JP2526396B2 - Method for producing hydrogen and oxygen using semiconductor photocatalyst - Google Patents

Method for producing hydrogen and oxygen using semiconductor photocatalyst

Info

Publication number
JP2526396B2
JP2526396B2 JP4306118A JP30611892A JP2526396B2 JP 2526396 B2 JP2526396 B2 JP 2526396B2 JP 4306118 A JP4306118 A JP 4306118A JP 30611892 A JP30611892 A JP 30611892A JP 2526396 B2 JP2526396 B2 JP 2526396B2
Authority
JP
Japan
Prior art keywords
oxygen
hydrogen
water
oxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4306118A
Other languages
Japanese (ja)
Other versions
JPH06126189A (en
Inventor
和弘 佐山
裕則 荒川
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP4306118A priority Critical patent/JP2526396B2/en
Publication of JPH06126189A publication Critical patent/JPH06126189A/en
Application granted granted Critical
Publication of JP2526396B2 publication Critical patent/JP2526396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水の光分解用触媒の存
在下に光エネルギーを利用して水から効率的に水素と酸
素を製造する方法、並びに水及び二酸化炭素から水の光
分解触媒用触媒の存在下に光エネルギーを利用して水
素、酸素と同時に一酸化炭素を製造しうる方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for efficiently producing hydrogen and oxygen from water by utilizing light energy in the presence of a catalyst for photolysis of water, and photolysis of water from water and carbon dioxide. hydrogen using light energy in the presence of a catalyst for the catalyst to a method capable of producing oxygen at the same time as carbon monoxide.

【0002】[0002]

【従来の技術】半導体光触媒を用いて水を水素と酸素に
光分解する方法は光エネルギー変換の立場から大変興味
深い問題であり、大学等において基礎研究レベルで以前
から検討されている。そのような半導体(複合酸化物)
として、例えば、J.Lehn et al,Nouv.J.Chim.,4,623(19
80) に記載のM−SrTiO3 (M=Rh,Pt)、K.
Domen et al,J.Chem.Soc.,Chem.Commun.,543(1980)に記
載のNiOx −SrTiO3 、Y.Inoue et al,J.Phts.C
hem.,95,4059(1991)に記載のRuO2 −Na2 Ti6
13、Y.Inoue et al J.Chem.Soc.,Chem.Commun.,579(199
2)に記載のRu O2 −BaTi49 、K.Domen et al,
J.Chem.Soc.,Chem.Commun.,356(1986)に記載のNi−K
4 Nb617などが報告されている。
2. Description of the Related Art The method of photodecomposing water into hydrogen and oxygen by using a semiconductor photocatalyst is a very interesting problem from the viewpoint of light energy conversion, and has been studied at the basic research level in universities for a long time. Such semiconductor (composite oxide)
For example, J. Lehn et al, Nouv. J. Chim., 4,623 (19
80), M-SrTiO 3 (M = Rh, Pt), K.
Domen et al, J.Chem.Soc., Chem.Commun., 543 (1980), NiO x -SrTiO 3 , Y.Inoue et al, J.Phts.C.
RuO 2 —Na 2 Ti 6 O described in hem., 95, 4059 (1991).
13 , Y. Inoue et al J. Chem. Soc., Chem. Commun., 579 (199
Ru O 2 -BaTi 4 O 9 according to 2), K.Domen et al,
Ni-K described in J. Chem. Soc., Chem. Communi., 356 (1986).
4 Nb 6 O 17 etc. have been reported.

【0003】しかしこれまでの多くの研究例は、(1)
触媒の活性が非常に低い、(2)逆反応の反応速度が大
きい、(3)触媒の失活が早い、(4)触媒調製法や反
応条件が煩雑である、(5)再現性に乏しい、(6)触
媒的に反応しているのか疑わしい、等の多くの問題を抱
えているために実用には程遠い。
However, many examples of research to date are (1)
The activity of the catalyst is very low, (2) the reaction rate of the reverse reaction is high, (3) the deactivation of the catalyst is fast, (4) the catalyst preparation method and reaction conditions are complicated, and (5) the reproducibility is poor. (6) It is far from practical use because it has many problems such as suspicion that it reacts catalytically.

【0004】一方、光触媒を用いて水と二酸化炭素から
二酸化炭素の還元生成物を合成する反応に関しても、今
までに、触媒的に反応が進行していることを完全に確か
めた例はない。
On the other hand, with respect to the reaction of synthesizing a reduction product of carbon dioxide from water and carbon dioxide by using a photocatalyst, there has been no example to date so far that the catalytic reaction is completely confirmed.

【0005】[0005]

【発明が解決しようとする課題】近年、地球環境問題、
特に地球温暖化の主要因と考えられている二酸化炭素の
排出を如何に抑制するかという問題が大きくクローズア
ップされている。二酸化炭素の大量生成は現在の化石資
源の燃焼を中心としたエネルギーシステムでは避けられ
ない問題である。
In recent years, global environmental problems,
In particular, the issue of how to control carbon dioxide emissions, which is considered to be the main cause of global warming, is being highlighted. Large-scale production of carbon dioxide is an unavoidable problem in the current energy system centered on the combustion of fossil resources.

【0006】一方、自然界における二酸化炭素サイクル
は植物の光合成を中心に効率的に循環している。二酸化
炭素問題およびエネルギー問題を克服するためには植物
をまねた高効率の人工光合成システムを確立することが
一番望ましいと考えられる。人工光合成には水の完全分
解による水素と酸素の生成反応(1)や、水を用いた二
酸化炭素の還元反応(2)などがある。
On the other hand, the carbon dioxide cycle in the natural world circulates efficiently around the photosynthesis of plants. In order to overcome the carbon dioxide problem and the energy problem, it is considered most desirable to establish a highly efficient artificial photosynthesis system that mimics a plant. The artificial photosynthesis includes a hydrogen and oxygen production reaction (1) by complete decomposition of water, a carbon dioxide reduction reaction (2) using water, and the like.

【0007】 2H2 O → 2H2 + O2 ・・・(1) H2 O + CO2 → H2 + O2 + CO・・・(2)2H 2 O → 2H 2 + O 2 (1) H 2 O + CO 2 → H 2 + O 2 + CO (2)

【0008】これらはどちらの反応も、光エネルギーを
用いて低エネルギー物質を高エネルギー物質に変換する
アップヒルな反応である。さらに水も二酸化炭素も真空
紫外波長領域にしか吸収をもたないので、この反応を進
行させるためには光を吸収して水や二酸化炭素にエネル
ギーを渡す光触媒が必要である。
Both of these reactions are uphill reactions in which light energy is used to convert a low energy material into a high energy material. Furthermore, since both water and carbon dioxide have absorption only in the vacuum ultraviolet wavelength region, a photocatalyst that absorbs light and transfers energy to water and carbon dioxide is necessary for the reaction to proceed.

【0009】本発明は、光エネルギー及び新しい光触媒
システムを用いて水の完全分解または二酸化炭素の固定
化などのアップヒルな反応を触媒的に進行させる水素及
び酸素、または水素、酸素及び一酸化炭素の製造方法を
提供するものである。
The present invention uses hydrogen and oxygen or hydrogen, oxygen and carbon monoxide to catalytically proceed uphill reactions such as complete decomposition of water or immobilization of carbon dioxide using light energy and a new photocatalytic system. The present invention provides a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記従来
の課題に鑑み、各種半導体光触媒について検討した結
果、伝導帯の電位が負に大きく、さらに半導体のバンド
ギャップが大きいものを用いれば、光触媒反応が進行す
るという知見を得た。そしてこの知見に基づいて本発明
を完成するに至った。すなわち本発明は、 (1)酸化ジルコニウム半導体の存在下に水に光照射
し、水を光分解することを特徴とする水素及び酸素の製
造方法(以下、第1発明という)、 (2)酸化ジルコニウムが炭酸塩水溶液に含まれること
を特徴とする請求項1記載の方法(以下、第2発明とい
う)、 (3)酸化ニッケルもしくは酸化ルテニウムを担持して
なる酸化ジルコニウムもしくは酸化タンタル半導体の
存在下で水に光照射し、水を光分解することを特徴とす
る水素及び酸素の製造方法(以下、第3発明という)、
及び (4)白金、酸化ニッケル、酸化ルテニウム、銀及び銅
からなる群から選ばれた金属成分を担持してなる酸化ジ
ルコニウム半導体又は酸化ルテニウムもしくは酸化ニッ
ケルから選ばれた金属成分を担持してなる酸化タンタル
半導体を炭酸塩水溶液中に存在させ、この水溶液に光照
射し、水を光分解することを特徴とする水素及び酸素の
製造方法(以下、第4発明という)を提供するものであ
る。
The inventors of the present invention have studied various semiconductor photocatalysts in view of the above-mentioned conventional problems, and as a result, when the potential of the conduction band is negatively large and the semiconductor band gap is large, , And obtained the finding that the photocatalytic reaction proceeds. The present invention has been completed based on this finding. That is, the present invention provides (1) a method for producing hydrogen and oxygen (hereinafter, referred to as the first invention), which comprises irradiating water in the presence of a zirconium oxide semiconductor to photolyze the water, (2) oxidation zirconium method of claim 1, characterized in that contained in the carbonate solution (hereinafter, referred to as the second invention), (3) formed by carrying nickel oxide or oxide ruthenium arm, zirconium oxide or tantalum oxide semiconductor A method for producing hydrogen and oxygen, which comprises irradiating water in the presence of water to photolyze the water (hereinafter referred to as a third invention),
And (4) a platinum, nickel oxide, obtained by carrying selected metal components from the group consisting of ruthenium oxide, silver and copper zirconium oxide semiconductor or ruthenium oxide or oxide Stevenage
The method for producing hydrogen and oxygen, characterized in that a tantalum oxide semiconductor carrying a metal component selected from the group K is present in an aqueous carbonate solution, and the aqueous solution is irradiated with light to photolyze water (hereinafter, It is referred to as a fourth invention).

【0011】以下に、本発明を詳細に説明する。特に断
らない限り、本発明とは第1発明〜第4発明をいう。本
発明で用いる酸化ジルコニウム又は酸化タンタル半導体
光触媒は次の条件を満たしているものである。(1)光
照射によって生成する電子の電位が水または二酸化炭素
を還元できる電位よりも負であること。(2)光照射に
よって生成する正孔の電位が水を酸化できる電位よりも
正であること。(3)半導体自身が水または炭酸塩水溶
液中で光照射しても安定であること。本発明に用いられ
る酸化ジルコニウム及び酸化タンタルは、伝導帯の電位
がマイナスに大きい、すなわち半導体のバンドギャップ
が大きいものである。本発明は、粉末状の各種半導体光
触媒を用い、水または炭酸塩水溶液に懸濁させ、光照射
することによって実施できる。さらに詳しくは、本発明
方法に用いる半導体光触媒としては、半導体粉末のみ、
金属成分を担持した半導体粉末、または金属前駆体と半
導体粉末の混合物などがあげられる。
The present invention will be described in detail below. Unless otherwise specified, the present invention means the first invention to the fourth invention. The zirconium oxide or tantalum oxide semiconductor photocatalyst used in the present invention satisfies the following conditions. (1) The potential of electrons generated by light irradiation is more negative than the potential at which water or carbon dioxide can be reduced. (2) The potential of holes generated by light irradiation is more positive than the potential at which water can be oxidized. (3) The semiconductor itself is stable even when exposed to light in water or an aqueous carbonate solution. The zirconium oxide and tantalum oxide used in the present invention have a negative conduction band potential, that is, a semiconductor having a large band gap. The present invention can be carried out by using various semiconductor photocatalysts in powder form, suspending them in water or an aqueous carbonate solution, and irradiating with light. More specifically, as the semiconductor photocatalyst used in the method of the present invention, only semiconductor powder,
Examples thereof include a semiconductor powder carrying a metal component , or a mixture of a metal precursor and a semiconductor powder.

【0012】半導体光触媒に担持させる金属成分として
は、Pt,Ag,Cuなど炭酸塩水溶液中で光照射して
も金属として安定な元素を用いる。また酸化ニッケル、
酸化ルテニウムを用いることもできる。担持量について
は半導体と担持される金属の組合せによって最適量を用
いる。また、半導体に金属成分を担持させなくても良い
場合もある。半導体の光触媒とともに用いられる金属前
駆体としては硝酸塩、塩化物、硫酸塩、有機酸塩など、
どの様な化合物形態でもよい。
[0012] As the metal component to be supported on the semiconductor photocatalyst, Pt, A g, using a stable element as a metal even when the light irradiated in Cu soil carbonate solution. Also nickel oxide,
Ruthenium oxide can also be used. As for the supported amount, the optimum amount is used depending on the combination of the semiconductor and the supported metal. In some cases, it is not necessary to support the metal component on the semiconductor. Metal precursors used with semiconductor photocatalysts include nitrates, chlorides, sulfates, organic acid salts, etc.
Any compound form may be used.

【0013】前記半導体への金属担持法としては含浸法
や光電着法、沈殿法、イオン交換法、物理的混合法など
任意の方法を用いることができる。その後、例えばC
などは水素還元したものを触媒として用いる。Ru、N
は酸化して用いる。PtやRuなど半導体上に簡単に
光電着できるものの場合は、金属前駆体と半導体を炭酸
塩水溶液に混合し、光照射することによって金属成分
担持と水の光分解反応を連続的に行うことができる。
As the method for supporting the metal on the semiconductor, any method such as an impregnation method, a photoelectric deposition method, a precipitation method, an ion exchange method, a physical mixing method can be used. Then, even if C u
For example, hydrogen reduced products are used as catalysts. Ru , N
i is used after being oxidized. In the case of Pt or Ru that can be easily photo-deposited on a semiconductor, a metal precursor and a semiconductor are mixed with an aqueous carbonate solution, and the metal component is supported and the photolysis reaction of water is continuously performed by irradiating with light. You can

【0014】本発明において、反応溶液としては水の
み、または炭酸ナトリウムなどの炭酸根を有する電解質
を加えた水溶液でもよい。また、二酸化炭素の還元反応
を行わせる場合は、反応溶液としては二酸化炭素を溶解
させた水溶液を用いることが好ましい。具体的にはNa
HCO3 、KHCO3 等の水溶液が好ましいものとして
あげられる。また水溶液に二酸化炭素を吹き込む方法を
用いることもできる。
[0014] In the present invention, the reaction solution may be an aqueous solution obtained by adding an electrolyte having a carbonate groups, such as water alone or sodium carbonate. Also, carbon dioxide reduction reaction
In the case of carrying out, it is preferable to use an aqueous solution in which carbon dioxide is dissolved as the reaction solution. Specifically, Na
Aqueous solutions of HCO 3 , KHCO 3 and the like are preferred . Alternatively, a method of blowing carbon dioxide into the aqueous solution can be used.

【0015】次に本発明方法の反応条件について述べ
る。光源は半導体のバンドギャップよりも大きなエネル
ギーの光を照射できるものが好ましい。例えば、高圧水
銀灯やキセノンランプ、タングステンランプ、太陽光等
があげられる。また、反応管及び光学系は石英など光を
効率よく透過するものを用いることが好ましい。
Next, the reaction conditions of the method of the present invention will be described. The light source is preferably one capable of irradiating light with energy larger than the band gap of the semiconductor. For example, a high pressure mercury lamp, a xenon lamp, a tungsten lamp, sunlight, etc. are mentioned. Further, it is preferable to use a reaction tube and an optical system that efficiently transmit light such as quartz.

【0016】光の照射方法については内部照射型、外部
照射型等いずれを用いることもできるが、できるだけ効
率よく光を触媒に当てることが好ましい。例えば、スタ
ーラーで触媒を水溶液中によく懸濁させる、均一に触媒
を反応管の底に分散させて上または下から光を当てる、
触媒を薄膜化して用いる方法などがあげられる。
The method of irradiating light may be either internal irradiation type or external irradiation type, but it is preferable to irradiate the catalyst with light as efficiently as possible. For example, the catalyst is well suspended in an aqueous solution with a stirrer, the catalyst is uniformly dispersed in the bottom of the reaction tube, and light is applied from above or below,
Examples thereof include a method of using the catalyst in a thin film.

【0017】本発明方法においては、触媒量、及び水ま
たは炭酸塩水溶液の量は、光をできるだけ効率よく触媒
に吸収させるように最適量を設定する。
In the method of the present invention, the catalyst amount and the amount of water or carbonate aqueous solution are set to optimum amounts so that the catalyst absorbs light as efficiently as possible.

【0018】本発明方法の光反応は減圧条件下で行うこ
とが好ましい。これは液相で生成した水素と酸素又は一
酸化炭素をできるだけ早く気相に放出させるためであ
る。
The photoreaction of the method of the present invention is preferably carried out under reduced pressure. This is to release hydrogen and oxygen or carbon monoxide generated in the liquid phase into the gas phase as soon as possible.

【0019】[0019]

【実施例】以下に本発明を実施例に基づきさらに詳細に
説明する。
EXAMPLES The present invention will be described in more detail based on the following examples.

【0020】実施例1 酸化タンタル(和光純薬社製)に酸化ルテニウム(1w
t%)を含浸担持した。水350mlに触媒1gと炭酸
ナトリウム80gを混合し、内部照射型反応管(石英
製)に入れ、閉鎖循環系にセットした。気相と液相の空
気を脱気後、系内にアルゴンを導入し、系内全圧を約3
5torrとした。光源には400W高圧水銀灯(理工科学
社製)を用い、触媒をスターラーによって分散させなが
ら光照射した。生成した水素と酸素はガスクロマトグラ
フィ−および圧力計で定性、定量した。水素生成速度は
68μmol/h ,酸素生成速度は34μmol/h であった。
Example 1 Tantalum oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed with ruthenium oxide (1 w).
t%) was impregnated and supported. 350 g of water was mixed with 1 g of a catalyst and 80 g of sodium carbonate, placed in an internal irradiation type reaction tube (made of quartz), and set in a closed circulation system. After degassing the air in the gas and liquid phases, introduce argon into the system to bring the total pressure in the system to about 3
It was set to 5 torr. A 400 W high-pressure mercury lamp (manufactured by Riko Kagaku Co., Ltd.) was used as a light source, and the catalyst was dispersed by a stirrer to irradiate light. The produced hydrogen and oxygen were qualitatively and quantitatively measured by gas chromatography and a pressure gauge. The hydrogen production rate was 68 μmol / h and the oxygen production rate was 34 μmol / h.

【0021】実施例2 実施例1において酸化ルテニウムの代わりに酸化ニッケ
ルを用いて反応を行った。気体生成速度は水素153μ
mol/h 、酸素79μmol/h であった。
Example 2 The reaction was carried out by using nickel oxide instead of ruthenium oxide in Example 1. Gas generation rate is 153μm hydrogen
It was mol / h and oxygen was 79 μmol / h.

【0022】実施例3 実施例1において炭酸ナトリウムを添加せずに反応を行
った。気体生成速度は水素32μmol/h 、酸素17μmo
l/h であった。
Example 3 The reaction was carried out in Example 1 without adding sodium carbonate. Gas production rate is 32μmol / h for hydrogen, 17μmo for oxygen
It was l / h.

【0023】実施例4 実施例2において炭酸ナトリウムを添加せずに反応を行
った。気体生成速度は水素190μmol/h 、酸素99μ
mol/h であった。
Example 4 The reaction was carried out in Example 2 without adding sodium carbonate. Gas generation rate is 190μmol / h for hydrogen, 99μ for oxygen
It was mol / h.

【0024】実施例5 酸化ジルコニウム(添川理化社製)1gを水350ml
と塩化白金酸(白金換算で0.1wt%分)及び炭酸ナ
トリウム80gに混合し、内部照射型反応管(石英製)
に入れ、閉鎖循環系にセットした。気相と液相の空気を
脱気後、系内にアルゴンを導入し、系内全圧を約35to
rrとした。光源には400W高圧水銀灯(理工科学社
製)を用い、触媒をスターラーによって分散させながら
光照射した。生成した水素と酸素はガスクロマトグラフ
ィ−および圧力計で定性、定量した。水素生成速度は5
3μmol/h ,酸素生成速度は24μmol/h であった。
Example 5 1 g of zirconium oxide (manufactured by Soekawa Rika Co., Ltd.) was added to 350 ml of water.
And chloroplatinic acid (0.1 wt% in terms of platinum) and 80 g of sodium carbonate, and an internal irradiation type reaction tube (made of quartz)
And set in a closed circulation system. After degassing the gas phase and liquid phase air, introduce argon into the system to bring the total pressure in the system to about 35 to
It was rr. A 400 W high-pressure mercury lamp (manufactured by Riko Kagaku Co., Ltd.) was used as a light source, and the catalyst was dispersed by a stirrer to irradiate light. The produced hydrogen and oxygen were qualitatively and quantitatively measured by gas chromatography and a pressure gauge. Hydrogen production rate is 5
The oxygen production rate was 3 μmol / h and the oxygen production rate was 24 μmol / h.

【0025】実施例6 酸化ジルコニウム(添川理化社製)に酸化ルテニウム
(1wt%)を含浸担持した。水350mlに触媒1g
と炭酸ナトリウム80gを混合し、内部照射型反応管
(石英製)に入れ、閉鎖循環系にセットした。気相と液
相の空気を脱気後、系内にアルゴンを導入し、系内全圧
を約35torrとした。光源には400W高圧水銀灯(理
工科学社製)を用い、触媒をスターラーによって分散さ
せながら光照射した。生成した水素と酸素はガスクロマ
トグラフィーおよび圧力計で定性、定量した。水素生成
速度は12μmol/h ,酸素生成速度は6μmol/h であっ
た。
Example 6 Ruthenium oxide (1 wt%) was impregnated and supported on zirconium oxide (manufactured by Soekawa Rika Co., Ltd.). 1g catalyst in 350ml water
And 80 g of sodium carbonate were mixed, placed in an internal irradiation type reaction tube (made of quartz), and set in a closed circulation system. After degassing the air in the gas phase and the liquid phase, argon was introduced into the system to bring the total pressure in the system to about 35 torr. A 400 W high-pressure mercury lamp (manufactured by Riko Kagaku Co., Ltd.) was used as a light source, and the catalyst was dispersed by a stirrer to irradiate light. The produced hydrogen and oxygen were qualitatively and quantitatively analyzed by gas chromatography and a pressure gauge. The hydrogen production rate was 12 μmol / h and the oxygen production rate was 6 μmol / h.

【0026】実施例7 実施例6において酸化ルテニウムの代わりに酸化ニッケ
ルを用いて反応を行った。気体生成速度は水素43μmo
l/h 、酸素22μmol/h であった。
Example 7 The reaction was carried out by using nickel oxide in place of ruthenium oxide in Example 6. Gas production rate is 43μmo hydrogen
It was l / h and oxygen was 22 μmol / h.

【0027】実施例8 実施例6において炭酸ナトリウムを添加せずに反応を行
った。気体生成速度は水素11μmol/h 、酸素5μmol/
h であった。
Example 8 The reaction was carried out in Example 6 without adding sodium carbonate. Gas production rate is 11 μmol / h for hydrogen, 5 μmol / oxygen
was h.

【0028】実施例9 実施例7において炭酸ナトリウムを添加せずに反応を行
った。気体生成速度は水素129μmol/h 、酸素70μ
mol/h であった。
Example 9 The reaction was carried out in Example 7 without adding sodium carbonate. Gas production rate is 129μmol / h for hydrogen, 70μ for oxygen
It was mol / h.

【0029】実施例10 酸化ジルコニウム(添川理化社製)1gを水350ml
と炭酸ナトリウム80gに混合し、内部照射型反応管
(石英製)に入れ、閉鎖循環系にセットした。気相と液
相の空気を脱気後、系内にアルゴンを導入し、系内全圧
を約35torrとした。光源には400W高圧水銀灯(理
工科学社製)を用い、触媒をスターラーによって分散さ
せながら光照射した。生成した水素と酸素はガスクロマ
トグラフィーおよび圧力計で定性、定量した。水素生成
速度は142μmol/h ,酸素生成速度は76μmol/h で
あった。
Example 10 1 g of zirconium oxide (manufactured by Soekawa Rika Co., Ltd.) was added to 350 ml of water.
Was mixed with 80 g of sodium carbonate, placed in an internal irradiation type reaction tube (made of quartz), and set in a closed circulation system. After degassing the air in the gas phase and the liquid phase, argon was introduced into the system to bring the total pressure in the system to about 35 torr. A 400 W high-pressure mercury lamp (manufactured by Riko Kagaku Co., Ltd.) was used as a light source, and the catalyst was dispersed by a stirrer to irradiate light. The produced hydrogen and oxygen were qualitatively and quantitatively analyzed by gas chromatography and a pressure gauge. The hydrogen production rate was 142 μmol / h and the oxygen production rate was 76 μmol / h.

【0030】実施例11 実施例10において炭酸ナトリウムを添加せずに反応を
行った。気体生成速度は水素72μmol/h 、酸素36μ
mol/h であった。
Example 11 The reaction was carried out in Example 10 without adding sodium carbonate. Gas production rate is 72μmol / h for hydrogen, 36μ for oxygen
It was mol / h.

【0031】実施例12 実施例10において炭酸ナトリウムの代わりに炭酸水素
ナトリウム28gを用いて反応を行った。気体生成速度
は水素309μmol/h 、酸素169μmol/h 、一酸化炭
素3.0μmol/h であった。
Example 12 The reaction was carried out by using 28 g of sodium hydrogen carbonate instead of sodium carbonate in Example 10. The gas generation rate was 309 μmol / h for hydrogen, 169 μmol / h for oxygen, and 3.0 μmol / h for carbon monoxide.

【0032】実施例13 実施例10において炭酸ナトリウムの代わりに炭酸水素
カリウム33.4gを用いて反応を行った。気体生成速
度は水素295μmol/h 、酸素156μmol/h、一酸化
炭素2.0μmol/h であった。
Example 13 The reaction was carried out by using 33.4 g of potassium hydrogen carbonate in place of sodium carbonate in Example 10. The gas generation rate was 295 μmol / h for hydrogen, 156 μmol / h for oxygen, and 2.0 μmol / h for carbon monoxide.

【0033】実施例14 酸化ジルコニウム(添川理化社製)に銀(0.1wt
%)を含浸担持した。水350mlに触媒1gと炭酸水
素ナトリウム28gを混合し、内部照射型反応管(石英
製)に入れ、閉鎖循環系にセットした。気相と液相の空
気を脱気後、系内にアルゴンを導入し、系内全圧を約3
5torrとした。光源には400W高圧水銀灯(理工科学
社製)を用い、触媒をスターラーによって分散させなが
ら光照射した。生成した水素と酸素はガスクロマトグラ
フィーおよび圧力計で定性、定量した。水素生成速度は
88μmol/h ,酸素生成速度は47μmol/h ,一酸化炭
素1.8μmol/h に達した。
Example 14 Zirconium oxide (manufactured by Soekawa Rika Co., Ltd.) was mixed with silver (0.1 wt.
%) Was impregnated and supported. 350 g of water was mixed with 1 g of the catalyst and 28 g of sodium hydrogen carbonate, placed in an internal irradiation type reaction tube (made of quartz), and set in a closed circulation system. After degassing the air in the gas and liquid phases, introduce argon into the system to bring the total pressure in the system to about 3
It was set to 5 torr. A 400 W high-pressure mercury lamp (manufactured by Riko Kagaku Co., Ltd.) was used as a light source, and the catalyst was dispersed by a stirrer to irradiate light. The produced hydrogen and oxygen were qualitatively and quantitatively analyzed by gas chromatography and a pressure gauge. The hydrogen production rate reached 88 μmol / h, the oxygen production rate reached 47 μmol / h, and carbon monoxide reached 1.8 μmol / h.

【0034】実施例15 実施例14において銀の代わりに銅(1wt%)を用い
て反応を行った。気体生成速度は水素19μmol/h 、酸
素11μmol/h ,一酸化炭素2.5μmol/h であった。
Example 15 In Example 14, the reaction was performed using copper (1 wt%) instead of silver. The gas generation rate was 19 μmol / h for hydrogen, 11 μmol / h for oxygen, and 2.5 μmol / h for carbon monoxide.

【0035】実施例16 実施例5において炭酸ナトリウムの代わりに炭酸水素ナ
トリウム28gを用いて反応を行った。気体生成速度は
水素120μmol/h 、酸素61μmol/h であった。
Example 16 The reaction was carried out by using 28 g of sodium hydrogen carbonate instead of sodium carbonate in Example 5. The gas generation rate was 120 μmol / h for hydrogen and 61 μmol / h for oxygen.

【0036】比較例1 酸化亜鉛(和光純薬社製)1gを水350mlと塩化白
金酸(白金換算で0.1wt%分)及び炭酸水素ナトリ
ウム28g に混合し、内部照射型反応管(石英製)に入
れ、閉鎖循環系にセットした。気相と液相の空気を脱気
後、系内にアルゴンを導入し、系内全圧を約35torrと
した。光源には400W高圧水銀灯(理工科学社製)を
用い、触媒をスターラーによって分散させながら光照射
した。生成した水素はガスクロマトグラフィーおよび圧
力計で定性、定量した。水素生成速度は1μmol/h 以下
であった。酸素および一酸化炭素は全く生成しなかっ
た。酸化亜鉛は反応条件下では不安定のため、触媒とし
ての活性がないと考えられる。
Comparative Example 1 1 g of zinc oxide (made by Wako Pure Chemical Industries, Ltd.) was mixed with 350 ml of water, chloroplatinic acid (0.1 wt% in terms of platinum) and 28 g of sodium hydrogen carbonate, and an internal irradiation type reaction tube (made of quartz) was used. ) And set in a closed circulation system. After degassing the air in the gas phase and the liquid phase, argon was introduced into the system to bring the total pressure in the system to about 35 torr. A 400 W high-pressure mercury lamp (manufactured by Riko Kagaku Co., Ltd.) was used as a light source, and the catalyst was dispersed by a stirrer to irradiate light. The produced hydrogen was qualitatively and quantitatively analyzed by gas chromatography and a pressure gauge. The hydrogen generation rate was 1 μmol / h or less. No oxygen or carbon monoxide was produced. Since zinc oxide is unstable under the reaction conditions, it is considered that it has no catalytic activity.

【0037】比較例2 比較例1において炭酸水素ナトリウムを添加せずに反応
を行った。水素生成速度は1μmol/h 以下であった。酸
素および一酸化炭素は全く生成しなかった。
Comparative Example 2 The reaction was carried out in Comparative Example 1 without adding sodium hydrogen carbonate. The hydrogen generation rate was 1 μmol / h or less. No oxygen or carbon monoxide was produced.

【0038】比較例3 比較例1において白金の代わりに酸化ルテニウム(1w
t%)を含浸担持して用いて反応を行った。水素生成速
度は1 μmol/h 以下であった。酸素および一酸化炭素は
全く生成しなかった。
Comparative Example 3 In Comparative Example 1, instead of platinum, ruthenium oxide (1 w
t%) was impregnated and supported to carry out the reaction. The hydrogen production rate was less than 1 μmol / h. No oxygen or carbon monoxide was produced.

【0039】比較例4 比較例1において酸化亜鉛の代わりに酸化タングステン
(和光純薬社製)を用いて反応を行った。水素生成速度
は1 μmol/h 以下であった。酸素および一酸化炭素は全
く生成しなかった。酸化タングステン中に生成した電子
は水を還元する電位よりも正であるため、触媒としての
活性がないと考えられる。以上の結果を表1に示す。
Comparative Example 4 Tungsten oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used in place of zinc oxide in Comparative Example 1 to carry out the reaction. The hydrogen production rate was less than 1 μmol / h. No oxygen or carbon monoxide was produced. Since the electrons generated in tungsten oxide are more positive than the potential for reducing water, they are considered to have no catalytic activity. Table 1 shows the above results.

【0040】[0040]

【表1】 [Table 1]

【0041】表1より、本発明方法により半導体光触媒
として酸化タンタル、酸化ジルコニウムを用いると、水
の光分解反応、二酸化炭素の還元反応が触媒的に進行す
ることがわかる。
From Table 1, it can be seen that when tantalum oxide or zirconium oxide is used as the semiconductor photocatalyst by the method of the present invention, the photolysis reaction of water and the reduction reaction of carbon dioxide proceed catalytically.

【0042】[0042]

【発明の効果】酸化タンタル、酸化ジルコニウムなどの
半導体光触媒を用いることにより、人工光合成反応、す
なわち水の光分解や二酸化炭素の還元反応を、驚くほど
簡単に触媒的に進行させることができる。これにより、
水素及び酸素、または水素、酸素及び一酸化炭素を製造
することができる。
Industrial Applicability By using a semiconductor photocatalyst such as tantalum oxide or zirconium oxide, an artificial photosynthetic reaction, that is, a photodecomposition of water or a reduction reaction of carbon dioxide can be surprisingly and easily proceeded catalytically. This allows
Hydrogen and oxygen or hydrogen, oxygen and carbon monoxide can be produced.

【0043】本発明方法によれば、無尽蔵でクリーンな
太陽エネルギー等の光エネルギーを有効に利用できるも
のであり、地球温暖化現象の原因となる物質である二酸
化炭素を固定化し、一酸化炭素に変換することにより再
資源化することができる。すなわち、本発明方法によれ
ばエネルギー問題と環境問題を同時に解決することがで
きる。
According to the method of the present invention, light energy such as inexhaustible and clean solar energy can be effectively used, and carbon dioxide, which is a substance causing the global warming phenomenon, is fixed to carbon monoxide. It can be recycled by converting. That is, according to the method of the present invention, energy problems and environmental problems can be solved at the same time.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/648 B01J 23/72 23/72 23/84 301M 23/755 23/64 102M 23/847 23/74 321 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/648 B01J 23/72 23/72 23/84 301M 23/755 23/64 102M 23/847 23/74 321

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化ジルコニウム半導体の存在下に水に
光照射し、水を光分解することを特徴とする水素及び酸
素の製造方法。
1. A method for producing hydrogen and oxygen, which comprises irradiating water with light in the presence of a zirconium oxide semiconductor to photolyze the water.
【請求項2】 酸化ジルコニウムが炭酸塩水溶液に含ま
れることを特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein zirconium oxide is contained in the carbonate aqueous solution.
【請求項3】 酸化ニッケルもしくは酸化ルテニウムを
担持してなる酸化ジルコニウムもしくは酸化タンタル
半導体の存在下で水に光照射し、水を光分解することを
特徴とする水素及び酸素の製造方法。
3. A formed by nickel oxide or oxide ruthenium arm <br/> supported by light irradiation in water in the presence of zirconium oxide or tantalum oxide semiconductor, hydrogen and oxygen, characterized by photolysis of water Manufacturing method.
【請求項4】 白金、酸化ニッケル、酸化ルテニウム、
銀及び銅からなる群から選ばれた金属成分を担持してな
る酸化ジルコニウム半導体又は酸化ルテニウムもしくは
酸化ニッケルから選ばれた金属成分を担持してなる酸化
タンタル半導体を炭酸塩水溶液中に存在させ、この水溶
液に光照射し、水を光分解することを特徴とする水素及
び酸素の製造方法。
4. A platinum, nickel oxide, ruthenium oxide,
Zirconium oxide semiconductor or ruthenium oxide carrying a metal component selected from the group consisting of silver and copper, or
A method for producing hydrogen and oxygen, which comprises causing a tantalum oxide semiconductor carrying a metal component selected from nickel oxide to exist in an aqueous carbonate solution, and irradiating the aqueous solution with light to photolyze water.
JP4306118A 1992-10-19 1992-10-19 Method for producing hydrogen and oxygen using semiconductor photocatalyst Expired - Lifetime JP2526396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4306118A JP2526396B2 (en) 1992-10-19 1992-10-19 Method for producing hydrogen and oxygen using semiconductor photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4306118A JP2526396B2 (en) 1992-10-19 1992-10-19 Method for producing hydrogen and oxygen using semiconductor photocatalyst

Publications (2)

Publication Number Publication Date
JPH06126189A JPH06126189A (en) 1994-05-10
JP2526396B2 true JP2526396B2 (en) 1996-08-21

Family

ID=17953268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4306118A Expired - Lifetime JP2526396B2 (en) 1992-10-19 1992-10-19 Method for producing hydrogen and oxygen using semiconductor photocatalyst

Country Status (1)

Country Link
JP (1) JP2526396B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652989B2 (en) 2008-08-11 2014-02-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalyst and reducing catalyst using the same
US8709227B2 (en) 2011-08-31 2014-04-29 Panasonic Corporation Method for reducing carbon dioxide
US8709228B2 (en) 2011-08-31 2014-04-29 Panasonic Corporation Method for reducing carbon dioxide
JP6023374B1 (en) * 2016-03-25 2016-11-09 紘生 大槻 Tape cutter
US9551077B2 (en) 2012-08-27 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
US9598781B2 (en) 2013-05-21 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738813B1 (en) * 1995-09-15 1997-10-17 Saint Gobain Vitrage SUBSTRATE WITH PHOTO-CATALYTIC COATING
JP4565239B2 (en) * 2005-09-12 2010-10-20 独立行政法人産業技術総合研究所 Zirconium oxide photofunctional oxide
JP2007266124A (en) * 2006-03-27 2007-10-11 Fujifilm Corp Wiring board manufacturing method and liquid discharge head manufactured thereby
US9539543B2 (en) * 2009-01-29 2017-01-10 Basf Corporation Mechanically fused materials for pollution abatement in mobile and stationary sources
JP2012176332A (en) * 2011-02-25 2012-09-13 Green Chemy:Kk Visible light response photocatalyst, method for manufacturing the same and method for using the same
JP5747579B2 (en) * 2011-03-14 2015-07-15 トヨタ自動車株式会社 Carbon dioxide reduction method
CN103502109B (en) * 2011-04-18 2016-01-13 英派尔科技开发有限公司 The renewable oxygen scavenging packaging of light
JP5924643B2 (en) * 2012-02-10 2016-05-25 国際石油開発帝石株式会社 Photocatalyst and photoreduction method using the same
CN102921423A (en) * 2012-04-26 2013-02-13 南开大学 Efficient nickel/nickel oxide/nickel borate composite photocatalyst
JP5641490B2 (en) 2012-07-05 2014-12-17 パナソニックIpマネジメント株式会社 How to produce alcohol
JP6044992B2 (en) * 2013-06-28 2016-12-14 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP2016074577A (en) * 2014-10-09 2016-05-12 日本電信電話株式会社 Carbon dioxide reduction method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125642A (en) * 1984-07-17 1986-02-04 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for manufacturing pyromellitic anhydride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125642A (en) * 1984-07-17 1986-02-04 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for manufacturing pyromellitic anhydride

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652989B2 (en) 2008-08-11 2014-02-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalyst and reducing catalyst using the same
US8709227B2 (en) 2011-08-31 2014-04-29 Panasonic Corporation Method for reducing carbon dioxide
US8709228B2 (en) 2011-08-31 2014-04-29 Panasonic Corporation Method for reducing carbon dioxide
US9551077B2 (en) 2012-08-27 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
US9598781B2 (en) 2013-05-21 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus
JP6023374B1 (en) * 2016-03-25 2016-11-09 紘生 大槻 Tape cutter

Also Published As

Publication number Publication date
JPH06126189A (en) 1994-05-10

Similar Documents

Publication Publication Date Title
JP2526396B2 (en) Method for producing hydrogen and oxygen using semiconductor photocatalyst
Tan et al. Restructuring of Cu2O to Cu2O@ Cu-metal–organic frameworks for selective electrochemical reduction of CO2
Ulagappan et al. Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy
Abe et al. A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator
AU722308B1 (en) CdS photocatalyst for hydrogen production, preparation therefor and method for producing hydrogen by use of the same
Mu et al. A review on metal-organic frameworks for photoelectrocatalytic applications
US5262023A (en) Method for producing hydrogen and oxygen from water
Huang et al. Synergistic photoelectrochemical synthesis of formate from CO2 on {121} hierarchical Co3O4
Poudyal et al. Insights into elevated-temperature photocatalytic reduction of CO2 by H2O
JP4107807B2 (en) Oxysulfide photocatalyst for visible light decomposition of water
JP4158850B2 (en) Carbon dioxide reduction method using photocatalyst
AU740440B2 (en) Manufacturing method of CdS photocatalyst for hydrogen production
JP3876305B2 (en) Composite photocatalyst for carbon dioxide reduction and carbon dioxide photoreduction method using the same
EP0778793A1 (en) Photocatalyst, method for preparing the same, and production of hydrogen using the same
JP2006088019A (en) Photocatalyst having iridium oxide-based cocatalyst deposited in oxidizing atmosphere in presence of nitrate ion, and method for producing the same
Chowdhury Solar and visible light driven photocatalysis for sacrificial hydrogen generation and water detoxification with chemically modified Ti02
JP3096728B2 (en) Method and apparatus for decomposing water by sunlight
EP1867390A1 (en) Method for processing hydrogen sulfide, method for producing hydrogen and photocatalyst reactor
JP3793800B2 (en) Method for producing hydrogen and oxygen using iodine compound and semiconductor photocatalyst
CN116422378A (en) Cu (copper) alloy 2 O-CuXbpy composite material CO 2 Preparation method and application of photoreduction catalyst
CN113398968B (en) MOF-derived TiO 2 Porous g-C 3 N 4 Composite photocatalyst, preparation method and application thereof
JPS6310084B2 (en)
JP2876524B2 (en) Light energy conversion method
JP2004066028A (en) Visible light-responsive indium-barium compound oxide photocatalyst, method of producing hydrogen using the photocatalyst, and method for decomposing harmful chemical substance using photocatalyst
JP2001213608A (en) Chemical converter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term