JPH11100695A - Production of titanium material having photocatalytic activity - Google Patents

Production of titanium material having photocatalytic activity

Info

Publication number
JPH11100695A
JPH11100695A JP9261606A JP26160697A JPH11100695A JP H11100695 A JPH11100695 A JP H11100695A JP 9261606 A JP9261606 A JP 9261606A JP 26160697 A JP26160697 A JP 26160697A JP H11100695 A JPH11100695 A JP H11100695A
Authority
JP
Japan
Prior art keywords
photocatalytic activity
titanium material
titanium
oxide film
anodic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9261606A
Other languages
Japanese (ja)
Inventor
Seishiro Ito
征司郎 伊藤
Takashi Onaka
隆 大中
Seiji Hagino
清二 萩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aluminium Co Ltd
Original Assignee
Nippon Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aluminium Co Ltd filed Critical Nippon Aluminium Co Ltd
Priority to JP9261606A priority Critical patent/JPH11100695A/en
Publication of JPH11100695A publication Critical patent/JPH11100695A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily obtain a titanium material having photocatalytic activity with a simple device by dipping a titanium material in an electrolytic bath admixed with the fine grains having photocatalytic activity and anodizing the material. SOLUTION: In the process of forming an anodic oxide film, heat is locally generated simultaneously with sparking, and the fine grains added to the electrolytic bath and having photocatalytic activity are introduced into the location and fused. As a result, the fine grains having photocatalytic activity are dispersed in the anodic oxide film, and the anodic oxide film on the surface of a titanium material is provided with photocatalytic activity. Since the anodic oxide film is excellent in strength and adhesion to the titanium material, photocatalytic activity is stably exhibited by the titanium material thus obtained, and the titanium material is effectively used as building materials. Further, the titanium material having photocatalytic activity is easily obtained only by adding the fine grains having photocatalytic activity to the electrolytic bath and electrolyzing the material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い光触媒活性を
安定して備えたチタン材を簡易に得ることができる方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for easily obtaining a titanium material stably having high photocatalytic activity.

【0002】[0002]

【従来技術及びその課題】触媒による反応促進効果は、
一般には、触媒の表面積が大きいほど大きい。それ故、
触媒は、微粒子、更には超微粒子で用いるのが好まし
い。しかし、微粒子状の触媒を用いると、触媒の回収や
生成物との分離等の取り扱いにおいて問題となる場合が
生じる。例えば、特開平4−244293に示されるよ
うに、過酸化水素及び鉄塩を用いた廃液処理において、
光触媒である酸化チタン粉末を用いると、処理後、酸化
チタンを濾過等によって処理液と分離する必要がある。
従って、通常、触媒は、成形体や多孔質粉体に固定化し
て用いられている。
2. Description of the Related Art The reaction promoting effect of a catalyst is as follows.
In general, the larger the surface area of the catalyst, the larger. Therefore,
The catalyst is preferably used in the form of fine particles, more preferably ultrafine particles. However, when a particulate catalyst is used, problems may occur in handling such as recovery of the catalyst and separation from the product. For example, as shown in JP-A-4-244293, in wastewater treatment using hydrogen peroxide and iron salt,
When a titanium oxide powder as a photocatalyst is used, it is necessary to separate the titanium oxide from the treatment liquid by filtration or the like after the treatment.
Therefore, the catalyst is usually used by being immobilized on a compact or a porous powder.

【0003】ところで、近年、廃液処理や大気の浄化,
脱臭,殺菌を光触媒を用いて行う研究が盛んに行われて
おり、種々の光触媒を、板,ファイバー等の成形体やゼ
オライト,活性炭等の多孔質粉体に固定化する方法が検
討されている。その方法としては、例えば、(i)ゾルゲ
ル法、(ii)CVD法、(iii)酢酸セルロース,ポリビニ
ルアルコール,フッ素樹脂等に混合してコーティングす
る方法(特開平1−135842,特開平6−3156
14)、(iv)セラミックス粉体と共に焼結する方法等が
ある。しかし、上記(i),(ii)では、大規模化や価格の
点に問題があり、特に一度に大きな面積を処理するのが
困難であった。また、光触媒が固定化された材料を建築
材として用いる場合において、上記(i),(ii)で得られた
膜では強度及び密着性に問題があった。また、上記(ii
i)では、光触媒自身が膜に覆われて作用しなくなった
り、光触媒の効果によって有機物である膜自身が劣化し
たりするという問題があった。また、上記(iv)では、大
規模化の点で問題があった。
[0003] In recent years, wastewater treatment, air purification,
Research on deodorization and sterilization using photocatalysts has been actively conducted, and methods for immobilizing various photocatalysts on molded bodies such as plates and fibers and porous powders such as zeolite and activated carbon have been studied. . Examples of the method include (i) a sol-gel method, (ii) a CVD method, and (iii) a method in which cellulose acetate, polyvinyl alcohol, a fluororesin, etc. are mixed and coated (JP-A-1-135842, JP-A-6-3156).
14) and (iv) a method of sintering with ceramic powder. However, in the above (i) and (ii), there is a problem in terms of enlargement and price, and it is particularly difficult to process a large area at a time. Further, when a material on which a photocatalyst is fixed is used as a building material, the films obtained in the above (i) and (ii) have problems in strength and adhesion. In addition, (ii)
In the case of i), there is a problem that the photocatalyst itself is covered by the film and does not work, or the organic film itself is deteriorated by the effect of the photocatalyst. Also, in the above (iv), there was a problem in increasing the scale.

【0004】このような中で、酸化亜鉛や酸化チタンが
光触媒活性を有していることに着目し、亜鉛やチタン又
はそれらの合金を陽極酸化処理して、強度及び密着性が
良好な酸化亜鉛や酸化チタンからなる陽極酸化皮膜を形
成する方法が、検討されている。しかし、特開平6−1
9816に示されるように、チタンを陽極酸化処理する
方法では、光触媒活性を向上させるために必要な金属を
予め基材中に合金化させておく必要があり、また、陽極
酸化皮膜中に必ず金属チタン成分や電解浴の液成分であ
るリン等が含まれるために触媒活性が低下するという問
題があった。また、特開平7−289913に示される
ように、亜鉛を陽極酸化処理する方法では、チタンの場
合と同じく触媒活性が低下するという問題の他に、亜鉛
という金属自身の耐食性の点で建築材として利用するの
に不適であるという問題があった。
[0004] Under these circumstances, focusing on the fact that zinc oxide and titanium oxide have photocatalytic activity, zinc oxide and titanium or an alloy thereof are subjected to anodizing treatment to obtain zinc oxide having good strength and adhesion. A method of forming an anodic oxide film made of titanium or titanium oxide has been studied. However, Japanese Patent Laid-Open No. 6-1
As shown in 9816, in the method of anodizing titanium, it is necessary to previously alloy a metal necessary for improving the photocatalytic activity in the base material, and the metal is necessarily contained in the anodized film. There is a problem that the catalytic activity is reduced due to the inclusion of a titanium component and phosphorus as a liquid component of the electrolytic bath. Further, as shown in JP-A-7-289913, in the method of anodizing zinc, in addition to the problem of reduced catalytic activity as in the case of titanium, in addition to the problem of corrosion resistance of zinc itself, as a building material, There was a problem that it was unsuitable for use.

【0005】本発明は、上記問題点に鑑みてなされたも
のであり、高い光触媒活性を安定して備えたチタン材を
簡易に得ることができる方法を提供することを目的とす
る。
The present invention has been made in view of the above problems, and has as its object to provide a method for easily obtaining a titanium material having high photocatalytic activity stably.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本願の請求項1記載の発明は、無機酸及び有機酸の
少なくともいずれか1種を含み、且つ光触媒活性を有す
る微粒子が添加されている電解浴中に、チタン材を浸漬
し、火花放電発生電圧以上の電圧を印加して陽極酸化処
理を行うことを特徴とする光触媒活性を有するチタン材
の製造方法である。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 of the present application is directed to a method in which fine particles containing at least one of an inorganic acid and an organic acid and having photocatalytic activity are added. A method for producing a titanium material having photocatalytic activity, characterized by immersing a titanium material in an electrolytic bath and applying an anodizing treatment by applying a voltage higher than a spark discharge generating voltage.

【0007】無機酸としては、硫酸、硝酸、リン酸、ク
ロム酸、ピロリン酸等を用いることができる。
[0007] As the inorganic acid, sulfuric acid, nitric acid, phosphoric acid, chromic acid, pyrophosphoric acid and the like can be used.

【0008】有機酸としては、ナフタレンジスルホン
酸、シュウ酸、スルホサリチル酸、酒石酸、酢酸、クエ
ン酸、ギ酸、マレイン酸等を用いることができる。
As the organic acid, naphthalenedisulfonic acid, oxalic acid, sulfosalicylic acid, tartaric acid, acetic acid, citric acid, formic acid, maleic acid and the like can be used.

【0009】光触媒活性を有する微粒子としては、次の
化合物を用いることができる。即ち、酸化チタン,硫化
チタン,チタン酸ストロンチウム等のチタン化合物、二
三酸化鉄,酸化錫,酸化銀,酸化銅,酸化亜鉛,酸化セ
リウム,酸化タングステン,酸化モリブデン,酸化ニッ
ケル等の酸化物、硫化亜鉛,硫化カドミウム等の硫化物
等。
As the fine particles having photocatalytic activity, the following compounds can be used. That is, titanium compounds such as titanium oxide, titanium sulfide, and strontium titanate; oxides such as iron trioxide, tin oxide, silver oxide, copper oxide, zinc oxide, cerium oxide, tungsten oxide, molybdenum oxide, and nickel oxide; Sulfides such as zinc and cadmium sulfide.

【0010】電解浴は、無機酸を1種以上、又は有機酸
を1種以上、又は無機酸及び有機酸をそれぞれ1種以上
含んでいる。なお、電解浴中には、過酸化水素を添加し
てもよい。
The electrolytic bath contains at least one inorganic acid, at least one organic acid, or at least one inorganic acid and at least one organic acid. Note that hydrogen peroxide may be added to the electrolytic bath.

【0011】チタン材としては、チタン又はチタン合金
を用いる。チタン合金としては、種々のものを用いるこ
とができる。チタン材の形状は、特に限定するものでは
なく、板状、網状、繊維状、粉体や繊維を圧縮加工して
なる成形体等を用いることができる。
As the titanium material, titanium or a titanium alloy is used. Various titanium alloys can be used. The shape of the titanium material is not particularly limited, and a plate-like, mesh-like, fibrous, compact or the like obtained by compressing powder or fiber can be used.

【0012】陽極酸化処理は、直流、交直重畳、又はパ
ルス波を印加して行う。又は、サイリスタ方式による直
流電源を用いて、単相半波、三相半波、六相半波を印加
して行う。いずれの波形でも、火花放電が発生する電圧
以上で行い、一般には、ピーク電圧が100V以上で行
う。
The anodic oxidation treatment is performed by applying direct current, AC / DC superposition, or pulse wave. Alternatively, a single-phase half-wave, a three-phase half-wave, and a six-phase half-wave are applied by using a thyristor-type DC power supply. Regardless of the waveform, the operation is performed at a voltage higher than the voltage at which spark discharge occurs, and is generally performed at a peak voltage of 100 V or higher.

【0013】請求項1記載の発明においては、陽極酸化
皮膜の形成過程において、火花発生と同時に局部的な発
熱が生じ、その箇所に、電解浴中に添加されている光触
媒活性を有する微粒子が入り込み、融着する。これによ
り、光触媒活性を有する微粒子が陽極酸化皮膜中に分散
して存在することとなり、チタン材表面の陽極酸化皮膜
は光触媒活性を有することとなる。陽極酸化皮膜は強度
及びチタン材に対する密着性が良好であるので、上記の
ようにして得られたチタン材では光触媒活性が安定して
発揮され、該チタン材は建築材としても良好に用い得
る。しかも、請求項1記載の方法は、光触媒活性を有す
る微粒子を電解浴中に添加しておき、チタン材を電解処
理するだけであるので、簡易に実施できる。
According to the first aspect of the present invention, in the process of forming the anodic oxide film, local heat is generated at the same time as the generation of sparks, and fine particles having photocatalytic activity added to the electrolytic bath enter the location. , Fusing. As a result, the fine particles having photocatalytic activity are dispersed and present in the anodic oxide film, and the anodic oxide film on the surface of the titanium material has photocatalytic activity. Since the anodized film has good strength and good adhesion to a titanium material, the titanium material obtained as described above exhibits a stable photocatalytic activity and can be used well as a building material. In addition, the method according to the first aspect can be easily carried out because only fine particles having photocatalytic activity are added to the electrolytic bath and the titanium material is subjected to electrolytic treatment.

【0014】請求項2記載の発明は、請求項1記載の発
明に加えて、陽極酸化処理後のチタン材を、空気又は酸
素雰囲気下、200℃以上900℃以下で熱処理するも
のである。
According to a second aspect of the present invention, in addition to the first aspect, the titanium material after the anodic oxidation treatment is heat-treated at 200 ° C. or more and 900 ° C. or less in an air or oxygen atmosphere.

【0015】熱処理の温度が、200℃より低いと、陽
極酸化皮膜中の不純物の除去が不十分となり、900℃
より高いと、陽極酸化皮膜の結晶構造がアナターゼ型か
らルチル型へ変化し、皮膜自身の光触媒活性が著しく低
下する。熱処理は、好ましくは400℃以上800℃以
下で行う。
When the temperature of the heat treatment is lower than 200 ° C., the removal of impurities in the anodic oxide film becomes insufficient,
If it is higher, the crystal structure of the anodic oxide film changes from the anatase type to the rutile type, and the photocatalytic activity of the film itself is significantly reduced. The heat treatment is preferably performed at 400 ° C. or higher and 800 ° C. or lower.

【0016】請求項2記載の発明においては、熱処理に
より、陽極酸化皮膜中の金属チタン成分が酸化されて酸
化チタンとなり、また、陽極酸化皮膜中に混入した電解
浴の液成分が酸化除去されるので、陽極酸化皮膜中に光
触媒の妨げとなるものは無くなる。しかも、陽極酸化皮
膜がアナターゼ型の結晶構造を有することとなるので、
それ自身も光触媒活性を有することとなる。従って、陽
極酸化皮膜の光触媒活性は向上する。
According to the second aspect of the invention, the metal titanium component in the anodic oxide film is oxidized to titanium oxide by the heat treatment, and the liquid component of the electrolytic bath mixed in the anodic oxide film is oxidized and removed. Therefore, there is no obstruction of the photocatalyst in the anodic oxide film. Moreover, since the anodized film has an anatase type crystal structure,
As such, it will have photocatalytic activity. Therefore, the photocatalytic activity of the anodic oxide film is improved.

【0017】請求項3記載の発明は、請求項1記載の発
明に加えて、電解浴中に、光触媒活性を向上させる金属
の微粒子も添加しておくものである。光触媒活性を向上
させる金属としては、Pt,Pd,Ru,Re,Os,
Au,Ag等を用いることができる。
According to a third aspect of the present invention, in addition to the first aspect of the present invention, fine particles of a metal for improving photocatalytic activity are added to the electrolytic bath. Examples of metals that improve photocatalytic activity include Pt, Pd, Ru, Re, Os,
Au, Ag, etc. can be used.

【0018】請求項3記載の発明においては、光触媒活
性を向上させる金属が、陽極酸化皮膜中に含まれ、しか
も、一部は光触媒活性を有する微粒子と接触して存在す
るので、陽極酸化皮膜自身の光触媒活性が向上するとと
もに、光触媒活性を有する微粒子も良好に活性を呈する
こととなる。
According to the third aspect of the present invention, since the metal for improving the photocatalytic activity is contained in the anodic oxide film and a part of the metal is present in contact with the fine particles having the photocatalytic activity, the anodic oxide film itself is not present. As a result, the fine particles having the photocatalytic activity exhibit good activity.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施形態1)3%リン酸と1%過酸化水素水との混合
浴1L中に、光触媒である酸化チタンの微粒子(粒径7
nm,比表面積300m2/g)5gを添加し、その浴
中に純チタン板(5cm×5cm)を浸漬し、これを直
流400Vで5分間陽極酸化処理した。これにより、純
チタン板表面に厚さ13μmの陽極酸化皮膜が得られ
た。
(Embodiment 1) In a mixed bath of 3% phosphoric acid and 1% hydrogen peroxide solution, 1 L of titanium oxide fine particles (particle size: 7
nm, specific surface area: 300 m 2 / g), and a pure titanium plate (5 cm × 5 cm) was immersed in the bath and subjected to anodizing treatment at 400 V DC for 5 minutes. As a result, an anodized film having a thickness of 13 μm was obtained on the surface of the pure titanium plate.

【0020】得られた陽極酸化皮膜を、5mmolの酢
酸水溶液30ml中に浸漬し、上方からブラックライト
(1mW/cm2)を2時間照射した。照射後、酢酸の
分解量をイオンクロマトグラフ法により測定した。酢酸
は85μmol(56%)分解されていた。このことか
ら、得られた陽極酸化皮膜が光触媒活性を備えているこ
とがわかる。
The obtained anodized film was immersed in 30 ml of a 5 mmol aqueous acetic acid solution, and irradiated with black light (1 mW / cm 2 ) from above for 2 hours. After the irradiation, the amount of acetic acid decomposed was measured by ion chromatography. Acetic acid was degraded by 85 μmol (56%). This indicates that the obtained anodized film has photocatalytic activity.

【0021】(比較形態1)光触媒である酸化チタンを
添加せず、その他は実施形態1と同様に行った。そし
て、得られた陽極酸化皮膜による酢酸分解量を実施形態
1と同様に測定したところ、酢酸は分解されていなかっ
た。
Comparative Example 1 The same operation as in Example 1 was performed except that titanium oxide as a photocatalyst was not added. When the amount of acetic acid decomposed by the obtained anodic oxide film was measured in the same manner as in Embodiment 1, acetic acid was not decomposed.

【0022】(実施形態2)実施形態1で得られた陽極
酸化皮膜を900℃で45分間熱処理した。そして、熱
処理後の陽極酸化皮膜による酢酸分解量を、実施形態1
と同様に測定した。酢酸は120μmol(80%)分
解されていた。このことから、熱処理により光触媒活性
が向上したことがわかる。
(Embodiment 2) The anodic oxide film obtained in Embodiment 1 was heat-treated at 900 ° C for 45 minutes. Then, the amount of acetic acid decomposed by the anodic oxide film after the heat treatment was measured according to the first embodiment.
It measured similarly to. Acetic acid had been degraded by 120 μmol (80%). This shows that the heat treatment improved the photocatalytic activity.

【0023】(実施形態3)2%硫酸と2%過酸化水素
水との混合浴1L中に、光触媒である、酸化チタンの微
粒子(粒径9nm,比表面積270m2/g)5g及び
二三酸化鉄の微粒子(粒径13.2nm、比表面積14
9m2/g)5gを添加し、その浴中に純チタン板(5
cm×10cm)を浸漬し、これを直流200Vで5分
間陽極酸化処理した。これにより、純チタン板表面に厚
さ1.5μmの陽極酸化皮膜が得られた。
(Embodiment 3) In a mixed bath of 2% sulfuric acid and 2% hydrogen peroxide solution, 5 g of titanium oxide fine particles (particle diameter 9 nm, specific surface area 270 m 2 / g) and 23 Fine particles of iron oxide (particle size 13.2 nm, specific surface area 14
9 m 2 / g) and 5 g of pure titanium plate (5
cm × 10 cm), and anodized at 200 V DC for 5 minutes. As a result, an anodic oxide film having a thickness of 1.5 μm was obtained on the surface of the pure titanium plate.

【0024】得られた陽極酸化皮膜を、商品名「サノダ
ルレッド(Sanodal Red)B3LW」(クラリアントジャ
パン株式会社製)である赤色染料の0.5%溶液1L中
に浸漬し、更に0.05%過酸化水素水を添加し、上方
からブラックライト(1mW/cm2)を照射したとこ
ろ、10分で赤色が消失して無色透明となった。
The obtained anodic oxide film was immersed in 1 L of a 0.5% solution of a red dye of “Sanodal Red B3LW” (manufactured by Clariant Japan KK), and further dried by 0.05%. Hydrogen oxide water was added and irradiated with black light (1 mW / cm 2 ) from above, and the red color disappeared and became colorless and transparent in 10 minutes.

【0025】(比較形態2)光触媒である酸化チタン及
び二三酸化鉄を添加せず、その他は実施形態3と同様に
行った。そして、得られた陽極酸化皮膜について、実施
形態3と同様にして染料分解速度を測定したところ、2
時間照射しても赤色は全く変化しなかった。
Comparative Example 2 The same operation as in Example 3 was carried out except that titanium oxide and iron trioxide as photocatalysts were not added. Then, the dye decomposition rate of the obtained anodic oxide film was measured in the same manner as in Embodiment 3.
The red color did not change at all after irradiation for hours.

【0026】(実施形態4)実施形態3で得られた陽極
酸化皮膜を700℃で1時間30分熱処理した。そし
て、熱処理後の陽極酸化皮膜について、実施形態3と同
様にして染料分解速度を測定したところ、6分で赤色が
消失して無色透明となった。このことから、熱処理によ
り光触媒活性が向上したことがわかる。
(Embodiment 4) The anodic oxide film obtained in Embodiment 3 was heat-treated at 700 ° C for 1 hour and 30 minutes. When the dye decomposition rate of the anodized film after the heat treatment was measured in the same manner as in Embodiment 3, the red color disappeared in 6 minutes and became colorless and transparent. This shows that the heat treatment improved the photocatalytic activity.

【0027】(実施形態5)2%硫酸と1%スルホサリ
チル酸との混合浴1L中に、光触媒である酸化チタンの
微粒子(粒径7nm,比表面積300m2/g)10g
を添加し、その浴中に純チタン板(10cm×10c
m)を浸漬し、これを直流200Vで5分間陽極酸化処
理した。これにより、純チタン板表面に厚さ1.3μm
の陽極酸化皮膜が得られた。
(Embodiment 5) In a mixed bath of 2% sulfuric acid and 1% sulfosalicylic acid, 10 g of titanium oxide fine particles (particle diameter: 7 nm, specific surface area: 300 m 2 / g) as a photocatalyst
And a pure titanium plate (10 cm × 10 c
m) was immersed, and this was subjected to anodizing treatment at DC 200 V for 5 minutes. As a result, the thickness of the pure titanium plate is 1.3 μm
Was obtained.

【0028】得られた陽極酸化皮膜を1Lの反応容器中
に入れ、その容器中に一酸化窒素を注入して濃度を1p
pmとした後、ブラックライト(1mW/cm2)を1
時間照射した。照射後、反応容器中の一酸化窒素濃度
を、化学発光式窒素酸化物計により測定した。その結
果、一酸化窒素濃度は0.3ppmであり、70%の一
酸化窒素が分解されていた。このことから、得られた陽
極酸化皮膜が光触媒活性を備えていることがわかる。
The obtained anodized film is placed in a 1 L reaction vessel, and nitrogen monoxide is injected into the vessel to adjust the concentration to 1 p.
pm, the black light (1 mW / cm 2 )
Irradiated for hours. After irradiation, the concentration of nitric oxide in the reaction vessel was measured with a chemiluminescent nitrogen oxide meter. As a result, the concentration of nitric oxide was 0.3 ppm, and 70% of nitric oxide was decomposed. This indicates that the obtained anodized film has photocatalytic activity.

【0029】(比較形態3)光触媒である酸化チタンを
添加せず、その他は実施形態5と同様に行った。そし
て、得られた陽極酸化皮膜による一酸化窒素分解量を実
施形態5と同様に測定したところ、一酸化窒素は分解さ
れていなかった。
Comparative Example 3 The same operation as in Example 5 was performed except that titanium oxide as a photocatalyst was not added. Then, the amount of decomposed nitric oxide by the obtained anodic oxide film was measured in the same manner as in Embodiment 5, and it was found that nitric oxide was not decomposed.

【0030】(実施形態6)実施形態5で得られた陽極
酸化皮膜を200℃で4時間熱処理した。そして、熱処
理後の陽極酸化皮膜について、実施形態5と同様にして
一酸化窒素分解量を測定したところ、85%の一酸化窒
素が分解されていた。このことから、熱処理により光触
媒活性が向上したことがわかる。
(Embodiment 6) The anodic oxide film obtained in Embodiment 5 was heat-treated at 200 ° C for 4 hours. Then, when the amount of decomposed nitric oxide of the anodized film after the heat treatment was measured in the same manner as in Embodiment 5, 85% of nitric oxide was decomposed. This shows that the heat treatment improved the photocatalytic activity.

【0031】(実施形態7)2%硫酸と1%スルホサリ
チル酸との混合浴1L中に、光触媒である酸化チタンの
微粒子(粒径7nm,比表面積300m2/g)10g
と、光触媒活性を向上させる金属であるパラジウム微粒
子(粒径15.5nm、比表面積126m2/g)0.
1gを含むパラジウムのコロイド溶液10mlとを添加
し、その浴中に純チタン板(10cm×10cm)を浸
漬し、これを直流200Vで5分間陽極酸化処理した。
これにより、純チタン板表面に厚さ1.3μmの陽極酸
化皮膜が得られた。
(Embodiment 7) 10 g of titanium oxide fine particles (particle diameter: 7 nm, specific surface area: 300 m 2 / g) as a photocatalyst in 1 L of a mixed bath of 2% sulfuric acid and 1% sulfosalicylic acid.
And fine particles of palladium (a particle size of 15.5 nm, a specific surface area of 126 m 2 / g) which are metals for improving the photocatalytic activity.
10 ml of a palladium colloid solution containing 1 g was added, and a pure titanium plate (10 cm × 10 cm) was immersed in the bath, and this was subjected to anodizing treatment at 200 V DC for 5 minutes.
As a result, an anodic oxide film having a thickness of 1.3 μm was obtained on the surface of the pure titanium plate.

【0032】得られた陽極酸化皮膜による一酸化窒素分
解量を実施形態5と同様にして測定したところ、90%
の一酸化窒素が分解されていた。このことから、パラジ
ウムにより光触媒活性が向上したことがわかる。
The amount of decomposed nitric oxide by the obtained anodic oxide film was measured in the same manner as in the fifth embodiment.
Nitric oxide had been decomposed. This indicates that palladium improved the photocatalytic activity.

【0033】(実施形態8)実施形態7で得られた陽極
酸化皮膜を200℃で4時間熱処理した。そして、熱処
理後の陽極酸化皮膜について、実施形態5と同様にして
一酸化窒素分解量を測定したところ、一酸化窒素は10
0%分解されていた。このことから、熱処理により光触
媒活性が向上したことがわかる。
Embodiment 8 The anodic oxide film obtained in Embodiment 7 was heat-treated at 200 ° C. for 4 hours. When the amount of decomposed nitric oxide was measured on the anodized film after the heat treatment in the same manner as in Embodiment 5, the amount of nitric oxide was 10%.
It had been decomposed by 0%. This shows that the heat treatment improved the photocatalytic activity.

【0034】(実施形態9)パラジウムの代わりに白金
微粒子(粒径18.1nm、比表面積111m2/g)
0.1gを含む白金のコロイド溶液10mlを用い、そ
の他は実施形態7と同様に行った。これにより、純チタ
ン板表面に厚さ1.4μmの陽極酸化皮膜が得られた。
得られた陽極酸化皮膜による一酸化窒素分解量を実施形
態5と同様にして測定したところ、85%の一酸化窒素
が分解されていた。このことから、白金により光触媒活
性が向上したことがわかる。
(Embodiment 9) Platinum fine particles (particle diameter 18.1 nm, specific surface area 111 m 2 / g) instead of palladium
The procedure was the same as in Embodiment 7, except that 10 ml of a colloidal platinum solution containing 0.1 g was used. As a result, an anodized film having a thickness of 1.4 μm was obtained on the surface of the pure titanium plate.
When the amount of nitrogen monoxide decomposed by the obtained anodized film was measured in the same manner as in Embodiment 5, 85% of the nitrogen monoxide was decomposed. This indicates that the photocatalytic activity was improved by platinum.

【0035】(実施形態10)実施形態9で得られた陽
極酸化皮膜を900℃で45分間熱処理した。そして、
熱処理後の陽極酸化皮膜について、実施形態5と同様に
して一酸化窒素分解量を測定したところ、一酸化窒素は
95%分解されていた。このことから、熱処理により光
触媒活性が向上したことがわかる。
(Embodiment 10) The anodic oxide film obtained in Embodiment 9 was heat-treated at 900 ° C for 45 minutes. And
When the amount of decomposed nitric oxide of the anodized film after the heat treatment was measured in the same manner as in Embodiment 5, it was found that nitrogen monoxide was decomposed by 95%. This shows that the heat treatment improved the photocatalytic activity.

【0036】[0036]

【発明の効果】請求項1記載の発明によれば、次のよう
な効果を発揮できる。 陽極酸化皮膜中に、光触媒活性を有する微粒子を分散
状態で保持させることができるので、陽極酸化皮膜に光
触媒活性を持たせることができる。従って、光触媒活性
を有するチタン材を得ることができる。
According to the first aspect of the present invention, the following effects can be obtained. Since fine particles having photocatalytic activity can be held in a dispersed state in the anodic oxide film, the anodic oxide film can have photocatalytic activity. Therefore, a titanium material having photocatalytic activity can be obtained.

【0037】光触媒活性を有する微粒子を添加した電
解浴にチタン材を浸漬して陽極酸化処理するだけである
ので、簡単な装置で、簡易に行うことができ、しかも、
大規模化も容易である。
Since the titanium material is simply immersed in an electrolytic bath containing fine particles having photocatalytic activity and subjected to anodizing treatment, it can be easily carried out with a simple apparatus.
Large scale is also easy.

【0038】陽極酸化皮膜の凹凸により表面積が増す
ので、光触媒活性を効率良く発揮できる。
Since the surface area is increased by the unevenness of the anodic oxide film, the photocatalytic activity can be efficiently exhibited.

【0039】一般に、光触媒活性を有する化合物は微
粒子であるので、それをそのまま用いることができ、従
って、その取り扱いが容易である。また、光触媒活性を
有する化合物として種々のものを容易に用いることがで
きる。
In general, since the compound having photocatalytic activity is fine particles, it can be used as it is, and therefore, its handling is easy. In addition, various compounds having photocatalytic activity can be easily used.

【0040】陽極酸化皮膜は耐久性が良く、母材であ
るチタン材に対する密着性も良いので、チタン材は陽極
酸化皮膜による光触媒活性を安定して発揮できる。ま
た、該チタン材は、強度が問われる建築材としても良好
に用いることができる。
Since the anodic oxide film has good durability and good adhesion to the titanium material as the base material, the titanium material can stably exhibit the photocatalytic activity by the anodic oxide film. Further, the titanium material can be favorably used as a building material for which strength is required.

【0041】電解浴中で処理するので、複雑な形状の
チタン材であっても均一に処理できる。
Since the treatment is performed in the electrolytic bath, even a titanium material having a complicated shape can be treated uniformly.

【0042】陽極酸化皮膜自身も僅かながら光触媒活
性を呈するものであるので、光触媒活性を有する微粒子
の光触媒作用が陽極酸化皮膜自身によって阻害されるこ
とはなく、従って、光触媒活性の劣化を防止できる。
Since the anodic oxide film itself exhibits a slight amount of photocatalytic activity, the photocatalytic action of the fine particles having photocatalytic activity is not hindered by the anodic oxide film itself, so that deterioration of the photocatalytic activity can be prevented.

【0043】請求項2記載の発明によれば、熱処理によ
り、陽極酸化皮膜中の金属チタン成分を酸化チタンにす
ることができ、また、陽極酸化皮膜中の電解浴の液成分
を酸化除去でき、更に、陽極酸化皮膜の結晶構造を光触
媒活性を呈するアナターゼ型とすることができるので、
陽極酸化皮膜による光触媒作用を円滑に発揮させること
ができ、従って、陽極酸化皮膜による光触媒活性を向上
させることができる。
According to the second aspect of the present invention, the metal titanium component in the anodic oxide film can be changed to titanium oxide by heat treatment, and the liquid component of the electrolytic bath in the anodic oxide film can be removed by oxidation. Furthermore, since the crystal structure of the anodized film can be an anatase type exhibiting photocatalytic activity,
The photocatalytic action of the anodic oxide film can be smoothly exhibited, and therefore, the photocatalytic activity of the anodic oxide film can be improved.

【0044】請求項3記載の発明によれば、光触媒活性
を向上させる金属により、陽極酸化皮膜自身及び該金属
に接触する光触媒活性を有する微粒子の、光触媒活性を
向上させることができる。
According to the third aspect of the present invention, the photocatalytic activity of the anodic oxide film itself and the fine particles having photocatalytic activity in contact with the metal can be improved by the metal that improves the photocatalytic activity.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 無機酸及び有機酸の少なくともいずれか
1種を含み、且つ光触媒活性を有する微粒子が添加され
ている電解浴中に、チタン材を浸漬し、火花放電発生電
圧以上の電圧を印加して陽極酸化処理を行うことを特徴
とする光触媒活性を有するチタン材の製造方法。
1. A titanium material is immersed in an electrolytic bath containing at least one of an inorganic acid and an organic acid and containing fine particles having photocatalytic activity, and a voltage higher than a spark discharge generating voltage is applied. And producing an titanium oxide having photocatalytic activity.
【請求項2】 陽極酸化処理後のチタン材を、空気又は
酸素雰囲気下、200℃以上900℃以下で熱処理する
請求項1記載の光触媒活性を有するチタン材の製造方
法。
2. The method for producing a titanium material having photocatalytic activity according to claim 1, wherein the titanium material after the anodizing treatment is heat-treated at 200 ° C. or more and 900 ° C. or less in an air or oxygen atmosphere.
【請求項3】 電解浴中に、光触媒活性を向上させる金
属の微粒子も添加しておく請求項1記載の光触媒活性を
有するチタン材の製造方法。
3. The method for producing a titanium material having photocatalytic activity according to claim 1, wherein metal fine particles for improving photocatalytic activity are also added to the electrolytic bath.
JP9261606A 1997-09-26 1997-09-26 Production of titanium material having photocatalytic activity Pending JPH11100695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9261606A JPH11100695A (en) 1997-09-26 1997-09-26 Production of titanium material having photocatalytic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9261606A JPH11100695A (en) 1997-09-26 1997-09-26 Production of titanium material having photocatalytic activity

Publications (1)

Publication Number Publication Date
JPH11100695A true JPH11100695A (en) 1999-04-13

Family

ID=17364250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9261606A Pending JPH11100695A (en) 1997-09-26 1997-09-26 Production of titanium material having photocatalytic activity

Country Status (1)

Country Link
JP (1) JPH11100695A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271493A (en) * 1999-03-25 2000-10-03 Takehisa Ito Production of photocatalytic material
JP2002038298A (en) * 2000-07-25 2002-02-06 Daiwa House Ind Co Ltd Method for forming anodic oxide film on titanium for photocatalyst
JP2005103504A (en) * 2003-10-02 2005-04-21 Denka Himaku Kogyo Kk Magnesium metallic material having photocatalytically active surface and its manufacturing method
JP2006116398A (en) * 2004-10-20 2006-05-11 Norio Shimizu Method for producing photocatalyst
JP2006239483A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Material and member of apparatus
WO2007029602A1 (en) * 2005-09-08 2007-03-15 Kinki University Bone substitute material, medical material containing the bone substitute material, and process for producing the bone substitute material
JP2007190528A (en) * 2006-01-23 2007-08-02 Doshisha Metal particulate fixed photocatalyst substance and its production method
WO2007132832A1 (en) * 2006-05-15 2007-11-22 Yield Co., Ltd. Method for processing object substance in aqueous solution, and apparatus and photocatalyst material used for the method
KR100926126B1 (en) 2008-05-15 2009-11-11 한국에너지기술연구원 Method for preparing integral nanotube photocatalyst, apparatus and method for reducing hexavalent chrominum
JP2009280479A (en) * 2008-04-23 2009-12-03 National Institute Of Advanced Industrial & Technology Dendritic substance and structure containing the same
KR101031225B1 (en) 2008-04-18 2011-04-29 한국세라믹기술원 Preparation methods of reactor and stirrer-typed catalysts without filtering process
WO2013144660A2 (en) * 2012-03-30 2013-10-03 Keronite International Limited Photocatalyst
JP2015039674A (en) * 2013-08-22 2015-03-02 シャープ株式会社 Photocatalytic fiber structure, and method of producing photocatalytic fiber structure
CN105121014A (en) * 2013-04-08 2015-12-02 日立金属株式会社 Photocatalyst and production method for same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276996A (en) * 1985-05-31 1986-12-06 Pentel Kk Surface treatment of titanium or alloy thereof
JPH0551796A (en) * 1991-02-08 1993-03-02 Nippon Alum Co Ltd White coated film forming method of titanium and titanium alloy
JPH05209297A (en) * 1991-10-30 1993-08-20 Nippon Alum Co Ltd Composite coating film forming method on surface of ti and ti alloy
JPH06210170A (en) * 1993-01-21 1994-08-02 Maeda Kousen Kk Production of titanium oxide plate for photocatalyst
JPH07289913A (en) * 1994-04-26 1995-11-07 Mitsui Mining & Smelting Co Ltd Photocatalyst and production thereof
JPH087643A (en) * 1994-06-21 1996-01-12 Mitsui Mining & Smelting Co Ltd Luminaire having photocatalytic function
JPH08164334A (en) * 1994-12-13 1996-06-25 Colcoat Kk Titanium dioxide coating film forming composition for photocatalyst and its production
JPH08246192A (en) * 1995-03-03 1996-09-24 Kobe Steel Ltd Oxidation-treated titanium or titanium-based alloy material having photocatalytic activity and its production
JPH0971897A (en) * 1995-09-06 1997-03-18 Akira Fujishima Aluminum building material and colored aluminum building material having antimicrobial, fungiproof and stainproof properties and their production
JPH09228022A (en) * 1995-12-22 1997-09-02 Toto Ltd Hydrophilic member and hydrophilicity maintaining method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276996A (en) * 1985-05-31 1986-12-06 Pentel Kk Surface treatment of titanium or alloy thereof
JPH0551796A (en) * 1991-02-08 1993-03-02 Nippon Alum Co Ltd White coated film forming method of titanium and titanium alloy
JPH05209297A (en) * 1991-10-30 1993-08-20 Nippon Alum Co Ltd Composite coating film forming method on surface of ti and ti alloy
JPH06210170A (en) * 1993-01-21 1994-08-02 Maeda Kousen Kk Production of titanium oxide plate for photocatalyst
JPH07289913A (en) * 1994-04-26 1995-11-07 Mitsui Mining & Smelting Co Ltd Photocatalyst and production thereof
JPH087643A (en) * 1994-06-21 1996-01-12 Mitsui Mining & Smelting Co Ltd Luminaire having photocatalytic function
JPH08164334A (en) * 1994-12-13 1996-06-25 Colcoat Kk Titanium dioxide coating film forming composition for photocatalyst and its production
JPH08246192A (en) * 1995-03-03 1996-09-24 Kobe Steel Ltd Oxidation-treated titanium or titanium-based alloy material having photocatalytic activity and its production
JPH0971897A (en) * 1995-09-06 1997-03-18 Akira Fujishima Aluminum building material and colored aluminum building material having antimicrobial, fungiproof and stainproof properties and their production
JPH09228022A (en) * 1995-12-22 1997-09-02 Toto Ltd Hydrophilic member and hydrophilicity maintaining method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271493A (en) * 1999-03-25 2000-10-03 Takehisa Ito Production of photocatalytic material
JP2002038298A (en) * 2000-07-25 2002-02-06 Daiwa House Ind Co Ltd Method for forming anodic oxide film on titanium for photocatalyst
JP2005103504A (en) * 2003-10-02 2005-04-21 Denka Himaku Kogyo Kk Magnesium metallic material having photocatalytically active surface and its manufacturing method
JP2006116398A (en) * 2004-10-20 2006-05-11 Norio Shimizu Method for producing photocatalyst
JP2006239483A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Material and member of apparatus
WO2007029602A1 (en) * 2005-09-08 2007-03-15 Kinki University Bone substitute material, medical material containing the bone substitute material, and process for producing the bone substitute material
JP2007068854A (en) * 2005-09-08 2007-03-22 Univ Kinki Bone substitute material, medical material including the bone substitute material, and method for manufacturing the bone substitute material
JP2007190528A (en) * 2006-01-23 2007-08-02 Doshisha Metal particulate fixed photocatalyst substance and its production method
WO2007132832A1 (en) * 2006-05-15 2007-11-22 Yield Co., Ltd. Method for processing object substance in aqueous solution, and apparatus and photocatalyst material used for the method
KR101031225B1 (en) 2008-04-18 2011-04-29 한국세라믹기술원 Preparation methods of reactor and stirrer-typed catalysts without filtering process
JP2009280479A (en) * 2008-04-23 2009-12-03 National Institute Of Advanced Industrial & Technology Dendritic substance and structure containing the same
KR100926126B1 (en) 2008-05-15 2009-11-11 한국에너지기술연구원 Method for preparing integral nanotube photocatalyst, apparatus and method for reducing hexavalent chrominum
WO2013144660A2 (en) * 2012-03-30 2013-10-03 Keronite International Limited Photocatalyst
WO2013144660A3 (en) * 2012-03-30 2013-12-12 Keronite International Limited Photocatalyst
US9492810B2 (en) 2012-03-30 2016-11-15 Keronite International Limited Photocatalyst
GB2505025B (en) * 2012-03-30 2019-07-17 Atg R&D Ltd Method for making assembly for photocatalytic treatment of water
CN105121014A (en) * 2013-04-08 2015-12-02 日立金属株式会社 Photocatalyst and production method for same
JP2015039674A (en) * 2013-08-22 2015-03-02 シャープ株式会社 Photocatalytic fiber structure, and method of producing photocatalytic fiber structure

Similar Documents

Publication Publication Date Title
JPH11100695A (en) Production of titanium material having photocatalytic activity
Reiche et al. Heterogeneous photocatalytic and photosynthetic deposition of copper on titanium dioxide and tungsten (VI) oxide powders
JP4997454B2 (en) Semiconductor electrode and energy conversion system using the same
US4264421A (en) Photocatalytic methods for preparing metallized powders
JP3655349B2 (en) Carbon dioxide converter
Hayden et al. Platinum catalysed nanoporous titanium dioxide electrodes in H2SO4 solutions
JPH0342040A (en) Harmful gas oxidation catalyst
JP2005199267A (en) Metal carrier and method for manufacturing the same
JP7028393B2 (en) An co-catalyst for an oxygen-generating photocatalyst, an oxygen-generating photocatalyst carrying the co-catalyst, and a complex and a method for producing the complex.
JPH0710354B2 (en) Method for producing supported catalyst
JP4905659B2 (en) Method for producing photocatalytic film
Hosseini et al. Evaluation of the Performance of Platinum Nanoparticle–Titanium Oxide Nanotubes as a New Refreshable Electrode for Formic Acid Electro‐oxidation
JP5001010B2 (en) Method for producing noble metal particulate carrier
JPH0820882A (en) Preparation of titanium electrode having iridium/palladium oxide plating
Milis et al. Photoassisted oxidation of nitrite to nitrate over different semiconducting oxides
WO2020232731A1 (en) Method for loading nano-sized metal oxide by anodic oxidation method
JP2013500843A (en) Photocatalyst production method
Zhao et al. Ordered SiO 2 cavity promoted formation of gold single crystal nanoparticles towards an efficient electrocatalytic application
Cui et al. Facet-dependent activity of Pt nanoparticles as cocatalyst on TiO 2 photocatalyst for dye-sensitized visible-light hydrogen generation
JP6403046B2 (en) Method for producing catalyst for fuel cell, catalyst using the same and fuel cell
JP2016193428A (en) Catalyst-carrying electrode and gas treatment device prepared therewith
WO2007148642A1 (en) Method of forming metal oxide microparticle layer on conductive substratum
CN110804743A (en) Dehydroxyreduction method of p-hydroxyphenylthiophenol
JPS6219245A (en) Optically functional film
CN108722398A (en) A kind of preparation method of bimetallic photo-thermal catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017