JPS62188B2 - - Google Patents

Info

Publication number
JPS62188B2
JPS62188B2 JP58239637A JP23963783A JPS62188B2 JP S62188 B2 JPS62188 B2 JP S62188B2 JP 58239637 A JP58239637 A JP 58239637A JP 23963783 A JP23963783 A JP 23963783A JP S62188 B2 JPS62188 B2 JP S62188B2
Authority
JP
Japan
Prior art keywords
powder
mica powder
coated
mica
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58239637A
Other languages
Japanese (ja)
Other versions
JPS60133066A (en
Inventor
Motohiko Yoshizumi
Kazuo Toda
Toshiharu Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58239637A priority Critical patent/JPS60133066A/en
Publication of JPS60133066A publication Critical patent/JPS60133066A/en
Publication of JPS62188B2 publication Critical patent/JPS62188B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性塗料、導電性プラスチツク等の
製造に使用される導電性顔料、導電性フイラーに
適するNi被覆雲母粉末の製造法に関する。本明
細書においては導電性顔料と導電性フイラーの両
者を併せて導電性付与粉末と称する。 導電性顔料として使用される導電性粉末として
は、Ag,Cu,Al,Ni等の金属粉末が古くから知
られているが、Agは高価あり、Al,Cuは酸化し
やすいため、Niが最も実用的な導電性顔料とし
て使用されている。 導電性顔料としてNi粉末は、一般にニツケル
カルボニルより製したNi(カルボニルニツケル
と称せられる)粉末が用いられる。これは粒径数
μ以下の微細なものであり、しかも球状をしてい
る。塗料被覆の導電性は顔料粉末同志の接触によ
つて生ずるが、その意味で球状粒子は有利でな
く、例えば電磁シールド効果を有する程度の導電
性被覆を得るためには、Ni粉末と樹脂バインダ
ーとの割合において導電性粉末を60%以上、通常
70〜80%含有させる必要がある。このため樹脂バ
インダーの割合が少なくなり、塗布膜の強度が劣
り、剥離しやすい欠点を生ずる。また微細なカル
ボニルニツケル粉末は分散性が悪く、塗料製造に
おいては強力な分散処理が必要であり、また塗布
膜の表面の平滑性も劣る。 さらにNi粉末は黒色であり美的効果も少な
い。また塗料の保存中にNi粉末が沈降するので
使用時には再分散する必要があるが、沈降体の凝
集は強く、再分散することは容易ではない。 以上に述べたことはNi粉末の比重が大きく
(8.9)、微細であり、また球状であるためであ
る。導電性顔料としては、比重が小さく、粒径が
5〜60μの粉末が望ましく、また形状も球状より
はフレーク状、繊維状であることが望ましい。導
電性フイラーとしては、カーボン粉末および繊
維、Alフレーク、Ni粉末、Ni被覆カーボン粉
末、Cuまたは黄銅の繊維等があるが、カーボン
材料は導電性が不足し、Alは耐酸化性がなく、
Ni被覆カーボン繊維は高価であり、実用的に用
いられているのはNi粉末または黄銅繊維であつ
た。 しかし、これらのフイラーは比重は8以上もあ
り、樹脂に混合した場合、例えば電磁シールド効
果のある導電性を達成するためには、全樹脂組成
物に対して60重量%、望ましくは70%以上も含有
させなければならない。このため、導電性フイラ
ーを含有させた樹脂の比重が2以上となり、樹脂
の有する軽量性を損なうことになる。 即ち、樹脂に混合される導電性フイラーはでき
るだけ比重が小さいことが望ましい。導電性は導
電性フイラーの体積%に依存する(通常20体積%
前後が最適)ため、導電性フイラーの比重が小さ
いことは、含有させる導電性フイラーの必要量
(重量)が少なくて済むことの利点がある。 このような意味で、導電性付与粉末としてニツ
ケル被覆雲母粉末が有利であることは知られてい
た。 1 雲母の比重は約2.8であり、その粉末をNiで
被覆しても、その比重はNiよりは小さい。例
えばNiを40%被覆したものでもその比重は約
3.9であり、少ない重量で導電性を発現させる
ことができる。 2 雲母の粒子はフレーク状で、Niで被覆して
も略々この形状を保ち、塗膜またはプラスチツ
ク中で粒子同志の接触が容易であり、少ない重
量%で導電性を発揮させることができる。また
雲母の粉体は本質的に分散性が良好であり、
Ni被覆粉末も分散性が良く、分散、塗料化す
ることが容易である。 3 雲母の価格はNiよりも安く、Ni被覆雲母粉
末でもNiよりは安価である。 一般に粉末表面へのNiの被覆は無電解めつき
によつて行なわれており、通常下記のような工程
を必要とする。 (1) 粉末表面に油脂等が付着している場合には脱
脂処理する。 (2) 塩化第一スズ溶液等で前処理する。 (3) 粉末表面に塩化パラジウムを付着させる処理
を施す(活性化)。 (4) Niめつきを施す。 本発明者らは、雲母粉末の無電解めつきにおい
て、(3)の活性化の条件を厳密に選択することによ
つて、(2)の工程を省略でき、均一なNi被覆を施
すことができ、かつ光沢の優れたNi被覆雲母粉
末が得られることを見出した。 即ち、本発明によれば、雲母粉末を無電解めつ
きによりニツケルで被覆するにあたり、雲母粉末
をPH2以下の塩化パラジウム水溶液に懸濁させる
か、雲母粉末を塩化パラジウム水溶液に懸濁させ
てからPHを2以下に調整し、その後、パラジウム
の均一な被覆が生ずるように時間をかけて処理媒
体のPHを4〜7に上昇させて活性化処理を行な
い、このようにして得られた活性化雲母粉末を無
電解めつきすることからなるニツケル被覆雲母粉
末の製造法が提供される。 本発明方法に使用する雲母粉末は、長径が5〜
500μのものがましい。 雲母粉末は通常表面の汚れが少なく、脱脂処理
を施すことなくそのまま使用できる。これを所定
量の水に懸濁し、塩化パラジウムをPdとして0.05
〜0.20g/の濃度、好ましくは0.06〜0.10g/
の濃度になるように加え、PHを2以下にした
後、ゆつくり水を加えることによりPHを4〜7の
間にすることにより活性化が達成され、これによ
り、次工程のNiめつきが均一になる。 塩化パラジウムは通常は水または塩酸水溶液に
溶解したものを用い、塩酸水溶液を用いた場合は
雲母懸濁液に加えた状態でPHを2以下にすること
ができる。PHが2以上であれば、塩酸を加えて2
以下にする。この状態で塩化パラジウムは溶液と
して存在していると考えられる。次にこの溶液に
水を加えて行き、PHを4以上にする。水を加えて
ゆくと溶液量は増し、PHは上昇し、PHが4以上に
なると塩化パラジウムが加水分解し始め、雲母表
面にパラジウムが析出してくる。 この場合、PHを2を越えて4以上に上昇させる
時間が短いと、不均一な析出を起すので、通常20
分以上、1時間までの間で行なうことが重要であ
る。PHを上昇させる他の方法、例えばアルカリを
添加ではパラジウムの析出が不均一であり、後の
Niめつきが均一に起らず、光沢の劣つた被覆粉
末となる。 Ni被覆量は被覆粉末重量に対して10%であれ
ば粉末の全表面を被覆してNi単体に近い導電製
を達成できる。一方50%を越えてもそれに見合う
利益はない。 以下実施例により本発明を具体的に説明する。 実施例 比表面積が約3m2/gの雲母粉末270gを水3
に分散させ、これに塩化パラジウム水溶液900
c.c.(Pdとして0.3g/含有)を加えた。よく撹
拌しながら10分ないし1時間かけて水を加えて、
最終PHが3〜8になるように全量を約30〜60と
した。分散雲母粉末を過し乾燥した。 以上のパラジウム活性化処理を行なつた雲母粉
末240gを水1に懸濁させ、硫酸ニツケル
(NiSO4・6H2O)590gを溶解した水溶液1を
加え、加熱し、70℃に保つた。ここで、硫酸ヒド
ラジン((NH22H2SO4)390gを29%NH4OH水
溶液620c.c.に溶解した溶液を加え、30分撹拌を行
なつてNiを析出させ、過、洗浄、乾燥してNi
被覆雲母粉末を得た。被覆量は約35%であつた。 この粉末を、アクリル塗料ベース(関西ペイン
ト(株)製No.2026)を用いて塗料化し、50μの厚さに
塗布し、塗膜の表面光沢、表面抵抗を調べた。 塩化パラジウム水溶液による処理の条件と結果
を次の表にまとめて示す。
The present invention relates to a method for producing Ni-coated mica powder suitable for conductive pigments and conductive fillers used in the production of conductive paints, conductive plastics, etc. In this specification, both the conductive pigment and the conductive filler are collectively referred to as conductivity-imparting powder. Metal powders such as Ag, Cu, Al, and Ni have long been known as conductive powders used as conductive pigments, but since Ag is expensive and Al and Cu are easily oxidized, Ni is the most popular. Used as a practical conductive pigment. As the conductive pigment, Ni powder made from nickel carbonyl (referred to as carbonyl nickel) is generally used. This is a fine particle with a particle diameter of several microns or less, and is spherical. The conductivity of a paint coating is caused by contact between pigment powders, but spherical particles are not advantageous in this sense; for example, in order to obtain a conductive coating that has an electromagnetic shielding effect, Ni powder and a resin binder must be combined. Conductive powder in proportion of 60% or more, usually
It is necessary to contain 70 to 80%. As a result, the proportion of the resin binder decreases, resulting in poor strength of the coating film and the disadvantage that it is easily peeled off. Furthermore, fine carbonyl nickel powder has poor dispersibility, requiring strong dispersion treatment in paint production, and the surface smoothness of the coating film is also poor. Furthermore, Ni powder is black and has little aesthetic effect. In addition, since the Ni powder settles during storage of the paint, it is necessary to redisperse it before use, but the agglomeration of the sediment is strong and redispersion is not easy. This is because the Ni powder has a large specific gravity (8.9), is fine, and is spherical. The conductive pigment is preferably a powder with a low specific gravity and a particle size of 5 to 60 microns, and is preferably flake-like or fibrous rather than spherical. Conductive fillers include carbon powder and fibers, Al flakes, Ni powder, Ni-coated carbon powder, Cu or brass fibers, but carbon materials lack conductivity, and Al lacks oxidation resistance.
Ni-coated carbon fibers are expensive, and what has been practically used is Ni powder or brass fibers. However, these fillers have a specific gravity of 8 or more, and when mixed with resin, for example, in order to achieve conductivity with an electromagnetic shielding effect, they must account for 60% by weight, preferably 70% or more of the total resin composition. must also be included. Therefore, the specific gravity of the resin containing the conductive filler becomes 2 or more, which impairs the lightness of the resin. That is, it is desirable that the conductive filler mixed with the resin has a specific gravity as low as possible. Conductivity depends on the volume % of conductive filler (typically 20 volume %
Therefore, the small specific gravity of the conductive filler has the advantage that the required amount (weight) of the conductive filler to be included is small. In this sense, it has been known that nickel-coated mica powder is advantageous as a conductivity-imparting powder. 1. The specific gravity of mica is approximately 2.8, and even if the powder is coated with Ni, its specific gravity is smaller than Ni. For example, even if it is coated with 40% Ni, its specific gravity is approximately
3.9, and can exhibit conductivity with a small weight. 2. Mica particles have a flake shape, and even when coated with Ni, they generally maintain this shape, and the particles can easily come into contact with each other in a coating or plastic, and can exhibit electrical conductivity at a small weight percent. Additionally, mica powder inherently has good dispersibility;
Ni-coated powder also has good dispersibility and is easy to disperse and form into a paint. 3. Mica is cheaper than Ni, and even Ni-coated mica powder is cheaper than Ni. Generally, Ni is coated on the powder surface by electroless plating, which usually requires the following steps. (1) If oil or fat is attached to the powder surface, degrease it. (2) Pre-treat with stannous chloride solution, etc. (3) Apply treatment to attach palladium chloride to the powder surface (activation). (4) Apply Ni plating. In the electroless plating of mica powder, the present inventors have found that by strictly selecting the activation conditions in (3), it is possible to omit the step (2) and to apply a uniform Ni coating. It has been found that a Ni-coated mica powder with excellent gloss can be obtained. That is, according to the present invention, when coating mica powder with nickel by electroless plating, the mica powder is suspended in an aqueous palladium chloride solution with a pH of 2 or less, or the mica powder is suspended in an aqueous palladium chloride solution with a pH of 2 or less. The activated mica thus obtained A method of producing a nickel-coated mica powder is provided which comprises electroless plating the powder. The mica powder used in the method of the present invention has a major axis of 5 to
500μ is preferable. Mica powder usually has less dirt on its surface and can be used as is without degreasing. This was suspended in a predetermined amount of water, and palladium chloride was added as Pd to 0.05
Concentration of ~0.20g/, preferably 0.06-0.10g/
After adding Ni to a concentration of It becomes uniform. Palladium chloride is usually used dissolved in water or an aqueous hydrochloric acid solution, and when an aqueous hydrochloric acid solution is used, the pH can be reduced to 2 or less by adding it to the mica suspension. If the pH is 2 or higher, add hydrochloric acid to 2
Do the following. In this state, palladium chloride is considered to exist as a solution. Next, add water to this solution to bring the pH to 4 or higher. As water is added, the volume of the solution increases and the pH rises. When the pH reaches 4 or higher, the palladium chloride begins to hydrolyze, and palladium begins to precipitate on the mica surface. In this case, if the time to raise the pH from 2 to 4 or higher is too short, non-uniform precipitation will occur, so it is usually
It is important to do this for at least 1 minute and up to 1 hour. Other methods of increasing the pH, such as adding alkali, result in uneven palladium precipitation and subsequent
Ni plating does not occur uniformly, resulting in a coated powder with poor gloss. If the amount of Ni coated is 10% of the weight of the coated powder, the entire surface of the powder can be covered and conductivity close to that of Ni alone can be achieved. On the other hand, there is no profit worth exceeding 50%. The present invention will be specifically explained below using Examples. Example 270g of mica powder with a specific surface area of about 3m 2 /g was mixed with 3g of water.
900% palladium chloride aqueous solution
cc (0.3 g/containing as Pd) was added. Add water over 10 minutes to 1 hour while stirring well.
The total amount was adjusted to about 30-60 so that the final pH was 3-8. The dispersed mica powder was filtered and dried. 240 g of mica powder subjected to the above palladium activation treatment was suspended in 1 water, and an aqueous solution 1 in which 590 g of nickel sulfate (NiSO 4 .6H 2 O) was dissolved was added, heated, and kept at 70°C. Here, a solution of 390 g of hydrazine sulfate ((NH 2 ) 2 H 2 SO 4 ) dissolved in 620 c.c. of 29% NH 4 OH aqueous solution was added, stirred for 30 minutes to precipitate Ni, filtered and washed. , dried and Ni
A coated mica powder was obtained. The coverage was approximately 35%. This powder was made into a paint using an acrylic paint base (Kansai Paint Co., Ltd. No. 2026) and applied to a thickness of 50μ, and the surface gloss and surface resistance of the paint film were examined. The conditions and results of treatment with palladium chloride aqueous solution are summarized in the following table.

【表】 沢なし
[Front] No stream

Claims (1)

【特許請求の範囲】[Claims] 1 雲母粉末を無電解めつきによりニツケルで被
覆するにあたり、雲母粉末をPH2以下の塩化パラ
ジウム水溶液に懸濁させるか、雲母粉末を塩化パ
ラジウム水溶液に懸濁させてからPHを2以下に調
整し、その後、パラジウムの均一な被覆が生ずる
ように時間をかけて処理媒体のPHを4〜7に上昇
させて活性化処理を行ない、このようにして得ら
れた活性化雲母粉末を無電解めつきすることから
なるニツケル被覆雲母粉末の製造法。
1. When coating mica powder with nickel by electroless plating, either suspend the mica powder in an aqueous palladium chloride solution with a pH of 2 or less, or suspend the mica powder in an aqueous palladium chloride solution and then adjust the PH to 2 or less, Thereafter, an activation treatment is carried out by raising the pH of the treatment medium to 4-7 over time so that a uniform coating of palladium occurs, and the thus obtained activated mica powder is electrolessly plated. A method for producing nickel-coated mica powder comprising:
JP58239637A 1983-12-21 1983-12-21 Manufacture of nickel-coated mica powder Granted JPS60133066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58239637A JPS60133066A (en) 1983-12-21 1983-12-21 Manufacture of nickel-coated mica powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58239637A JPS60133066A (en) 1983-12-21 1983-12-21 Manufacture of nickel-coated mica powder

Publications (2)

Publication Number Publication Date
JPS60133066A JPS60133066A (en) 1985-07-16
JPS62188B2 true JPS62188B2 (en) 1987-01-06

Family

ID=17047671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58239637A Granted JPS60133066A (en) 1983-12-21 1983-12-21 Manufacture of nickel-coated mica powder

Country Status (1)

Country Link
JP (1) JPS60133066A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224358A (en) * 1988-07-14 1990-01-26 Nippon Chem Ind Co Ltd Polymer composition containing electrolessly plated powder
JPH07207185A (en) * 1994-01-21 1995-08-08 Kawazumi Gijutsu Kenkyusho:Kk Coated palladium fine powder and conductive paste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019127A (en) * 1973-06-23 1975-02-28
JPS5978248A (en) * 1982-10-28 1984-05-07 Agency Of Ind Science & Technol Filler having metallic film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019127A (en) * 1973-06-23 1975-02-28
JPS5978248A (en) * 1982-10-28 1984-05-07 Agency Of Ind Science & Technol Filler having metallic film

Also Published As

Publication number Publication date
JPS60133066A (en) 1985-07-16

Similar Documents

Publication Publication Date Title
CN106119818B (en) A kind of method and its film of inorganic powder surface chemical plating
CN109423637A (en) A kind of preparation method of high conductive material
CN109957144A (en) A kind of preparation method of electroplate conductive filler
JP3832938B2 (en) Electroless silver plating powder and method for producing the same
JPH0696771B2 (en) Electroless plating powder, conductive filler and method for producing the same
JPS62188B2 (en)
JPH0344149B2 (en)
JPH021092B2 (en)
CN108356264A (en) A kind of preparation method of silver cladding copper powder
JPS59102953A (en) Electrically conductive synthetic resin composition
JP5342114B2 (en) Method for producing conductive particles and conductive particles
JPH05202311A (en) Electromagnetic-interference-shielding pigment, its production, and emi-protecting sheet
JPS59223763A (en) Electrically conductive paint for electromagnetic wave shielding
JPS60181294A (en) Production of inorganic powder having metallic film on surface
JPS6059070A (en) Manufacture of plated fine grain
CN107216775B (en) A kind of electromagnetic screen coating and preparation method thereof
JP4301646B2 (en) Nickel powder manufacturing method
JPS6135228B2 (en)
JPH0475940B2 (en)
JPS6146553B2 (en)
JPS6081260A (en) Production of electrically conductive coating material
JP4247039B2 (en) Method for producing conductive electroless plating powder
JPH0581919A (en) Electric conductive powder and manufacture thereof
JPH06104783B2 (en) Colored powder and manufacturing method thereof
JPS59500221A (en) Powder used in dry activation process for electroless metallization