JPS6219245A - Optically functional film - Google Patents

Optically functional film

Info

Publication number
JPS6219245A
JPS6219245A JP60159524A JP15952485A JPS6219245A JP S6219245 A JPS6219245 A JP S6219245A JP 60159524 A JP60159524 A JP 60159524A JP 15952485 A JP15952485 A JP 15952485A JP S6219245 A JPS6219245 A JP S6219245A
Authority
JP
Japan
Prior art keywords
semiconductor
film
optically functional
functional film
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60159524A
Other languages
Japanese (ja)
Other versions
JPH0365231B2 (en
Inventor
Keiichi Tanaka
啓一 田中
Teruaki Hisanaga
久永 輝明
Kenji Harada
賢二 原田
Shigeo Murata
村田 重夫
Hitoshi Masuda
等 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60159524A priority Critical patent/JPS6219245A/en
Publication of JPS6219245A publication Critical patent/JPS6219245A/en
Publication of JPH0365231B2 publication Critical patent/JPH0365231B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PURPOSE:To facilitate separation of semiconductor colloid from a reaction system after completion of the reaction and to enable conduction of continuous reaction by combining an optically functional film with a fluidized bed reaction vessel by forming an optically functional film by supporting semiconductor colloid on a porous film. CONSTITUTION:Optically functional film is prepd. by filtering repeatedly soln. of semiconductor colloid having particle size distribution close to the pore size of porous film through the porous film to support the colloidal fine particles of the semiconductor on the porous film. In this case, the colloidal soln. of the semiconductor is obtd. by forming colloidal soln. of a semiconductor compd. in accordance with a synthetic method for the semiconductor, and allowing the particles to grow by heating and aging the soln. A metal can be further supported by the optically functional film if necessary in order to improve the catalytic effect of the semiconductor. Suitable metals to be supported are Pt, Pd, Rh, Ru, Ir, etc.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、多孔性膜に半導体コロイドを保持させてなる
光機能性膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a photofunctional film formed by holding a semiconductor colloid in a porous film.

〔従来技術〕[Prior art]

半導体電極により水を光分解して水素と酸素を得る方法
が発表されて以来、半導体光触媒の開発が盛んである。
Semiconductor photocatalysts have been actively developed ever since a method for photolyzing water using semiconductor electrodes to obtain hydrogen and oxygen was announced.

半導体光触媒の応用例としては、バイオマスを光分解し
て水素を製造する技術が、廃棄物の利用による水素製造
法として注目されている。またベンゼンからフェノール
を合成する方法やアミノ酸の合成等の有機合成への応用
も今後発展するものと思われる。また有機ハロゲン化合
物やキレート化合物などの公害物質の分解も半導体触媒
の重要な応用分野である。半導体の触媒作用は半導体と
溶液の界面で起るので1表面積が大きい粉末を用いる方
が、電極を用いるより1反応効率が大きい、このため上
記の応用分野ではもっばら粉末が用いられている。一方
、粉末は溶液中に懸濁して用いるので、反応後、濾過や
遠心分離により、反応物から半導体粉末を除かなければ
ならないという欠点がある。このため反応を連続的に行
うことができず、このことが半導体触媒の実用化の大き
な妨げとなっている。
As an example of the application of semiconductor photocatalysts, technology for producing hydrogen by photolyzing biomass is attracting attention as a hydrogen production method using waste. Applications to organic synthesis, such as methods for synthesizing phenol from benzene and amino acid synthesis, are also expected to develop in the future. Decomposition of pollutants such as organic halogen compounds and chelate compounds is also an important application field for semiconductor catalysts. Since the catalytic action of a semiconductor occurs at the interface between the semiconductor and the solution, using a powder with a large surface area has a higher reaction efficiency than using an electrode.For this reason, powders are often used in the above application fields. On the other hand, since the powder is used suspended in a solution, there is a drawback that the semiconductor powder must be removed from the reactant by filtration or centrifugation after the reaction. For this reason, the reaction cannot be carried out continuously, which is a major hindrance to the practical application of semiconductor catalysts.

〔目  的〕〔the purpose〕

本発明は、従来技術に見られる前記欠点を克服した。半
導体粉末の特徴を生かし、かつ流動式反応装置に用いる
ことの可能な半導体を含む光機能膜を提供することを目
的とする。
The present invention overcomes the aforementioned drawbacks found in the prior art. The purpose of the present invention is to provide an optical functional film containing a semiconductor that takes advantage of the characteristics of semiconductor powder and can be used in a fluidized reactor.

〔構  成〕〔composition〕

本発明によれば、多孔性膜に半導体コロイドを保持させ
たことを特徴とする光機能性膜が提供される。
According to the present invention, there is provided a photofunctional film characterized in that a porous film holds a semiconductor colloid.

本発明の光機能性膜は、バイオマス、アルコール等の存
在下で水を光分解して、水素を製造することができる。
The photofunctional film of the present invention can produce hydrogen by photolyzing water in the presence of biomass, alcohol, and the like.

また環境汚染上の問題となっているトリクロルエチレン
、テトラクロルエチレン、ジクロルメタン等の有機ハロ
ゲン化合物の除去に用いることできる。更に有機合成に
おいて、ベンゼンの酸化によるフェノールのH造や不飽
和脂肪酸の水素化に光触媒として用いることができる。
It can also be used to remove organic halogen compounds such as trichloroethylene, tetrachloroethylene, and dichloromethane, which are causing environmental pollution problems. Furthermore, in organic synthesis, it can be used as a photocatalyst for H formation of phenol by oxidation of benzene and hydrogenation of unsaturated fatty acids.

本発明の光機能性膜を流動式の反応槽と組み合せて用い
ることにより、上記のような反応を連続的に行なわせる
ことできる。
By using the photofunctional film of the present invention in combination with a fluidized reaction tank, the above reactions can be carried out continuously.

本発明に用いる多孔性膜は、孔のサイズが0.01〜1
0μ腸の範囲にあるものが適しているが、これに限定さ
れるものではない。このような多孔性膜としては、従来
公知のもの1例えば、市販のメンブランフィルタ−やガ
ラスフィルター等が用いられる。
The porous membrane used in the present invention has a pore size of 0.01 to 1
Those in the 0μ intestine range are suitable, but are not limited thereto. As such a porous membrane, conventionally known ones such as commercially available membrane filters and glass filters can be used.

本発明に用いる半導体は、微粒子コロイドにし得るもの
であれば殆んど全てのものを用いることができ、その具
体的半導体の種類は、その使用目的に応じて適当に選択
される。例えば、水分解の目的には、二酸化チタン、チ
タン酸ストロンチウム、硫化カドミウム等が好ましく用
いられる。
As the semiconductor used in the present invention, almost any semiconductor can be used as long as it can be made into a fine colloid, and the specific type of semiconductor is appropriately selected depending on the purpose of use. For example, for the purpose of water splitting, titanium dioxide, strontium titanate, cadmium sulfide, etc. are preferably used.

本発明の光機能性膜は、多孔性膜の孔サイズに近い粒子
径の分布を持つ半導体コロイド溶液を、多孔性膜で繰返
し濾過し、半導体の微粒子コロイドを多孔性膜に保持さ
せることによって製造される。この場合、半導体の微粒
子コロイド溶液は、一般には、半導体の合成法に基づい
て調製することができる。即ち、半導体合成法に従って
、半導体化合物のコロイド溶液を形成し、これを加熱熟
成し、粒子を成長させる。コロイド粒子の粒子径のコン
トロールは、この熟成温度と熟成時間を調節することに
より行うことができるつこの半導体コロイド溶液の調製
を、例えば、二酸化チタンの場合について示すと、二酸
化チタンの合成法に従って、先ず、蒸留水に四塩化チタ
ンを微量ずつ添加し、加水分解させることにより、二酸
化チタンのヒドロシル微粒子のコロイド溶液を形成し、
これを熟成すればよい。
The optically functional membrane of the present invention is produced by repeatedly filtering a semiconductor colloid solution with a particle size distribution close to the pore size of the porous membrane through a porous membrane, and retaining the fine semiconductor colloid in the porous membrane. be done. In this case, the semiconductor fine particle colloidal solution can generally be prepared based on a semiconductor synthesis method. That is, a colloidal solution of a semiconductor compound is formed according to a semiconductor synthesis method, and this is heat-ripened to grow particles. The particle size of the colloidal particles can be controlled by adjusting the aging temperature and aging time.The preparation of a semiconductor colloidal solution, for example, in the case of titanium dioxide, is as follows: First, a small amount of titanium tetrachloride is added to distilled water and hydrolyzed to form a colloidal solution of titanium dioxide hydrosyl fine particles.
This should be matured.

本発明の光機能性膜は、前記のようにして得られる半導
体微粒子のみを保持させた膜のままでも使用可能である
が、必要に応じ、その半導体の触媒効果を向上させるた
めに、さらに、金属を担持させて用いることができる。
The photofunctional film of the present invention can be used as a film retaining only the semiconductor fine particles obtained as described above, but if necessary, in order to improve the catalytic effect of the semiconductor, It can be used by supporting a metal.

この場合、担持させる金属としては、例えば、白金、パ
ラジウム、ロジウム、ルテニウム、イリジウム、銅等が
挙げられ、水の分解を目的とする場合には、特に、白金
やパラジウムの使用が好ましい。膜に対してこれら金属
を担持させるためには、金属イオンの水溶液に窒素やア
ルゴン等の不活性ガスを導入して溶存酸素を除去した後
に、この溶液に膜を浸して光を照射する。この操作にお
いて、金属イオンが膜面に沈潰しにくいときは、金属イ
オン溶液にアスコルビン酸を加えることにより、金属の
沈漬を効率よく行わせることができる。また、膜に対す
る金属の担持は、金属蒸着法等によって行うこともでき
る。
In this case, examples of the supported metal include platinum, palladium, rhodium, ruthenium, iridium, copper, etc. When the purpose is to decompose water, it is particularly preferable to use platinum or palladium. In order to support these metals on the film, an inert gas such as nitrogen or argon is introduced into an aqueous solution of metal ions to remove dissolved oxygen, and then the film is immersed in this solution and irradiated with light. In this operation, if the metal ions are difficult to sink on the membrane surface, the metal can be efficiently immersed by adding ascorbic acid to the metal ion solution. Further, metal can also be supported on the film by a metal vapor deposition method or the like.

本発明の光機能性膜は、その表面の補強を行うために、
さらに、その表面を高分子被膜で被覆することができる
。この場合、被膜形成用高分子としては、ポリビニルア
ルコール、ゼラチン、ポリビニルピロリドン、ポリアク
リル酸、ポリ酢酸ビニル、ポリウレタン等の水溶性ない
しエマルジョン形成性のものが用いられ、光機能性膜の
用途との関連で適当のものが選択される。例えば、水溶
液系に用いる場合には、親木性高分子が好ましく使用さ
れる。これらの高分子は、1%程度の濃度の溶液として
適用され、その付着量(乾燥重量基準)は、1〜5g/
rd、好ましくは2〜3g/rrr程度である。
In order to reinforce the surface of the optically functional film of the present invention,
Furthermore, the surface can be coated with a polymeric coating. In this case, the film-forming polymer used is a water-soluble or emulsion-forming polymer such as polyvinyl alcohol, gelatin, polyvinylpyrrolidone, polyacrylic acid, polyvinyl acetate, polyurethane, etc. An appropriate one is selected based on the relationship. For example, when used in an aqueous solution system, wood-philic polymers are preferably used. These polymers are applied as a solution with a concentration of about 1%, and the amount of adhesion (based on dry weight) is 1 to 5 g/
rd, preferably about 2 to 3 g/rrr.

〔効  果〕〔effect〕

本発明の光機能性膜は、前記したような各種の光反応触
媒として使用され、反応終了後、反応系から分離するこ
とが容易であり、また流動式の反応槽と組合せて用いる
ことにより、連続的に反応を行わせることができる。
The photofunctional membrane of the present invention can be used as a catalyst for various photoreactions as described above, and can be easily separated from the reaction system after the reaction is completed, and can be used in combination with a fluidized reaction tank. The reaction can be carried out continuously.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 アイスバス中で冷却した蒸留水100mΩを攪拌しなが
ら、四塩化チタンの511Qを微量ずつ、ゆっくり加え
た。生ずる微細な二酸化チタンのコロイド溶液の30c
cを80℃で約10分間熟成した。このコロイド溶液を
ザル1−リウス製メンブランフィルタ−5M1160(
i1紙径4.5cm、孔径0.2μm)で濾過した。
Example 1 While stirring 100 mΩ of distilled water cooled in an ice bath, titanium tetrachloride 511Q was slowly added in minute amounts. 30c of the resulting fine titanium dioxide colloidal solution
c was aged at 80°C for about 10 minutes. This colloidal solution was filtered using a membrane filter manufactured by Sallius 5M1160 (
It was filtered through i1 paper (diameter: 4.5 cm, pore size: 0.2 μm).

濾液を熟成して、再び濾過し、同様の操作を数回繰り返
してコロイドを膜中に保持させた。この膜を流水で20
分間水洗した後に、0.5%塩化白金酸を含み、炭酸ナ
トリウムと塩酸でpH4,0に調節した水溶液に浸した
。窒素ガスを20分間送った後に。
The filtrate was aged and filtered again, and the same operation was repeated several times to retain the colloid in the membrane. Rinse this membrane under running water for 20 minutes.
After washing with water for a minute, it was immersed in an aqueous solution containing 0.5% chloroplatinic acid and adjusted to pH 4.0 with sodium carbonate and hydrochloric acid. After passing nitrogen gas for 20 minutes.

窒素の送気を続けながら、500w超高圧水銀灯で、片
面30分ずつ1両面光照射した。表面に白金が沈浸した
膜を塩酸溶液に1分間浸漬した後に、流水で十分に水洗
した。このようにして、本発明の光機能性膜を得た。
While continuing to supply nitrogen air, each side was irradiated with light for 30 minutes on each side using a 500 W ultra-high pressure mercury lamp. The membrane with platinum precipitated on its surface was immersed in a hydrochloric acid solution for 1 minute, and then thoroughly washed with running water. In this way, the optical functional film of the present invention was obtained.

実施例2 実施例1で調製した半導体固定膜をパイレックスガラス
製サンプルビン(容積30■j2)に入れ、エタノール
と水の1=1溶液15m Qを加え、シリコンゴムで栓
をした。これを100w超高圧水銀灯で310nmのカ
ットフィルターを通して5時間照射した。
Example 2 The semiconductor-fixed film prepared in Example 1 was placed in a Pyrex glass sample bottle (volume: 30 cm2), 15 mQ of a 1=1 solution of ethanol and water was added, and the bottle was stoppered with silicone rubber. This was irradiated for 5 hours with a 100 W ultra-high pressure mercury lamp through a 310 nm cut filter.

サンプルビンの中の気体の一部をガスクロマトグラフで
分析した。この時11+Flの水素が得られた。
A portion of the gas in the sample bottle was analyzed using a gas chromatograph. At this time, 11+Fl of hydrogen was obtained.

実施例3 、実施例1と同様にして、二酸化チタンコロイドを保持
し、白金を担持したザルトリウス製メンブランフィルタ
−5M11307(濾紙径4.5C11、孔径0.01
 μm)を10−2モルEDTA (エチレンジアミン
四酢酸二ナトリウム)の水溶液15μΩに浸して、実施
例2と同様の方法で1時間光照射した9発生したガスを
実施例2と同様の方法で分析した。これにより0.8r
aΩの水素が得られた。
Example 3 In the same manner as in Example 1, a Sartorius membrane filter 5M11307 (filter paper diameter 4.5C11, pore diameter 0.01
μm) was immersed in a 15 μΩ aqueous solution of 10 −2 molar EDTA (disodium ethylenediaminetetraacetate) and irradiated with light for 1 hour in the same manner as in Example 2. The gas generated was analyzed in the same manner as in Example 2. . This results in 0.8r
A Ω of hydrogen was obtained.

実施例4 実施例1と同様にして調製した半導体固定膜の片面に、
1%ポリビニルアルコール(PVA)水溶液の「 0.4raQを流し、−昼夜乾燥した。これを実施例2
と同様にして、 PVA被覆面を1時間光照射した。こ
れにより0.J15*ρの水素が得られた。
Example 4 On one side of a semiconductor fixed film prepared in the same manner as in Example 1,
A 1% polyvinyl alcohol (PVA) aqueous solution of 0.4raQ was poured and dried day and night.
In the same manner as above, the PVA-coated surface was irradiated with light for 1 hour. This results in 0. Hydrogen of J15*ρ was obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)多孔性膜に半導体コロイドを保持させたことを特
徴とする光機能性膜。
(1) A photofunctional film characterized in that a porous film holds a semiconductor colloid.
JP60159524A 1985-07-19 1985-07-19 Optically functional film Granted JPS6219245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60159524A JPS6219245A (en) 1985-07-19 1985-07-19 Optically functional film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60159524A JPS6219245A (en) 1985-07-19 1985-07-19 Optically functional film

Publications (2)

Publication Number Publication Date
JPS6219245A true JPS6219245A (en) 1987-01-28
JPH0365231B2 JPH0365231B2 (en) 1991-10-11

Family

ID=15695648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60159524A Granted JPS6219245A (en) 1985-07-19 1985-07-19 Optically functional film

Country Status (1)

Country Link
JP (1) JPS6219245A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JPH01135842A (en) * 1987-11-21 1989-05-29 Agency Of Ind Science & Technol Photocatalyst-immobilized membrane
JP2006326530A (en) * 2005-05-27 2006-12-07 Hiroshima Univ Nanoporous titanium oxide membrane and method for treating volatile organic compound using the same
JP2014500788A (en) * 2010-11-04 2014-01-16 中国科学院理化技術研究所 Semiconductor photocatalyst for photocatalysis and reforming of biomass derivatives to produce hydrogen and its production and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820701A (en) * 1981-07-23 1983-02-07 Mitsubishi Electric Corp Semiconductor element for hydrogen generation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820701A (en) * 1981-07-23 1983-02-07 Mitsubishi Electric Corp Semiconductor element for hydrogen generation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JPH01135842A (en) * 1987-11-21 1989-05-29 Agency Of Ind Science & Technol Photocatalyst-immobilized membrane
JP2006326530A (en) * 2005-05-27 2006-12-07 Hiroshima Univ Nanoporous titanium oxide membrane and method for treating volatile organic compound using the same
JP2014500788A (en) * 2010-11-04 2014-01-16 中国科学院理化技術研究所 Semiconductor photocatalyst for photocatalysis and reforming of biomass derivatives to produce hydrogen and its production and application

Also Published As

Publication number Publication date
JPH0365231B2 (en) 1991-10-11

Similar Documents

Publication Publication Date Title
Wang et al. Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts: effect of intermittent illumination, platinization, and deoxygenation
JP4564263B2 (en) Ultrafine metal particle-containing photocatalyst and method for producing the same
EP0002651B1 (en) Method for producing a platinum catalyst on a support material
JP3312342B2 (en) Composite supporting metal particles and / or metal compound particles, and method for producing the same
EP0234875A2 (en) Photocatalytic treatment of water for the preparation of extrapure water
JPH08257417A (en) Husk catalyst,its preparation,method for hydrogenation or oxidation of double bond,method for reduction of n-o-compound,and method for hydrogenation decomposition of c-o-compound,c-n-compound and c-halogen-compound and electrode catalyst
JP2015227504A (en) Process for preparation of aqueous colloidal precious metal suspension
JP2526396B2 (en) Method for producing hydrogen and oxygen using semiconductor photocatalyst
EP1204477A1 (en) Supported metal catalyst, preparation and applications for directly making hydrogen peroxide
JPH11100695A (en) Production of titanium material having photocatalytic activity
JP3207493B2 (en) Metal-containing molded organosiloxane amine-copolycondensate, process for producing the same and catalyst for hydrogenation and oxidation reaction comprising the same
JPS6219245A (en) Optically functional film
JP5001010B2 (en) Method for producing noble metal particulate carrier
JPH0422438A (en) Preparation of fine metal supported photocatalyst
RU2243033C1 (en) Titanium dioxide-based catalyst preparation method (options)
JP2739128B2 (en) Decomposition method of organic chemicals by titanium ceramic membrane
JP3612552B2 (en) Photoreaction catalyst
JPH01135842A (en) Photocatalyst-immobilized membrane
JP3440295B2 (en) Novel semiconductor photocatalyst and photocatalytic reaction method using the same
Cui et al. Facet-dependent activity of Pt nanoparticles as cocatalyst on TiO 2 photocatalyst for dye-sensitized visible-light hydrogen generation
JPH0235037B2 (en)
JPS59112838A (en) Preparation of noble metal catalyst supported by ion exchange resin
JP2001170493A (en) Production of high performance photocatalyst
JPH04295001A (en) Manufacturing process of hydrogen
JPS59225741A (en) Water repellent catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term