JPH0365231B2 - - Google Patents

Info

Publication number
JPH0365231B2
JPH0365231B2 JP60159524A JP15952485A JPH0365231B2 JP H0365231 B2 JPH0365231 B2 JP H0365231B2 JP 60159524 A JP60159524 A JP 60159524A JP 15952485 A JP15952485 A JP 15952485A JP H0365231 B2 JPH0365231 B2 JP H0365231B2
Authority
JP
Japan
Prior art keywords
semiconductor
film
solution
membrane
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60159524A
Other languages
Japanese (ja)
Other versions
JPS6219245A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60159524A priority Critical patent/JPS6219245A/en
Publication of JPS6219245A publication Critical patent/JPS6219245A/en
Publication of JPH0365231B2 publication Critical patent/JPH0365231B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、多孔性膜に半導体コロイドを保持さ
せてなる光機能性膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a photofunctional film formed by holding a semiconductor colloid in a porous film.

〔従来技術〕[Prior art]

半導体電極により水を光分解して水素と酸素を
得る方法が発表されて以来、半導体光触媒の開発
が盛んである。半導体光触媒の応用例としては、
バイオマスを光分解して水素を製造する技術が、
廃棄物の利用による水素製造法として注目されて
いる。またベンゼンからフエノールを合成する方
法やアミノ酸の合成等の有機合成への応用も今後
発展するものと思われる。また有機ハロゲン化合
物やキレート化合物などの公害物質の分解も半導
体触媒の重要な応用分野である。半導体の触媒作
用は半導体と溶液の界面で起るので、表面積が大
きい粉末を用いる方が、電極を用いるより、反応
効率が大きい。このため上記の応用分野ではもつ
ぱら粉末が用いられている。一方、粉末は溶液中
に懸濁して用いるので、反応後、濾過や遠心分離
により、反応物から半導体粉末を除かなければな
らないという欠点がある。このため反応を連続的
に行うことができず、このことが半導体触媒の実
用化の大きな妨げとなつている。
Semiconductor photocatalysts have been actively developed ever since a method for photolyzing water using semiconductor electrodes to obtain hydrogen and oxygen was announced. Examples of applications of semiconductor photocatalysts include:
The technology to produce hydrogen by photolyzing biomass is
This method is attracting attention as a hydrogen production method using waste materials. Applications to organic synthesis, such as methods for synthesizing phenol from benzene and amino acid synthesis, are also expected to develop in the future. Decomposition of pollutants such as organic halogen compounds and chelate compounds is also an important application field for semiconductor catalysts. Since the catalytic action of a semiconductor occurs at the interface between the semiconductor and the solution, using a powder with a large surface area has a higher reaction efficiency than using an electrode. For this reason, Motpara powder is used in the above application fields. On the other hand, since the powder is used suspended in a solution, there is a drawback that the semiconductor powder must be removed from the reactant by filtration or centrifugation after the reaction. For this reason, the reaction cannot be carried out continuously, which is a major hindrance to the practical application of semiconductor catalysts.

〔目的〕〔the purpose〕

本発明は、従来技術に見られる前記欠点を克服
した、半導体粉末の特徴を生かし、かつ流動式反
応装置に用いることの可能な半導体を含む光機能
膜を提供することを目的とする。
An object of the present invention is to provide an optical functional film containing a semiconductor that overcomes the above-mentioned drawbacks found in the prior art, takes advantage of the characteristics of semiconductor powder, and can be used in a fluidized reactor.

〔構成〕〔composition〕

本発明によれば、多孔性膜に半導体コロイドを
保持させたことを特徴とする光機能性膜が提供さ
れる。
According to the present invention, there is provided a photofunctional film characterized in that a porous film holds a semiconductor colloid.

本発明の光機能性膜は、バイオマス、アルコー
ル等の存在下で水を光分解して、水素を製造する
ことができる。また環境汚染上の問題となつてい
るトリクロルエチレン、テトラクロルエチレン、
ジクロルメタンの有機ハロゲン化合物の除去に用
いることできる。更に有機合成において、ベンゼ
ンの酸化によるフエノールの製造や不飽和脂肪酸
の水素化に光触媒として用いることができる。本
発明の光機能性膜を流動式の反応槽と組み合せて
用いることにより、上記のような反応を連続的に
行なわせることできる。
The photofunctional film of the present invention can produce hydrogen by photolyzing water in the presence of biomass, alcohol, and the like. In addition, trichlorethylene, tetrachlorethylene, which has become an environmental pollution problem,
It can be used to remove organic halogen compounds from dichloromethane. Furthermore, in organic synthesis, it can be used as a photocatalyst in the production of phenol through the oxidation of benzene and in the hydrogenation of unsaturated fatty acids. By using the photofunctional film of the present invention in combination with a fluidized reaction tank, the above reactions can be carried out continuously.

本発明に用いる多孔性膜は、孔のサイズが0.01
〜10μmの範囲にあるものが適しているが、これ
に限定されるものではない。このような多孔性膜
としては、従来公知のもの、例えば、市販のメン
ブランフイルターやガラスフイルター等が用いら
れる。
The porous membrane used in the present invention has a pore size of 0.01
Those in the range of ~10 μm are suitable, but are not limited thereto. As such a porous membrane, conventionally known ones such as commercially available membrane filters and glass filters can be used.

本発明に用いる半導体は、微粒子コロイドにし
得るものであれば殆んど全てのものを用いること
ができ、その具体的半導体の種類は、その使用目
的に応じて適当に選択される。例えば、水分解の
目的には、二酸化チタン、チタン酸ストロンチウ
ム、硫化カドミウム等が好ましく用いられる。
As the semiconductor used in the present invention, almost any semiconductor can be used as long as it can be made into a fine colloid, and the specific type of semiconductor is appropriately selected depending on the purpose of use. For example, for the purpose of water splitting, titanium dioxide, strontium titanate, cadmium sulfide, etc. are preferably used.

本発明の光機能性膜は、多孔性膜の孔サイズに
近い粒子径の分布を持つ半導体コロイド溶液を、
多孔性膜で繰返し濾過し、半導体の微粒子コロイ
ドを多孔性膜に保持させることによつて製造され
る。この場合、半導体の微粒子コロイド溶液は、
一般には、半導体の合成法に基づいて調製するこ
とができる。即ち、半導体合成法に従つて、半導
体化合物のコロイド溶液を形成し、これを加熱熟
成し、粒子を成長させる。コロイド粒子の粒子径
のコントロールは、この熟成温度と熟成時間を調
節することにより行うことができる。この半導体
コロイド溶液の調製を、例えば、二酸化チタンの
場合について示すと、二酸化チタンの合成法に従
つて、先ず、蒸留水に四塩化チタンを微量ずつ添
加し、加水分解させることにより、二酸化チタン
のヒドロゾル微粒子のコロイド溶液を形成し、こ
れを熟成すればよい。
The photofunctional film of the present invention uses a semiconductor colloid solution with a particle size distribution close to the pore size of the porous film.
It is manufactured by repeatedly filtering through a porous membrane and retaining the semiconductor microparticle colloid in the porous membrane. In this case, the semiconductor fine particle colloidal solution is
Generally, it can be prepared based on a semiconductor synthesis method. That is, according to a semiconductor synthesis method, a colloidal solution of a semiconductor compound is formed, and this is heat-ripened to grow particles. The particle size of colloidal particles can be controlled by adjusting the aging temperature and aging time. To explain the preparation of this semiconductor colloidal solution in the case of titanium dioxide, for example, according to the titanium dioxide synthesis method, titanium tetrachloride is first added in small amounts to distilled water and hydrolyzed to form titanium dioxide. A colloidal solution of hydrosol fine particles may be formed and this may be aged.

本発明の光機能性膜は、前記のようにして得ら
れる半導体微粒子のみを保持させた膜のままでも
使用可能であるが、必要に応じ、その半導体の触
媒効果を向上させるために、さらに、金属を担持
させて用いることができる。この場合、担持させ
る金属としては、例えば、白金、パラジウム、ロ
ジウム、ルテニウム、イリジウム、銅等が挙げら
れ、水の分解を目的とする場合には、特に、白金
やパラジウムの使用が好ましい。膜に対してこれ
ら金属を担持させるためには、金属イオンの水溶
液に窒素やアルゴン等の不活性ガスを導入して溶
存酸素を除去した後に、この溶液に膜を浸して光
を照射する。この操作において、金属イオンが膜
面に沈漬しにくいときは、金属イオン溶液にアス
コルビン酸を加えることにより、金属の沈漬を効
率よく行わせることができる。また、膜に対する
金属の担持は、金属蒸着法等によつて行うことも
できる。
The photofunctional film of the present invention can be used as a film retaining only the semiconductor fine particles obtained as described above, but if necessary, in order to improve the catalytic effect of the semiconductor, It can be used by supporting a metal. In this case, examples of the supported metal include platinum, palladium, rhodium, ruthenium, iridium, copper, etc. When the purpose is to decompose water, it is particularly preferable to use platinum or palladium. In order to support these metals on the film, an inert gas such as nitrogen or argon is introduced into an aqueous solution of metal ions to remove dissolved oxygen, and then the film is immersed in this solution and irradiated with light. In this operation, if metal ions are difficult to sink into the membrane surface, the metal can be efficiently immersed by adding ascorbic acid to the metal ion solution. Further, metal can also be supported on the film by a metal vapor deposition method or the like.

本発明の光機能性膜は、その表面の補強を行う
ために、さらに、その表面を高分子被膜で被覆す
ることができる。この場合、被膜形成用高分子と
しては、ポリビニルアルコール、ゼラチン、ポリ
ビニルピロリドン、ポリアクリル酸、ポリ酢酸ビ
ニル、ポリウレタン等の水溶性ないしエマルジヨ
ン形成性のものが用いられ、光機能性膜の用途と
の関連で適当のものが選択される。例えば、水溶
液系に用いる場合には、親水性高分子が好ましく
使用される。これらの高分子は、1%程度の濃度
の溶液として適用され、その付着量(乾燥重量基
準)は、1〜5g/m2、好ましくは2〜3g/m2
程度である。
The surface of the optically functional film of the present invention can be further coated with a polymer film in order to reinforce the surface. In this case, the film-forming polymer used is a water-soluble or emulsion-forming polymer such as polyvinyl alcohol, gelatin, polyvinylpyrrolidone, polyacrylic acid, polyvinyl acetate, or polyurethane, which is suitable for use as a photofunctional film. An appropriate one is selected based on the relationship. For example, when used in an aqueous solution system, hydrophilic polymers are preferably used. These polymers are applied as a solution with a concentration of about 1%, and the amount of adhesion (based on dry weight) is 1 to 5 g/m 2 , preferably 2 to 3 g/m 2
That's about it.

〔効果〕〔effect〕

本発明の光機能性膜は、前記したような各種の
光反応触媒として使用され、反応終了後、反応系
から分離することが容易であり、また流動式の反
応槽と組合せて用いることにより、連続的に反応
を行わせることができる。
The photofunctional membrane of the present invention can be used as a catalyst for various photoreactions as described above, and can be easily separated from the reaction system after the reaction is completed, and can be used in combination with a fluidized reaction tank. The reaction can be carried out continuously.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 アイスバス中で冷却した蒸留水100mlを撹拌し
ながら、四塩化チタンの5mlを微量ずつ、ゆつく
り加えた、生ずる微細な二酸化チタンのコロイド
溶液の30c.c.を80℃で約10分間熟成した。このコロ
イド溶液をザルトリウス製メンブランフイルター
SM1160(濾紙径4.5cm、孔径0.2μm)で濾過した。
濾液を熟成して、再び濾過し、同様の操作を数回
繰り返してコロイドを膜中に保持させた。この膜
を流水で20分間水洗した後に、0.5%塩化白金酸
を含み、炭酸ナトリウムと塩酸でPH4.0に調節し
た水溶液に浸した。窒素ガスを20分間送つた後
に、窒素の送気を続けながら、500W超高圧水銀
灯で、片面30分ずつ、両面光照射した。表面に白
金が沈浸した膜を塩酸溶液に1分間浸漬した後
に、流水で十分に水洗した。このようにして、本
発明の光機能性膜を得た。
Example 1 5 ml of titanium tetrachloride was slowly added in small portions to 100 ml of distilled water cooled in an ice bath with stirring, and 30 c.c. of the resulting fine colloidal solution of titanium dioxide was heated to about 10 ml at 80°C. Aged for minutes. Filter this colloid solution through a Sartorius membrane filter.
It was filtered using SM1160 (filter paper diameter: 4.5 cm, pore size: 0.2 μm).
The filtrate was aged and filtered again, and the same operation was repeated several times to retain the colloid in the membrane. After washing this membrane with running water for 20 minutes, it was immersed in an aqueous solution containing 0.5% chloroplatinic acid and adjusted to pH 4.0 with sodium carbonate and hydrochloric acid. After supplying nitrogen gas for 20 minutes, both sides were irradiated with light for 30 minutes on each side using a 500W ultra-high pressure mercury lamp while continuing to supply nitrogen gas. The membrane with platinum precipitated on its surface was immersed in a hydrochloric acid solution for 1 minute, and then thoroughly washed with running water. In this way, the optical functional film of the present invention was obtained.

実施例 2 実施例1で調製した半導体固定膜をパイレツク
スガラス製サンプルビン(容積30ml)に入れ、エ
タノールと水の1:1溶液15mlを加え、シリコン
ゴムで栓をした。これを100W超高圧水銀灯で
310nmのカツトフイルターを通して5時間照射し
た。サンプルビンの中の気体の一部をガスクロマ
トグラフで分析した。この時11mlの水素が得られ
た。
Example 2 The semiconductor fixed film prepared in Example 1 was placed in a Pyrex glass sample bottle (volume: 30 ml), 15 ml of a 1:1 solution of ethanol and water was added, and the bottle was stoppered with silicone rubber. This was done using a 100W ultra-high pressure mercury lamp.
It was irradiated for 5 hours through a 310 nm cut filter. A portion of the gas in the sample bottle was analyzed using a gas chromatograph. At this time, 11 ml of hydrogen was obtained.

実施例 3 実施例1と同様にして、二酸化チタンコロイド
を保持し、白金を担持したザルトリウス製メンブ
ランフイルターSM11307(濾紙径4.5cm、孔径
0.01μm)を10-2モルEDTA(エチレンジアミン四
酢酸二ナトリウム)の水溶液15μに浸して、実
施例2と同様の方法で1時間光照射した。発生し
たガスを実施例2と同様の方法で分析した。これ
により0.8mlの水素が得られた。
Example 3 In the same manner as in Example 1, Sartorius membrane filter SM11307 (filter paper diameter 4.5 cm, pore size
0.01 μm) was immersed in a 15 μm aqueous solution of 10 −2 mol EDTA (disodium ethylenediaminetetraacetate) and irradiated with light for 1 hour in the same manner as in Example 2. The generated gas was analyzed in the same manner as in Example 2. This yielded 0.8 ml of hydrogen.

実施例 4 実施例1と同様にして調製した半導体固定膜の
片面に、1%ポリビニルアルコール(PVA)水
溶液の0.4mlを流し、一昼夜乾燥した。これを実
施例2と同様にして、PVA被覆面を1時間光照
射した。これにより0.85mlの水素が得られた。
Example 4 0.4 ml of a 1% polyvinyl alcohol (PVA) aqueous solution was poured onto one side of a semiconductor-fixed membrane prepared in the same manner as in Example 1, and dried overnight. This was carried out in the same manner as in Example 2, and the PVA-coated surface was irradiated with light for 1 hour. This yielded 0.85 ml of hydrogen.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔性膜に半導体コロイドを保持させたこと
を特徴とする光機能性膜。
1. A photofunctional film characterized by having a porous film hold a semiconductor colloid.
JP60159524A 1985-07-19 1985-07-19 Optically functional film Granted JPS6219245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60159524A JPS6219245A (en) 1985-07-19 1985-07-19 Optically functional film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60159524A JPS6219245A (en) 1985-07-19 1985-07-19 Optically functional film

Publications (2)

Publication Number Publication Date
JPS6219245A JPS6219245A (en) 1987-01-28
JPH0365231B2 true JPH0365231B2 (en) 1991-10-11

Family

ID=15695648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60159524A Granted JPS6219245A (en) 1985-07-19 1985-07-19 Optically functional film

Country Status (1)

Country Link
JP (1) JPS6219245A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JPH01135842A (en) * 1987-11-21 1989-05-29 Agency Of Ind Science & Technol Photocatalyst-immobilized membrane
JP2006326530A (en) * 2005-05-27 2006-12-07 Hiroshima Univ Nanoporous titanium oxide membrane and method for treating volatile organic compound using the same
WO2012058869A1 (en) * 2010-11-04 2012-05-10 中国科学院理化技术研究所 Semiconductor photocatalyst for the photocatalytic reforming of biomass derivatives for hydrogen generation, and preparation and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820701A (en) * 1981-07-23 1983-02-07 Mitsubishi Electric Corp Semiconductor element for hydrogen generation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820701A (en) * 1981-07-23 1983-02-07 Mitsubishi Electric Corp Semiconductor element for hydrogen generation

Also Published As

Publication number Publication date
JPS6219245A (en) 1987-01-28

Similar Documents

Publication Publication Date Title
JP4256070B2 (en) Photocatalyst composition
RU2131395C1 (en) Method and catalyst for preparing hydrogen peroxide
EP0234875A2 (en) Photocatalytic treatment of water for the preparation of extrapure water
EP1204477B1 (en) Procces for the production of supported metal catalyst containing a treatment step with aqueous solution containing brome and bromide ions.
US4595568A (en) Photosensitive cell for the decomposition of water
US4855274A (en) Process for making a noble metal on tin oxide catalyst
JPH0417098B2 (en)
JP3207493B2 (en) Metal-containing molded organosiloxane amine-copolycondensate, process for producing the same and catalyst for hydrogenation and oxidation reaction comprising the same
JPH07256118A (en) Regenerating method of impregnated noble metal catalyst and processing method of waste water
JP2002320862A (en) Photocatalyst thin film in which metal is supported on titanium oxide thin film
JPH0365231B2 (en)
JPH11100695A (en) Production of titanium material having photocatalytic activity
JPS6245161B2 (en)
JP2739128B2 (en) Decomposition method of organic chemicals by titanium ceramic membrane
RU2243033C1 (en) Titanium dioxide-based catalyst preparation method (options)
JPH0422438A (en) Preparation of fine metal supported photocatalyst
JP5001010B2 (en) Method for producing noble metal particulate carrier
JPH01135842A (en) Photocatalyst-immobilized membrane
JP3612552B2 (en) Photoreaction catalyst
JP3440295B2 (en) Novel semiconductor photocatalyst and photocatalytic reaction method using the same
JP3431301B2 (en) Tile with photocatalytic function
JP3401557B2 (en) Pollutant removal method using photocatalyst
JPH0235037B2 (en)
JPS59225741A (en) Water repellent catalyst
JPH08257573A (en) Method and carrier catalyst for catalytic decomposition of hydrogen peroxide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term