture of semiconductor therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2806998A JPH11224640A (en) 1998-02-10 1998-02-10 Electron microscope, its resolution evaluating method and manufacture of semiconductor therewith

Publications (1)

Publication Number Publication Date
JPH11224640A true JPH11224640A (en) 1999-08-17

Family

ID=12238487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2806998A Pending JPH11224640A (en) 1998-02-10 1998-02-10 Electron microscope, its resolution evaluating method and manufacture of semiconductor therewith

Country Status (1)

Country Link
JP (1) JPH11224640A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010792A1 (en) * 2001-07-26 2003-02-06 Koninklijke Philips Electronics N.V. Method of measuring the performance of a scanning electron microscope
EP1288862A2 (en) * 2001-08-24 2003-03-05 Hitachi, Ltd. Image evaluation method and microscope
US6791084B2 (en) 2001-10-12 2004-09-14 Hitachi High-Technologies Corporation Method and scanning electron microscope for measuring dimension of material on sample
JP2005322423A (en) * 2004-05-06 2005-11-17 Hitachi High-Technologies Corp Electron microscope, its system, and dimension measuring method using them
JP2007122995A (en) * 2005-10-27 2007-05-17 Hitachi High-Technologies Corp Apparatus difference control system in scanning electron microscope apparatus and its method
JP2007128913A (en) * 2001-08-24 2007-05-24 Hitachi Ltd Image evaluation method and microscope
JP2007207763A (en) * 2001-08-24 2007-08-16 Hitachi Ltd Charged-particle beam microscope, image formation method, and computer for evaluating image resolution
US7649682B2 (en) 2001-12-15 2010-01-19 Leica Microsystems Cms Gmbh Method for self-monitoring a microscope system, microscope system, and software for self-monitoring a microscope system
JP2011233466A (en) * 2010-04-30 2011-11-17 Jeol Ltd Resolution-evaluating method of electron microscope, program and information storage medium
US8294118B2 (en) 2009-02-03 2012-10-23 Hitachi High-Technologies Corporation Method for adjusting optical axis of charged particle radiation and charged particle radiation device
US9702695B2 (en) 2010-05-27 2017-07-11 Hitachi High-Technologies Corporation Image processing device, charged particle beam device, charged particle beam device adjustment sample, and manufacturing method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010792A1 (en) * 2001-07-26 2003-02-06 Koninklijke Philips Electronics N.V. Method of measuring the performance of a scanning electron microscope
CN1305100C (en) * 2001-07-26 2007-03-14 皇家菲利浦电子有限公司 Method of measuring performance of scanning electron microscope
US7236651B2 (en) 2001-08-24 2007-06-26 Hitachi, Ltd. Image evaluation method and microscope
EP1566766A1 (en) * 2001-08-24 2005-08-24 Hitachi Ltd. Image evaluation method and microscope
EP1288862A3 (en) * 2001-08-24 2004-04-21 Hitachi, Ltd. Image evaluation method and microscope
EP1288862A2 (en) * 2001-08-24 2003-03-05 Hitachi, Ltd. Image evaluation method and microscope
US7805023B2 (en) 2001-08-24 2010-09-28 Hitachi, Ltd. Image evaluation method and microscope
JP2007128913A (en) * 2001-08-24 2007-05-24 Hitachi Ltd Image evaluation method and microscope
JP2007207763A (en) * 2001-08-24 2007-08-16 Hitachi Ltd Charged-particle beam microscope, image formation method, and computer for evaluating image resolution
US7340111B2 (en) 2001-08-24 2008-03-04 Hitachi, Ltd. Image evaluation method and microscope
EP1993074A1 (en) * 2001-08-24 2008-11-19 Hitachi Ltd. Image evaluation system and charged particle beam microscope
US6791084B2 (en) 2001-10-12 2004-09-14 Hitachi High-Technologies Corporation Method and scanning electron microscope for measuring dimension of material on sample
US7385196B2 (en) 2001-10-12 2008-06-10 Hitachi High-Technologies Corporation Method and scanning electron microscope for measuring width of material on sample
US7649682B2 (en) 2001-12-15 2010-01-19 Leica Microsystems Cms Gmbh Method for self-monitoring a microscope system, microscope system, and software for self-monitoring a microscope system
JP2005322423A (en) * 2004-05-06 2005-11-17 Hitachi High-Technologies Corp Electron microscope, its system, and dimension measuring method using them
JP4500099B2 (en) * 2004-05-06 2010-07-14 株式会社日立ハイテクノロジーズ Electron microscope apparatus system and dimension measuring method using electron microscope apparatus system
JP2007122995A (en) * 2005-10-27 2007-05-17 Hitachi High-Technologies Corp Apparatus difference control system in scanning electron microscope apparatus and its method
US8294118B2 (en) 2009-02-03 2012-10-23 Hitachi High-Technologies Corporation Method for adjusting optical axis of charged particle radiation and charged particle radiation device
JP2011233466A (en) * 2010-04-30 2011-11-17 Jeol Ltd Resolution-evaluating method of electron microscope, program and information storage medium
US9702695B2 (en) 2010-05-27 2017-07-11 Hitachi High-Technologies Corporation Image processing device, charged particle beam device, charged particle beam device adjustment sample, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4263416B2 (en) Charged particle microscope evaluation system
JP4069545B2 (en) Electron microscope method, electron microscope array biological sample inspection method and biological inspection apparatus using the same
JP3867524B2 (en) Observation apparatus and observation method using electron beam
JP3287858B2 (en) Electron microscope device and electron microscope method
KR101999988B1 (en) System and process for measuring strain in materials at high spatial resolution
US7091484B2 (en) Method and apparatus for crystal analysis
JP5075303B2 (en) Beam evaluation
KR100345362B1 (en) Resolving power evaluation method of electron microscope and specimen for resolving power evaluation
JPS6356482B2 (en)
JP3424512B2 (en) Particle beam inspection device, inspection method, and particle beam application device
JPH11224640A (en) Electron microscope, its resolution evaluating method and manufacture of semiconductor therewith
JP3205160B2 (en) Magnetic field measuring method and charged particle beam device using the same
US5238525A (en) Analysis of Rheed data from rotating substrates
JP4709785B2 (en) Charged particle beam microscope, image resolution evaluation computer, and image resolution evaluation method
JP4274146B2 (en) Image evaluation method and microscope
JP4007305B2 (en) Method for evaluating resolution of electron microscope and method for adjusting electron microscope
JP4069785B2 (en) Electron microscope method, electron microscope array biological sample inspection method and biological inspection apparatus using the same
JP4730319B2 (en) Image evaluation method and microscope
WO2021149188A1 (en) Charged particle beam device and inspection device
JP2003331769A (en) Particle beam inspection device, inspection method and particle beam application device
JPH08261959A (en) Electron microscope and atomic species identifying method using it
Stubbings et al. Channelplate illumination correction for secondary ion mass spectroscopy images by solving apparatus elasticity equations
Svechnikov et al. Methods and systems of indestructible contact-free television control of micro-objects
JPH0444925B2 (en)