JPS6218703A - Metalized film capacitor - Google Patents

Metalized film capacitor

Info

Publication number
JPS6218703A
JPS6218703A JP15899185A JP15899185A JPS6218703A JP S6218703 A JPS6218703 A JP S6218703A JP 15899185 A JP15899185 A JP 15899185A JP 15899185 A JP15899185 A JP 15899185A JP S6218703 A JPS6218703 A JP S6218703A
Authority
JP
Japan
Prior art keywords
film
resistance value
electrodes
deposited
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15899185A
Other languages
Japanese (ja)
Inventor
英次 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15899185A priority Critical patent/JPS6218703A/en
Publication of JPS6218703A publication Critical patent/JPS6218703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は主として電気機器等に用いられる蒸着金属電極
を分割することによって絶縁破壊時の保安機能を具備さ
せた金属化フィルムコンデンサの改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement in a metallized film capacitor which is mainly used in electrical equipment and has a safety function in the event of dielectric breakdown by dividing a vapor-deposited metal electrode. .

従来の技術 近年、安全面への要求が高まりコンデンサにおいても安
全装置が内蔵されるようになってきた。
BACKGROUND OF THE INVENTION In recent years, demands for safety have increased, and capacitors have come to have built-in safety devices.

これはコンデンサ異常時の発煙や発火を未然に防ごうと
するものである。安全装置としてはコンデンサ破壊時の
温度上昇やケース変形を利用したものが一般的である。
This is intended to prevent smoke and fire from occurring when the capacitor malfunctions. Common safety devices utilize temperature rise and case deformation when capacitors break down.

安全装置を大別すると、圧力機械遮断式、電流ヒユーズ
式、温度ヒユーズ式のものがあシ、安全装置として内蔵
させることによって異常事態を未然に防ぐことができる
が、これによるコンデンサ容積の増大、工数増、高価格
等から経済性の点から完全であるとはいえない。
Broadly speaking, safety devices can be divided into pressure mechanical cutoff type, current fuse type, and temperature fuse type.By incorporating safety devices, abnormal situations can be prevented, but this increases the capacitor volume, It cannot be said to be perfect from an economic point of view due to increased man-hours, high cost, etc.

従来、以上のような問題点を解決するために、安全装置
を設けることなく、第3図に示すようにコンデンサ素子
自体に安全機能を有するように分割電極を備えたコンデ
ンサが提案されている。
Conventionally, in order to solve the above-mentioned problems, a capacitor has been proposed in which a divided electrode is provided so that the capacitor element itself has a safety function, as shown in FIG. 3, without providing a safety device.

(特開昭57−117226号公報) この第3図において、1はコンデンサ素子、2は分割蒸
着電極フィルム、3は分割マージン、4は蒸着膜除去部
(空白部)、6は非分割蒸着電極フィルムである。
(Japanese Unexamined Patent Publication No. 57-117226) In FIG. 3, 1 is a capacitor element, 2 is a segmented vapor deposited electrode film, 3 is a segment margin, 4 is a vapor deposited film removed area (blank area), and 6 is an undivided vapor deposited electrode. It's a film.

発明が解決しようとする問題点 ところが近年、より高耐圧、高電位傾度化という要請が
高まってきており、コロナ放電発生領域電圧での使用に
関しては、巻回・積層された誘電体フィルム層間に発生
する微小部分放電(コロナ)により耐圧が低下したり、
寿命時のコンデンサ容量が減少するという問題があった
Problems to be Solved by the Invention However, in recent years, there has been an increasing demand for higher withstand voltages and higher potential gradients, and for use at voltages in the region where corona discharge occurs, it has become necessary to The breakdown voltage may decrease due to minute partial discharges (corona),
There was a problem in that the capacitor capacity at the end of its life decreased.

そこで従来より2極双方の金属化層の面抵抗値を大きく
することが考えられるが金属化層が薄くなることで自己
回復性能が向上し、初期のコンデンサ耐圧も向上するが
、アルミニウム金属層が薄くなったことで局部的に酸化
アルミニウムに変化しやすくなるため、寿命時のコンデ
ンサの容量減少が大きくなる欠点があり、適当ではなか
った。
Therefore, it has been considered to increase the sheet resistance value of the metallized layers of both the two poles than before, but thinning the metallized layer improves self-healing performance and improves the initial capacitor breakdown voltage, but the aluminum metal layer As it becomes thinner, it tends to locally change to aluminum oxide, which has the disadvantage of increasing the capacitance decrease during its life, which was not suitable.

更に分割電極構造をもついわゆるコンデンサ自体に自己
保安機能を有するコンデンサの場合には、分割電極の分
割部での微小部放電(コロナ)の発生があり、コロナ発
生領域で高電位傾度で印加されるとコンデンサ寿命の容
量減少が大きく同様な欠点を有していた。
Furthermore, in the case of capacitors that have a split electrode structure and have a self-protection function, microscopic discharge (corona) may occur at the split portion of the split electrode, and a high potential gradient is applied in the region where corona occurs. It had the same drawbacks as capacitor life and capacity reduction.

逆に、2極双方の金属化層の面抵抗値を小さくすること
が考えられるが金属化層が厚くなったことで自己回復性
能が悪くなシ、初期のコンデンサ耐圧が満足しないとい
う欠点があり同様に適当ではなかった。
On the other hand, it is possible to reduce the sheet resistance value of the metallized layers of both the two poles, but this has the disadvantage that the self-healing performance is poor due to the thicker metallized layers, and the initial capacitor withstand voltage is not satisfactory. It was also inappropriate.

問題点を解決するための手段 上記問題点を解決するための本発明の技術的な手段は、
分割電極と非分割電極の蒸着膜抵抗値の範囲が2.0〜
6.0Ω/口の範囲内にあり、分割電極の蒸着膜抵抗値
と非分割電極の蒸着膜抵抗値に1.0Ω/口以上の差を
設ける点にある。
Means for solving the problems The technical means of the present invention for solving the above problems are as follows:
The range of vapor deposited film resistance values of split electrodes and non-split electrodes is 2.0~
The difference is within the range of 6.0 Ω/hole, and the difference between the vapor deposited film resistance value of the divided electrode and the vapor deposited film resistance value of the non-divided electrode is 1.0 Ω/hole or more.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

すなわち、双方電極間に蒸着膜抵抗値差1.0Ω/口以
上設けることにより、誘電体フィルム層間に発生する微
小部分放電(コロナ)により発生した自己回復作用は、
蒸着膜抵抗値の大きい電極側の方が金属化層が薄い為、
自己回復作用が発生しやすくなり、蒸着膜の飛散面積も
2僅の蒸着膜抵抗値が同値近辺であるものと比較して自
己回復作用時の飛散エネルギーが小さい為、少なくてす
み、結果として寿命時の容量減少が小さく高電位傾度設
計が可能となる。
That is, by providing a deposited film resistance value difference of 1.0 Ω/hole or more between both electrodes, the self-healing effect caused by minute partial discharge (corona) generated between the dielectric film layers can be
Since the metallized layer is thinner on the electrode side where the resistance value of the deposited film is higher,
The self-healing effect is more likely to occur, and the scattering area of the vapor deposited film is smaller than that of a vapor deposited film whose resistance value is around the same value, so the scattering energy during the self-healing effect is smaller, resulting in a shorter service life. The capacitance decrease during operation is small, making it possible to design a high potential gradient.

双方電極間の蒸着膜抵抗値差は2.0〜6,0Ω/口の
範囲内において大きい程、容量減少の効果がある。
The larger the difference in resistance value of the deposited film between both electrodes is within the range of 2.0 to 6.0 Ω/hole, the more effective the capacitance is reduced.

実施例 以下、本発明の一実施例を実験結果をもとに説明する。Example An embodiment of the present invention will be described below based on experimental results.

先ず第1図aは、蒸着膜抵抗値差による自己回復時の蒸
着膜の飛散状況を確認するために、分割蒸着電極1と非
分割蒸着電極2を銅電極3間にシワがはいらないように
約1oog/cIIIの荷重がかかるように設置し、A
C電源4の電圧を除々に上昇させ、自己回復作用を発生
させるだめの試験装置を示したものである。
First, in Fig. 1a, in order to confirm the scattering of the vapor deposited film during self-recovery due to the difference in resistance value of the vapor deposited film, the divided vapor deposition electrode 1 and the non-divided vapor deposition electrode 2 are connected so that there are no wrinkles between the copper electrodes 3. Install it so that a load of about 1oog/cIII is applied, and
This shows a test device in which the voltage of the C power source 4 is gradually increased to generate a self-recovery effect.

上記試験装置による結果を示したものが第1図すのグラ
フである。この第1図すからもわかるように蒸着膜の抵
抗値を約1.0Ω/口以上の差をつけた方が蒸着膜の飛
散面積が結果として小さいことがわかる。この現象は、
片側の電極の膜抵抗値が高く膜厚が薄いことにより自己
回復作用が発生した場合、膜厚の薄い方の電極の方が蒸
着膜が飛散しやすいと同時に、飛散する際の電気的エネ
ルギーも少なくてすむということを示している。このこ
とは、両電極とも同膜抵抗値の時、自己回復作用が発生
した場合両電極の蒸着膜厚さが同じであるので、両電極
の蒸着膜が飛散する率が高く、また、自己回復時の電気
的エネルギーも大きいことから結果として蒸着膜の飛散
面積も大きくなる。
The graph in Figure 1 shows the results obtained using the above test device. As can be seen from FIG. 1, it can be seen that the scattering area of the deposited film becomes smaller when the resistance values of the deposited films are made to differ by about 1.0 Ω/hole or more. This phenomenon is
If a self-healing effect occurs due to the high film resistance and thin film thickness of one electrode, the deposited film is more likely to scatter on the thinner electrode, and at the same time, the electrical energy at the time of scattering is also lower. This shows that less is needed. This means that when both electrodes have the same film resistance value, when self-healing occurs, the deposited films on both electrodes have the same thickness, so the rate of scattering of the deposited films on both electrodes is high; Since the electric energy at the time is also large, the scattering area of the deposited film is also large as a result.

また実験結果より分割蒸着電極1あるいは、非分割蒸着
電極2のどちらでも蒸着膜抵抗値を低くしても双方実験
結果に特に有意差はなかった。ただ蒸着膜抵抗値の高い
ところで双方電極の膜抵抗値差をつけた方が低いところ
で差をつけたものよシ蒸着膜の飛散面積が小さい傾向に
ある。このことは結局、膜厚が薄い為、自己回復時の電
気的エネルギーが小さくてすみ、飛散面積が小さいこと
を示す。
Further, the experimental results showed that even if the resistance value of the vapor deposited film was lowered for either the segmented vapor deposition electrode 1 or the non-segmented vapor deposition electrode 2, there was no significant difference in the experimental results between the two. However, the scattering area of the vapor deposited film tends to be smaller when the film resistance value of both electrodes is made different at a high value than when the film resistance value is made different at a low value. This means that since the film is thin, the electrical energy needed for self-recovery is small, and the scattering area is small.

以上の実験結果を参考に実際にコンデンサとして試料を
作製し寿命試験を行った。この結果を第2図に示す。試
料としてポリプロピレンフィルム厚さ8μmの片面アル
ミ蒸着フィルムを用いて、その一方の電極フィルム第3
図に示すような分割電極を構成したフィルムを重ねて巻
回して、30μFのコンデンサ素子を得、更に素子端面
に金属溶射して電極を取り出し、エポキシ樹脂で外装し
た。蒸着膜抵抗値は、第2図に示す値により作製した。
Based on the above experimental results, a sample was actually prepared as a capacitor and a life test was conducted. The results are shown in FIG. A polypropylene film with a thickness of 8 μm and a single-sided aluminum vapor-deposited film was used as a sample.
The films constituting the divided electrodes as shown in the figure were stacked and wound to obtain a 30 μF capacitor element, and the end faces of the element were further sprayed with metal to take out the electrodes, which were then packaged with epoxy resin. The resistance value of the deposited film was prepared according to the value shown in FIG.

寿命試験条件は、印加電圧ムC520V、温度80’C
で行なった。試験結果からもわかるように蒸着膜抵抗値
差を大きくした試料が寿命試験の容量変化率Δc7c%
が寿命試験時間約1000時間で約−1〜−2%と非常
に少ないのに対し、抵抗値差の小さいものであれば同じ
(1000Hrで約−5%前後と多い結果となっている
。グラフ上で4の膜抵抗値2.0Ω/口、2・3Ω/口
 で膜抵抗値差0.3Ω/口の試料が通電時間初期の段
階で容量変化率ΔC/C%が大きいのは、膜抵抗値が低
く蒸着膜厚が厚いため自己回復性能が悪く耐圧が低いた
めに小分割電極内の誘電体が破壊し保安機能が動作した
ことによるものである。グラフ上の試験結果には示さな
かったが、膜抵抗値5・0Ω/口以上での膜抵抗値差を
設けた試料は膜抵抗値5.0Ω/口以上になると高抵抗
値の電極の自己回復性能が鋭敏になり、容量変化率が著
しく多く、逆に膜抵抗値差2・0Ω/口以下での膜抵抗
値を設けた試料は、膜抵抗値2.0Ω/口以下になると
低抵抗値の電極フィルムの耐圧が著しく低下するため、
結果として自己保安機能が動作し同じく容量変化率が著
しく多くなりJIS規格等を満足しなくなる。
The life test conditions were an applied voltage of 520V and a temperature of 80'C.
I did it. As can be seen from the test results, the sample with a larger difference in vapor-deposited film resistance value had a capacitance change rate of Δc7c% in the life test.
is very small at about -1 to -2% at a life test time of about 1000 hours, whereas it is the same for products with small resistance value differences (about -5% at 1000 hours.Graph The reason why the capacitance change rate ΔC/C% is large at the early stage of the current application time for the sample with membrane resistance difference of 0.3Ω/hole in the case of the membrane resistance value 2.0Ω/hole and 2.3Ω/hole in 4 above is because of the membrane resistance. This is because the resistance value is low and the deposited film is thick, resulting in poor self-healing performance and low withstand voltage, which causes the dielectric in the sub-divided electrode to break down and activate the safety function.It is not shown in the test results on the graph. However, for samples with a difference in membrane resistance at membrane resistances of 5.0 Ω/hole or higher, when the membrane resistance exceeds 5.0 Ω/hole, the self-healing performance of the high-resistance electrode becomes acute, resulting in a change in capacitance. On the other hand, for samples with a membrane resistance value of 2.0 Ω/unit or less, the withstand voltage of the low-resistance electrode film decreases significantly when the membrane resistance value becomes 2.0 Ω/unit or less. In order to
As a result, the self-safety function operates, and the capacitance change rate increases significantly, making it impossible to satisfy JIS standards.

以上、実施例の寿命試験の試料は誘電体としてポリプロ
ピレンフィルムの片面蒸着品の組み合わせを用いたが同
様に両面蒸着品と非蒸着フィルムの組み合わせ、あるい
は、誘電体としてポリエチレンテレフタレートフィルム
同士の組み合わせ、ポリエチレンテレフタレートフィル
ムとポリフロピレンフィルムとの組み合わせでもよく、
とにかく2電極の膜抵抗値が2・0〜5・0Ω/口の範
囲内にあり、2電極の膜抵抗値差が1・0Ω/口以上あ
れば同様の寿命試験結果となる。
As mentioned above, the life test samples in the examples used a combination of single-sided vapor-deposited polypropylene films as dielectrics, but similarly, combinations of double-sided vapor-deposited films and non-evaporated films, or combinations of polyethylene terephthalate films, polyethylene terephthalate films, etc. A combination of terephthalate film and polypropylene film may also be used.
In any case, if the membrane resistance values of the two electrodes are within the range of 2.0 to 5.0 Ω/mouth and the difference in the membrane resistance values of the two electrodes is 1.0 Ω/mouth or more, the same life test results will be obtained.

発明の効果 以上のように本発明は、保安機能を有するアルミ蒸着分
割電極構造の蒸着膜抵抗値の範囲が2.0〜5.0Ω/
口内にあシ、2極の蒸着膜抵抗値差を1.0Ω/口以上
とすることにより、寿命試験での容量減少の極めて少な
く安定した高電位傾度設計が可能な金属化フィルムコン
デンサを提供することができ、その工業的価値は大なる
ものがある。
Effects of the Invention As described above, the present invention has an aluminum vapor-deposited split electrode structure having a safety function whose vapor-deposited film resistance ranges from 2.0 to 5.0Ω/
To provide a metallized film capacitor that allows a stable high potential gradient design with very little capacity loss in a life test by setting the difference in resistance value of the deposited film between the two electrodes to 1.0Ω/mouth or more. It has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aはコンデンサの自己回復時の蒸着膜の飛散状況
の確認試験を行う装置の要部斜視図、第1図すは、同装
置による試験結果を示した特性図、第2図は本発明の実
施例におけるコンデンサの寿命試験結果を示した容量変
化率の時間特性図、第3図は、一般的な分割電極構造で
保安機能を有するコンデンサの一部展開斜視図である。 1・・・・・・コンデンサ素子、2・・・・・・分割蒸
着電極フィルム、3・・・・・・分割マージン、4・・
・・・・蒸着膜除去部(空白部)、6・・・・・・非分
割蒸着電極フィルム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名イー
分劉氷i電揚
Figure 1a is a perspective view of the main parts of a device that performs a test to confirm the scattering state of the deposited film during self-recovery of a capacitor, Figure 1 is a characteristic diagram showing the test results using the same device, and Figure 2 is a diagram of this book. FIG. 3, which is a time characteristic diagram of the capacitance change rate showing the life test results of the capacitor in the embodiment of the invention, is a partially exploded perspective view of a capacitor having a general split electrode structure and a safety function. 1... Capacitor element, 2... Divisionally deposited electrode film, 3... Division margin, 4...
. . . Deposited film removed portion (blank area), 6 . . . Non-divided evaporated electrode film. Name of agent: Patent attorney Toshio Nakao and one other person

Claims (1)

【特許請求の範囲】[Claims]  誘電体フィルムを介して対向する2極の蒸着金属電極
のうち、一方はフィルム長さ方向に複数個に分割された
分割電極とし、前記分割電極は溶射金属を施す電極端部
に沿って間欠的に蒸着金属電極空白部を有する金属化フ
ィルムコンデンサにおいて、蒸着金属はアルミニウムで
2極の蒸着膜抵抗値の範囲を2.0〜5.0Ω/口とし
、分割電極側の蒸着膜抵抗値と非分割電極側の蒸着膜抵
抗値の差を1.0Ω/口以上とした金属化フィルムコン
デンサ。
Of the two vapor-deposited metal electrodes facing each other with a dielectric film in between, one is a split electrode divided into multiple pieces in the length direction of the film, and the split electrode is intermittently applied along the end of the electrode where the sprayed metal is applied. In a metallized film capacitor with a blank space for metal electrodes, the metal to be deposited is aluminum, and the resistance value of the two electrodes is set to 2.0 to 5.0Ω/hole, and the resistance value of the metallization film on the split electrode side is different from the resistance value of the metallized film on the split electrode side. A metallized film capacitor with a difference in vapor deposited film resistance on the side of the divided electrodes of 1.0Ω/port or more.
JP15899185A 1985-07-18 1985-07-18 Metalized film capacitor Pending JPS6218703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15899185A JPS6218703A (en) 1985-07-18 1985-07-18 Metalized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15899185A JPS6218703A (en) 1985-07-18 1985-07-18 Metalized film capacitor

Publications (1)

Publication Number Publication Date
JPS6218703A true JPS6218703A (en) 1987-01-27

Family

ID=15683829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15899185A Pending JPS6218703A (en) 1985-07-18 1985-07-18 Metalized film capacitor

Country Status (1)

Country Link
JP (1) JPS6218703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138720A (en) * 1988-11-18 1990-05-28 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPH02250306A (en) * 1989-03-23 1990-10-08 Toray Ind Inc Metallized film for capacitor use
JP2017191823A (en) * 2016-04-12 2017-10-19 ニチコン株式会社 Metalized film capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138720A (en) * 1988-11-18 1990-05-28 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPH02250306A (en) * 1989-03-23 1990-10-08 Toray Ind Inc Metallized film for capacitor use
JP2017191823A (en) * 2016-04-12 2017-10-19 ニチコン株式会社 Metalized film capacitor

Similar Documents

Publication Publication Date Title
JP3914854B2 (en) Metalized film capacitor, inverter smoothing capacitor and automotive capacitor using the same
JP5131193B2 (en) Metallized film capacitors
JP3328477B2 (en) Capacitor
JP2013219094A (en) Metalization film capacitor
JPS6218703A (en) Metalized film capacitor
JPH09199371A (en) Metallized film capacitor
US5453906A (en) Metallized film series section capacitor with improved oxidation resistance
JP2004095604A (en) Metallized film capacitor
JPH08288171A (en) Metallized film capacitor
JPH02285618A (en) Metallized plastic film capacitor
JPH03234010A (en) Metallized film capacitor
JPH09283366A (en) Capacitor
JP2002367854A (en) Double-sided metallization film capacitor
JP2001035742A (en) Metallized film capacitor
JP7143674B2 (en) metallized film and film capacitors
JP2002353060A (en) Metallized film capacitor
JPH0590936U (en) Dry metallized film capacitor
JPH05135996A (en) Series deposited metallized film capacitor
JPH0770418B2 (en) Metallized film capacitors
JPH0143853Y2 (en)
JPS5911611A (en) Metallized film condenser
JPS596517A (en) Wire wound condenser
JPH05267095A (en) Metallized film capacitor
JP2009277829A (en) Metallized film capacitor
JPS596519A (en) Metallized condenser