JPS62184108A - Polymeric porous hollow fiber - Google Patents

Polymeric porous hollow fiber

Info

Publication number
JPS62184108A
JPS62184108A JP2571286A JP2571286A JPS62184108A JP S62184108 A JPS62184108 A JP S62184108A JP 2571286 A JP2571286 A JP 2571286A JP 2571286 A JP2571286 A JP 2571286A JP S62184108 A JPS62184108 A JP S62184108A
Authority
JP
Japan
Prior art keywords
hollow fiber
pore diameter
plane
average pore
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2571286A
Other languages
Japanese (ja)
Inventor
Sakae Miwa
三輪 栄
Takaharu Aketo
明渡 隆治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2571286A priority Critical patent/JPS62184108A/en
Publication of JPS62184108A publication Critical patent/JPS62184108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To provide a hollow fiber having innumerable pores having specific diameter and extending from the inner wall face to the outer wall face of the fiber and exhibiting excellent performance in filtration or separation, etc., of ions, low-molecular substances, minute particles, etc., in a liquid phase. CONSTITUTION:The objective hollow fiber contains innumerable pores having an average pore diameter of 0.02-10mum and extending from the inner wall face to the outer wall face of the hollow fiber. The opening ratio of the pore in the wall surface is >=10% (preferably 40-80%). A part having smallest average pore diameter, a part having larger pore diameter and a part having smallest pore diameter are distributed along the thickness of the wall in the order. The hollow fiber can be produced e.g. by extruding a homogeneous solution of cuprammonium cellulose having an average molecular weight of 5X10<4>-3X10<5> through a ring nozzle while introducing a coagulant liquid into the extruded filament and introducing the obtained filament into a coagulation bath. A mixture of acetone, ammonia and water is used as the coagulant liquid and coagulation bath to induce a microscopic phase separation in the extruded fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無数の膜内貫通孔を含んで成る高分子多孔質中
空糸に関する。より詳しくは前記膜内貫通孔に新規な構
造を付与することによ幻、液相中のイオン、低分子物質
や微小粒子などの物質をr過、分離する際に阻止率等に
おいて優れた性能を有する高分子多孔質中空糸に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a porous polymer hollow fiber comprising numerous intramembrane through-holes. More specifically, by imparting a new structure to the through-holes in the membrane, it is possible to achieve excellent performance in terms of rejection rate, etc. when passing through and separating substances such as ions in the liquid phase, low-molecular substances, and microparticles. The present invention relates to a porous polymer hollow fiber having the following properties.

〔従来の技術〕[Conventional technology]

液相中の、イオン、低分子物質や微小粒子などの物質を
その分散溶液から分離する手段として、中空糸を用いて
の膜分離が知られている。たとえば、■低温での濃縮、
精製、回収を必要とする分野(食品、生物化学工業分野
)、■無菌、無塵を必要とする分野(医薬品および治療
機関、電子工業)、■微量な高価物質の濃縮回収(原子
力、重金属分野)、■特殊少量分離分野(医薬分野)、
■エネルギー多消費分離分野(蒸留代替)などに中空糸
が利用されている。
Membrane separation using hollow fibers is known as a means for separating substances such as ions, low-molecular substances, and microparticles in a liquid phase from a dispersion thereof. For example, ■concentration at low temperatures,
Fields that require purification and recovery (food, biochemical industry fields) ■ Fields that require sterility and dust-free conditions (pharmaceutical and therapeutic institutions, electronic industry) ■ Concentration and recovery of trace amounts of expensive substances (nuclear power, heavy metal fields) ), ■ Special small quantity separation field (pharmaceutical field),
■Hollow fibers are used in energy-intensive separation fields (alternative to distillation).

従来、分離用中空糸として、セルロースからなる横断面
ならびに縦断面の全体が大きくとも200X(0,02
μm)以下の微細隙を有する人工腎臓用中空糸が知られ
ている+(特開昭49−134920号)。また、ポリ
アクリロニトリル、酢酸セルロース、ポリエチレン、ポ
リプロピレン、ポリスルホン、ポリイミド等からなる限
外濾過または、精密f適用の中空糸が知られている。
Conventionally, as a hollow fiber for separation, the entire cross section and longitudinal section made of cellulose are at most 200X (0.02
Hollow fibers for artificial kidneys having microscopic pores of less than micrometers are known (Japanese Patent Application Laid-open No. 134920/1983). Furthermore, hollow fibers made of polyacrylonitrile, cellulose acetate, polyethylene, polypropylene, polysulfone, polyimide, etc., which are used for ultrafiltration or precision f, are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの中空糸は、内外層のいずれか   。 However, these hollow fibers are either in the inner or outer layer.

あるいは、両者の面内平均孔径が0,02μm未満、あ
るいは、面内平均孔径が極小となる壁層外壁面に平行な
面が存在しないか、または存在しても1箇所である。こ
の様な中空糸を液相中のイオン、低分子物質や微小粒子
の濾過に用いた場合、阻止率が充分でないという問題を
有している。また、充分な阻止率を得るために、平均孔
径の小さい中空糸を用いてr遇すると流速が小さくなる
という欠点がある。
Alternatively, the in-plane average pore diameter of both is less than 0.02 μm, or there is no plane parallel to the outer wall surface of the wall layer where the in-plane average pore diameter is extremely small, or even if it exists, there is only one plane. When such hollow fibers are used to filter ions, low-molecular substances, and microparticles in the liquid phase, there is a problem that the rejection rate is insufficient. Furthermore, if hollow fibers with a small average pore diameter are used in order to obtain a sufficient rejection rate, there is a drawback that the flow rate becomes low.

本発明の目的は、上述の分離用中空糸の欠点を克服し、
液相中のイオン、低分子物質や、微小粒子などの濾過、
分離に用いて優れた性能を発揮する中空糸を提供するこ
とにある。
The object of the present invention is to overcome the drawbacks of the above-mentioned hollow fibers for separation,
Filtration of ions, low molecular substances, microparticles, etc. in the liquid phase,
The object of the present invention is to provide a hollow fiber that exhibits excellent performance when used in separation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、無数の膜内貫通孔を含んで成る高分子
多孔質中空糸において、該中空糸の内壁面から外壁面へ
の膜厚方向に垂直な面における孔径を面内平均孔径で表
わす時に、前記膜内貫通孔の入口、および出口における
面内平均孔径が、0.02μmから10μmの範囲であ
り、かつ面内平均孔径が、極小の部分、該極小の部分よ
り大きい部分、極小の部分の順に配列された構造が、中
空糸の前記膜厚方向に少なくも1組存在し、さらに中空
糸の前記膜厚方向に垂直な全ての面における面内空孔率
が10多以上であることを特徴とする高分子多孔質中空
糸によって達成される。
An object of the present invention is to calculate the pore diameter in a plane perpendicular to the membrane thickness direction from the inner wall surface to the outer wall surface of the hollow fiber in terms of the in-plane average pore diameter in a polymer porous hollow fiber comprising numerous through-holes in the membrane. When expressed, the in-plane average pore diameter at the inlet and outlet of the membrane through-hole is in the range of 0.02 μm to 10 μm, and the in-plane average pore diameter is an extremely small portion, a portion larger than the extremely small portion, and an extremely small portion. At least one set of structures arranged in the order of parts exists in the membrane thickness direction of the hollow fiber, and further, the in-plane porosity in all planes perpendicular to the membrane thickness direction of the hollow fiber is 10 or more. This is achieved by a polymeric porous hollow fiber characterized by:

前記構成を有する本発明による高分子多孔質中空糸を用
いれば従来公知の中空糸に比し物質の阻止率を高くする
ことができると共に濾過速度を高速にすることができる
。これに対して面内平均孔径で見て極小の部分が2つ以
上存在しない従来の多孔性中空糸の場合では、阻止率を
99.994以上にするためには透過速度を小さくせざ
るを得ない。なお前記構造における極小の部分より大き
い部分の面内平均孔径が極小の部分の面内平均孔径の1
0倍以下であることが好ましい。10倍を越えるとデッ
ドスペースができて、r液の回収が悪くなる。
By using the polymer porous hollow fiber according to the present invention having the above-mentioned structure, it is possible to increase the rejection rate of substances and to increase the filtration rate compared to conventionally known hollow fibers. On the other hand, in the case of conventional porous hollow fibers that do not have two or more extremely small portions in terms of in-plane average pore diameter, the permeation rate must be reduced in order to achieve a rejection rate of 99.994 or higher. do not have. In addition, in the above structure, the in-plane average pore diameter of the part larger than the minimum part is 1 of the in-plane average pore diameter of the minimum part.
It is preferable that it is 0 times or less. If it exceeds 10 times, dead space will be created and recovery of R liquid will be poor.

また平均空孔率が40チ以上であると、濾過速度が大幅
に増加し、また−過客量も増大するので好ましい。しか
し、平均空孔率が8“0%以上の場合、中空糸の力学的
性質の低下が著しく、またピンホールの発生頻度が増加
する。°したがって平均空孔率は40慢以下80チ未満
であるとより好ましい。
Moreover, it is preferable that the average porosity is 40 or more, since the filtration rate is greatly increased and the amount of throughput is also increased. However, when the average porosity is 8"0% or more, the mechanical properties of the hollow fibers are significantly deteriorated, and the frequency of pinholes increases. Therefore, if the average porosity is 40% or less and less than 80%, It is more preferable.

また前記中空糸の膜厚方向に垂直な面における面内平均
孔径が極小の部分、その極小の部分より大きい部分、極
小の部分の順に配列された領域内の前記膜厚方向を含む
平面での形状が、実質的に円または楕円であると好まし
い。このような形状を有する膜内貫通孔を設けることに
よって多孔質中空糸に優れた機械的強度を与えることが
できる。
In addition, in a plane including the membrane thickness direction of the hollow fiber in a region in which the in-plane average pore diameter is arranged in the order of the smallest part, the part larger than the smallest part, and the smallest part in the plane perpendicular to the film thickness direction. Preferably, the shape is substantially circular or elliptical. By providing through-holes in the membrane having such a shape, excellent mechanical strength can be imparted to the porous hollow fibers.

本発明の多孔質中空糸の高分子物質として、ポリオレフ
ィン、ポリスルホン、ポリ塩化ビニル、ポリアミド、セ
ルロース及びセルロース誘導体、ポリアクリロニトリル
等の重合体または共重合体を用いることができる。特に
多孔質中空糸の親水性の面から平均分子fasxtOB
上の銅安セルロースを用いると好ましい。この種多孔質
中空糸を用いれば、水中に分散した粒子の分離、濃縮等
の水溶液を処理する際、中空糸の湿潤処理等の前処理を
不要にすることができる。またセルロース湧導体から作
製される再生セルロース中空糸は乾燥状態では脆いとい
う性質を有するが分子量の増大に伴って中空糸の強度は
上昇し、脆さが改善される。脆さが改善されれば中空糸
の取扱いが容易となると共に、中空糸の破損率が減少す
る。そのために銅安セルロースを用いる場合にはその平
均分子量を5 X 10 以上にするとよい。なお平均
分子量の膜物性に及ぼす影響は、平均分子毎が大きくな
るにしたがって飽和する傾向が認められる。したがって
平均分子量が5 X 10’以上且つ5 X 105以
下の銅安セルロースを用いれば実用上の取扱い易さの点
で好ましい。よシ好ましい範凹としては5.5X10〜
3×lOである。平均分子址5X10’以上の銅安セル
ロースからなる多孔質中空糸は、グリセリン等の膨潤剤
を含まない乾燥状態においてでさえ十分な力学的性質を
有する。
Polymers or copolymers such as polyolefins, polysulfones, polyvinyl chloride, polyamides, cellulose and cellulose derivatives, and polyacrylonitrile can be used as the polymeric substances for the porous hollow fibers of the present invention. In particular, from the hydrophilic aspect of porous hollow fibers, the average molecular weight of fasxtOB
It is preferable to use the above copper ammonium cellulose. If this type of porous hollow fiber is used, pretreatment such as wetting treatment of the hollow fiber can be made unnecessary when processing an aqueous solution such as separation and concentration of particles dispersed in water. Furthermore, regenerated cellulose hollow fibers made from cellulose spring conductor have the property of being brittle in a dry state, but as the molecular weight increases, the strength of the hollow fibers increases and brittleness is improved. If the brittleness is improved, handling of the hollow fiber becomes easier and the breakage rate of the hollow fiber decreases. For this purpose, when copper ammonium cellulose is used, its average molecular weight is preferably 5 x 10 or more. Note that the influence of the average molecular weight on the film properties tends to become saturated as the average molecular weight increases. Therefore, it is preferable to use copper ammonium cellulose having an average molecular weight of 5 x 10' or more and 5 x 105 or less in terms of practical ease of handling. The preferred range is 5.5X10~
It is 3×1O. Porous hollow fibers made of ammonium cellulose having an average molecular weight of 5×10' or more have sufficient mechanical properties even in a dry state without a swelling agent such as glycerin.

次に本発明による多孔質中空糸の製造方法について説明
する。
Next, a method for producing porous hollow fibers according to the present invention will be explained.

ミクロ相分離法(後述)による、多孔質中空糸の形成過
程で、ミクロ相分離が起シ、この相分離の際、生成する
高分子稀薄用が、粒子状に分散した場合、多孔質中空糸
に形成される孔構造は、球または楕円体を連ねた構造と
なる。この様にして形成される多孔質中空糸は機械的強
度に優れる。
Microphase separation occurs during the formation process of porous hollow fibers using the microphase separation method (described later).During this phase separation, if the dilute polymer produced is dispersed in the form of particles, porous hollow fibers The pore structure formed in this case has a structure consisting of a series of spheres or ellipsoids. The porous hollow fibers formed in this manner have excellent mechanical strength.

したがって2つの極小の部分の間で、極大面内平均孔径
を与えるーっの方法として、中空糸の形成時に高分子稀
薄用が粒子状に分散したミクロ相分離状態を生起する条
件を採用すればよい。しかし従来の製膜法ではこれは実
現していないし、この様な球状または楕円体状の孔を形
成する為の作業仮説さえ確立されていなかった。本発明
者らは、相分離条件と孔形状の関連性に関する研究によ
って、本発明物を作製する一方法を見出し、その結果、
本発明の特異な作用効果を発現して、本発明に至った。
Therefore, as a method to obtain the maximum in-plane average pore diameter between two extremely small parts, it is possible to adopt conditions that create a microphase separation state in which the diluted polymer is dispersed in the form of particles during the formation of the hollow fiber. good. However, this has not been achieved with conventional film forming methods, and even a working hypothesis for forming such spherical or ellipsoidal holes has not been established. The present inventors discovered a method for producing the present invention through research on the relationship between phase separation conditions and pore shape, and as a result,
The present invention has been achieved by expressing the unique effects of the present invention.

すなわち、高分子/溶媒の均一溶液を紡糸原液とし、こ
れを環状紡出口より押し出し、凝固、水洗する工程にお
いて、外側環状紡出口より、その紡糸原液を、中央部紡
出口よシ、その紡糸原液に対して凝固性液体(以下「中
空剤」と略称する)を吐出させ、吐出された中空繊維状
物を紡糸原液に対して凝固性を有する液体(凝固剤)中
に浸漬し、吐出された繊維状物の凝固前に該中空繊維状
物の内外よりミクロ相分離を誘起させる。ここでミクロ
相分離とは、溶液中に高分子の濃厚相あるいは希薄相が
直径0.01〜数μmの粒子として分散し、安定化して
いる状態を意味する。具体的には、例えば再生セルロー
ス多孔性中空糸を作る場合は、セルロース銅アンモニア
溶液を紡糸原液、アセトン/アンモニア/水混合液を凝
固浴及び中空剤として用い、紡糸、凝固、その後硫酸等
で再生することにより得られる。ただし、ここでミクロ
相分離法によって多孔質中空糸を形成する過程で、紡糸
原液の組成において、高分子濃度が中空繊維状の外側及
び内側から、膜の内部方向に逐次増加するような、中空
剤及び凝固剤組成と紡糸条件を選定することを要する。
That is, in the process of making a homogeneous solution of a polymer/solvent into a spinning dope, extruding it from an annular spinning opening, coagulating it, and washing it with water, the spinning dope is transferred from an outer annular spinning opening to a central spinning opening. A coagulating liquid (hereinafter abbreviated as "hollow agent") is discharged from the spinning dope, and the discharged hollow fibrous material is immersed in a liquid (coagulant) that has coagulability for the spinning stock solution. Before solidification of the fibrous material, microphase separation is induced from the inside and outside of the hollow fibrous material. Here, microphase separation means a state in which a concentrated phase or a dilute phase of a polymer is dispersed and stabilized as particles having a diameter of 0.01 to several μm in a solution. Specifically, when making regenerated cellulose porous hollow fibers, for example, cellulose copper ammonia solution is used as a spinning stock solution, acetone/ammonia/water mixture is used as a coagulation bath and hollowing agent, and the process is performed by spinning, coagulating, and then regenerating with sulfuric acid, etc. It can be obtained by However, in the process of forming porous hollow fibers by the microphase separation method, the composition of the spinning dope is such that the polymer concentration increases sequentially from the outside and inside of the hollow fibers toward the inside of the membrane. It is necessary to select the agent and coagulant composition and spinning conditions.

本発明の多孔質中空糸形成時に、高分子/溶媒系の組成
が、膜厚方向の少なくとも2箇所で、中空糸形成時の温
度、圧力における臨界組成となり、その結果、最終的に
形成される本発明の多孔質中空糸は、少なくとも2つの
極小面内平均孔径を有す新規な構造を持つに至るもと考
えられる。
During the formation of the porous hollow fibers of the present invention, the composition of the polymer/solvent system becomes the critical composition at at least two locations in the film thickness direction at the temperature and pressure during the formation of the hollow fibers, and as a result, the final formation It is believed that the porous hollow fiber of the present invention has a novel structure having at least two minimum in-plane average pore diameters.

次に本発明による高分子多孔質中空糸の実施例を説明す
るに先立ち1本明細書にて用いられる各種技術用語(物
性値)の定義とその測定方法を以下に示す。
Next, before describing examples of the polymer porous hollow fiber according to the present invention, definitions of various technical terms (physical property values) used in this specification and methods for measuring them will be shown below.

◎ 極小面内平均孔径、極大面内平均孔径及び面内空孔
率 湿潤状態にある中空糸内部の水分をアセトンで置換し、
その後風乾して得られた中空糸をアクリル樹脂で包埋後
、ウルトラミクロトーム(LKB社(スウェーデン)製
Ultratome [18800型)に装着したガラ
スナイフを用いて、外壁面から壁厚方向に沿って厚さ約
1μmの試料を順に切り出す0その試料切片をクロロホ
ルムで脱包埋後、それぞれの切片の電子顕微鏡写真をと
る。注目する切片の1m当り、孔半径が(1)〜(r+
dr)に存在する孔の数をN(r)drと表示する。3
次及び4次の平均孔半径(それぞれr3およびr4)は
次式で定義される。
◎ Minimum in-plane average pore diameter, maximum in-plane average pore diameter, and in-plane porosity Replace the moisture inside the hollow fibers in a wet state with acetone,
After that, the hollow fibers obtained by air drying were embedded in acrylic resin, and then the thickness was measured from the outer wall surface along the wall thickness direction using a glass knife attached to an ultramicrotome (Model 18800 Ultratome manufactured by LKB (Sweden)). Samples of approximately 1 μm in size are sequentially cut out. After deembedding the sample sections in chloroform, electron micrographs are taken of each section. The hole radius is (1) to (r+
The number of holes present in dr) is denoted as N(r)dr. 3
The second and fourth order average pore radii (r3 and r4, respectively) are defined by the following equations.

平均孔径は2’八丁丙で(1)式及び(2)式から計算
される。それぞれの切片の電子顕微鏡写真よシ平均孔径
を(2)式から算出する。面内平均孔径の内壁面からの
距離に対する図示よシ、極小面内平均孔径及び極大面内
平均孔径を決定する。
The average pore diameter is 2' 8 cm and is calculated from equations (1) and (2). From the electron micrograph of each section, the average pore diameter is calculated from equation (2). As shown in the figure, the minimum average pore diameter and the maximum average pore diameter are determined based on the distance from the inner wall surface to the average pore diameter in the plane.

また、面内空孔率は次式で定義される。Further, the in-plane porosity is defined by the following formula.

孔径分布関数N(r)は以下の様に、試料切片のII電
子顕微鏡写真り定める。すなわち、孔径分布を評価した
い部分の走査型電子顕微鏡写真を適当な大きさくたとえ
ば20mX 20c1n)に拡大焼付けし、得られた写
真上に等間隔にテストライン(直線)を40本描く。お
のおのの直線は多数の孔を横切る。孔を横切った際の孔
内に存在する直線の長さを測定し、この長さの頻度分布
関数を用いて、たとえばステレオジー(たとえば岩波書
店発行諏訪紀夫著1定量形態学#185〜272頁参照
)の方法でN (r)を求める。
The pore size distribution function N(r) is determined from a II electron micrograph of a sample section as follows. That is, a scanning electron micrograph of a portion where the pore size distribution is to be evaluated is enlarged and printed to an appropriate size, for example, 20 m x 20 cm, and 40 test lines (straight lines) are drawn at equal intervals on the obtained photograph. Each straight line crosses a number of holes. The length of the straight line existing in the hole when it crosses the hole is measured, and the frequency distribution function of this length is used to calculate, for example, stereology (for example, Quantitative Morphology #1 by Norio Suwa, published by Iwanami Shoten, pp. 185-272). Find N (r) using the method described in (see).

◎ 平均空孔率 湿潤状態にある中空糸内部の水分をアセトンで置換し、
その後風乾して得られた中空糸を真空中で乾燥し、水分
率を0.5%以下とする。乾燥後の中空糸の内径をR1
(cln) r外径をRo (ctn )とし、中空糸
の長さを1cm+重量をw(i)、ρを高分子多孔質中
空糸を構成する高分子の密度とすると、平均空孔率は下
式で与えられる。
◎ Average porosity The moisture inside the hollow fibers in a wet state is replaced with acetone,
Thereafter, the hollow fibers obtained by air drying are dried in a vacuum to reduce the moisture content to 0.5% or less. The inner diameter of the hollow fiber after drying is R1
(cln) r The outer diameter is Ro (ctn), the length of the hollow fiber is 1 cm + the weight is w (i), and ρ is the density of the polymer constituting the porous polymer hollow fiber, then the average porosity is It is given by the following formula.

◎ 平均分子量 銅アンモニア溶液中(20℃)で測定された゛極限粘度
数〔η) CILt/I ’)を下式(5)に代入する
ことによシ平均分子fl(粘度平均分子量)Mvを算出
する。
◎ Calculate the average molecular weight fl (viscosity average molecular weight) Mv by substituting the ``intrinsic viscosity number [η] CILt/I') measured in a copper ammonia solution (20°C) into the following formula (5). do.

Mv= (η) X 3.2 X 103(5)〔実施
例〕 以下本発明による高分子多孔質中空糸の実施例を詳述し
併せて比較例との性能比較結果を示す。
Mv= (η)

実施例1 セルロースリンター(粘度平均分子量2.43X105
)を公知の方法で調整した、アンモニア濃度6.8重量
%、銅濃度3.1重it%の銅アンモニア溶液中に6.
0重量%で溶解せしめ、r過脱泡を行い、紡糸原液とし
た。その紡糸原液を環状紡糸口の外側紡出口(外径2W
φ)より2.0m41分で、一方中空剤としてアセトン
に対する水の比率が67.3重量%。
Example 1 Cellulose linter (viscosity average molecular weight 2.43X105
6.) in a copper ammonia solution with an ammonia concentration of 6.8% by weight and a copper concentration of 3.1% by weight, which was prepared by a known method.
It was dissolved at 0% by weight and subjected to excessive defoaming to obtain a spinning stock solution. The spinning dope is transferred to the outer spinning port of the annular spinneret (outer diameter 2W).
φ) from 2.0 m and 41 minutes, while the ratio of water to acetone as a hollow agent was 67.3% by weight.

アンモニアに対する水の比率が0.9重1%の混合溶液
(以下中空剤とする)を中央紡出口(外径0.6mφ)
より、5.0rttt1分でそれぞれアセトンに対する
水との比率が67.3重量%、アンモニアに対する水の
比率が0.9重1%の混合溶液中に直接吐出し、10m
/分の速度で巻き取った。なお、吐出直後の透明青色状
の繊維状物は次第に白色化し、ミクロ相分離を生起し、
ひきつづいて凝固が起こシ、繊維としての形状が維持さ
れていた。その後、2重量%の硫酸水溶液で再生し、そ
の後、水洗、乾燥した。
A mixed solution with a water to ammonia ratio of 0.9 weight and 1% (hereinafter referred to as hollow agent) is placed at the central spinning spout (outer diameter 0.6 mφ).
Then, in 1 minute at 5.0 rttt, the water was directly discharged into a mixed solution in which the ratio of water to acetone was 67.3% by weight and the ratio of water to ammonia was 0.9% by weight, and 10 m
It was wound up at a speed of /min. In addition, the transparent blue-like fibrous material immediately after discharge gradually turns white, causing microphase separation,
Coagulation continued and the fiber shape was maintained. Thereafter, it was regenerated with a 2% by weight aqueous sulfuric acid solution, and then washed with water and dried.

本実施例の中空糸の膜内貫通孔の各部分の面内平均孔径
は、内壁面から外壁面への方向で見て、内壁面の入口で
の面内平均孔径をDl、極小の部分の面内平均孔径をD
x 、h小の部分より大きい部分の面内平均孔径を03
、極小の部分の面内平均孔径をD4s外壁面の出口での
面内平均孔径をD、とすると、DIは1.268μm、
DBは1.14μmであり、D!/D2は1.36、D
 3 / D 4は1.31でありだ。またこの実施例
の中空糸の膜厚方向に垂直な全ての面における面内空孔
率の最小値は24.6%であり、壁厚方向全体の平均空
孔率は56.4′%であった。この中空糸を用いて、コ
ロイダルシリカ粒子の濾過実験を行った。濾過実験は、
31Cにおいて200 tmHIの加圧下のもとで行な
い、用いたコロイダルシリカ(触媒化成工業■社製Ca
taloid S I 80 P )の粒子径は700
1〜900Xであった。コロイダルシリカの阻止率は原
子吸光測定(Siの定量)による原液とr液の濃度比か
ら算出した。結果を第1表に示す。またP液をメツシュ
に吹きつけ、電子顕微鏡で、粒子の有無を確認した結果
、コロイダルシリカの粒子は観察されなかった。
The average in-plane pore diameter of each part of the through-holes in the membrane of the hollow fiber in this example is as follows: When viewed in the direction from the inner wall surface to the outer wall surface, the in-plane average pore diameter at the entrance of the inner wall surface is Dl, and the in-plane average pore diameter of the smallest portion is Dl. The in-plane average pore diameter is D
x, hThe in-plane average pore diameter of the part larger than the small part is 03
, the in-plane average pore diameter of the smallest portion is D4s, and the in-plane average pore diameter at the outlet of the outer wall surface is D, then DI is 1.268 μm,
DB is 1.14 μm, and D! /D2 is 1.36, D
3/D4 is 1.31. In addition, the minimum value of the in-plane porosity in all planes perpendicular to the wall thickness direction of the hollow fiber in this example is 24.6%, and the average porosity in the entire wall thickness direction is 56.4'%. there were. A colloidal silica particle filtration experiment was conducted using this hollow fiber. The filtration experiment is
The colloidal silica (Ca
The particle size of taloid S I 80 P) is 700
It was 1-900X. The rejection rate of colloidal silica was calculated from the concentration ratio of the stock solution and r solution by atomic absorption spectrometry (quantification of Si). The results are shown in Table 1. Further, as a result of spraying the P solution onto the mesh and checking the presence or absence of particles using an electron microscope, no colloidal silica particles were observed.

膜厚方向の走査型電子顕微鏡写真を、第1図に示す。(
1)は外壁部、(2)はx = 16 pmの部分(極
小部分)、(3)はx=1014m(極大部分)、(4
)はx == 4μmの部分(極小部分)、(5)は内
壁部である。ここでXは内壁から膜厚方向の距離を示す
A scanning electron micrograph in the film thickness direction is shown in FIG. (
1) is the outer wall part, (2) is the part of x = 16 pm (minimum part), (3) is the part of x = 1014 m (maximum part), (4
) is a portion of x==4 μm (minimum portion), and (5) is an inner wall portion. Here, X indicates the distance from the inner wall in the film thickness direction.

実施例2゜ 実施例1と同様の銅アンモニア溶液中にセルロースリン
ター(平均分子!2.43 X 105)を7.5wt
%の濃度で溶解せしめ、濾過、脱泡を行ない、紡糸原液
とした。この紡糸原液より実施例1と同様の条件によっ
て、再生セルロース中空糸を得た。本中空糸のDlは0
.514 μm、 DBは0.51μmであった。03
/D2は1.4、D3/D4は1,4であった。
Example 2゜7.5wt of cellulose linter (average molecular weight: 2.43 x 105) was added to the same copper ammonia solution as in Example 1.
% concentration, filtered and defoamed to obtain a spinning stock solution. From this spinning stock solution, regenerated cellulose hollow fibers were obtained under the same conditions as in Example 1. Dl of this hollow fiber is 0
.. 514 μm, DB was 0.51 μm. 03
/D2 was 1.4, and D3/D4 was 1.4.

また、この実施例の中空糸の膜厚方向に垂直な全ての面
における面内空孔率の最小値は20.8%であり、壁厚
方向全体の平均空孔率は48.4%でありた。この中空
糸を用いて、実施例1と同様の濾過実験を行った。コロ
イダルシリカ(触媒化成工業■社″!Rcatalo傘
1d SI 45 P)の粒径は350 X〜550X
であった。濾過実験の結果を第1表に示す。また、壁厚
方向の走査型電子顕微鏡写真を第2図に示す。(1)は
外壁部、(2) Fix =15.1μmの部分(極小
部分)、(3)はx=10.3μmの部分(極大部分)
、(4)はx=5.4μmの部分(極小部分)、(5)
は内壁部である。ここでXは内壁から膜厚方向の距離を
示す。
In addition, the minimum value of in-plane porosity in all planes perpendicular to the membrane thickness direction of the hollow fiber in this example is 20.8%, and the average porosity in the entire wall thickness direction is 48.4%. There was. A filtration experiment similar to that in Example 1 was conducted using this hollow fiber. The particle size of colloidal silica (Catalyst Chemical Industry Co., Ltd. “! Rcatalo Umbrella 1d SI 45 P) is 350X to 550X
Met. The results of the filtration experiments are shown in Table 1. Furthermore, a scanning electron micrograph taken in the wall thickness direction is shown in FIG. (1) is the outer wall part, (2) is the part where Fix = 15.1 μm (minimum part), (3) is the part where x = 10.3 μm (maximum part)
, (4) is the part where x = 5.4 μm (minimum part), (5)
is the inner wall. Here, X indicates the distance from the inner wall in the film thickness direction.

比較例 紡不原液は酢化度54.2%、重合度190のセルロー
スジアセテート、アセトンとメタノールが5:1の割合
の混合溶媒、塩化カルシウムを金属化合物にシクロヘキ
サノールを添加溶媒に選び、第2表の紡糸原液組成及び
紡糸条件下で中空繊維を得た。中空繊維のDlは0.5
2μm、DBは0.54μmであった。また極小面内平
均孔径を有する部分が1ケ所でありた。この中空繊維を
用いて、実施例と同様の濾過実験を行なった結果を第1
表に示すO 以下≦ZLi] 〔第 1 表〕 〔第 2 表〕 〔発明の効果〕 本発明の多孔質中空糸は壁厚方向に2つ以上の極小面内
平均孔径および1つ以上の極大面内平均孔径を持つため
、含浸型液膜の支持膜として用いた場合、原体の保持性
が顕著に改善される。また、少なくとも2箇所の極小部
分の存在は、液相中のイオン、低分子物質や微小粒子な
どの物質をr過。
The comparative spinning stock solution was cellulose diacetate with an acetylation degree of 54.2% and a polymerization degree of 190, a mixed solvent of acetone and methanol in a ratio of 5:1, calcium chloride as a metal compound, and cyclohexanol as an additive solvent. Hollow fibers were obtained under the spinning dope composition and spinning conditions shown in Table 2. Dl of hollow fiber is 0.5
2 μm, and DB was 0.54 μm. In addition, there was one portion with a minimal in-plane average pore diameter. Using this hollow fiber, we conducted a filtration experiment similar to that in the example, and the results are shown in the first example.
[Table 1] [Table 2] [Effects of the invention] The porous hollow fiber of the present invention has two or more minimum in-plane average pore diameters and one or more maximum pore diameters in the wall thickness direction. Since it has an average in-plane pore diameter, when used as a support membrane for an impregnated liquid membrane, the retention of the drug substance is significantly improved. In addition, the existence of at least two extremely small portions allows substances such as ions, low-molecular substances, and microparticles to pass through in the liquid phase.

分離する際の、よシ高い阻止率に寄与するーしたがって
、タンtJ?り質や電解質を溶解する水溶液中に分散し
たウィルスあるいはリケッチア、クラミジア、マイコブ
2ズマ等を含めた細菌の分離除去。
Contributes to a higher rejection rate during separation - therefore, tan tJ? Separation and removal of viruses and bacteria, including Rickettsia, Chlamydia, Mycobacterium japonica, etc., dispersed in an aqueous solution that dissolves lytes and electrolytes.

あるいは、微生物粒子を含む水溶液よりタンノJ?り質
を分離濃縮する分離膜として利用できる。
Or is it better than an aqueous solution containing microbial particles? It can be used as a separation membrane to separate and concentrate substances.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1における多孔質中空糸の壁厚方向の下
記の点における繊維の構造を示す走査を電子顕微鏡写真
である。(1)は外壁部(2)はx = 16μmの部
分、(極小部分)、(3)はx = 10 μm (極
大部分)、(4)は4μmの部分(極大部分)、(5)
は内壁部であるる第2図は実施例2における多孔質中空
糸の壁厚方向の下記の点ておける繊維の構造を示す走査
型電子顕微鏡写真である。(1)は外壁部、(2)はx
=15.l#1の部分(極小部分)、(3)は3C=l
O,3μmの部分(極大部分)、(4)はx=5.4μ
mの部分(極小部分)、(5)は内壁部である。
FIG. 1 is an electron micrograph showing the structure of the fiber at the following points in the wall thickness direction of the porous hollow fiber in Example 1. (1) is the outer wall (2) is the x = 16 μm portion (minimum portion), (3) is x = 10 μm (maximum portion), (4) is the 4 μm portion (maximum portion), (5)
FIG. 2 is a scanning electron micrograph showing the structure of the fiber at the following points in the wall thickness direction of the porous hollow fiber in Example 2. (1) is the outer wall, (2) is x
=15. l#1 part (minimum part), (3) is 3C=l
O, 3μm part (maximum part), (4) is x = 5.4μ
The part m (minimum part) (5) is the inner wall part.

Claims (1)

【特許請求の範囲】 1、無数の膜内貫通孔を含んで成る高分子多孔質中空糸
において、該中空糸の内壁面から外壁面への膜厚方向に
垂直な面における孔径を面内平均孔径で表わす時に、前
記膜内貫通孔の入口、および出口における面内平均孔径
が、0.02μmから10μmの範囲であり、かつ面内
平均孔径が、極小の部分、該極小の部分より大きい部分
、極小の部分の順に配列された構造が、中空糸の前記膜
厚方向に少なくも1組存在し、さらに中空糸の前記膜厚
方向に垂直な全ての面における面内空孔率が10%以上
であることを特徴とする高分子多孔質中空糸。 2、前記中空糸の膜厚方向に垂直な面における面内平均
孔径が極小の部分、該極小の部分より大きい部分、極小
の部分の順に配列された領域内の前記膜厚方向を含む平
面での形状が、実質的に円または楕円であることを特徴
とする特許請求の範囲第1項記載の高分子多孔質中空糸
。 3、前記構造における極小の部分より大きい部分の面内
平均孔径が極小の部分の面内平均孔径の10倍以下であ
ることを特徴とする特許請求の範囲第1項記載の高分子
多孔質中空糸。 4、平均空孔率が40%以上であることを特徴とする特
許請求の範囲第1項記載の高分子多孔質中空糸。 5、中空糸を構成する高分子物質が平均分子量5×10
^4以上の銅安セルロースであることを特徴とする特許
請求の範囲第1項記載の高分子多孔質中空糸。
[Claims] 1. In a polymer porous hollow fiber comprising countless through-holes in the membrane, the pore diameter in a plane perpendicular to the membrane thickness direction from the inner wall surface to the outer wall surface of the hollow fiber is defined as the in-plane average diameter. When expressed in terms of pore diameter, the in-plane average pore diameter at the entrance and exit of the membrane through-hole is in the range of 0.02 μm to 10 μm, and the in-plane average pore diameter is an extremely small portion, and a portion larger than the extremely small portion. , at least one set of structures arranged in the order of the smallest portion exists in the thickness direction of the hollow fiber, and further, the in-plane porosity of the hollow fiber in all planes perpendicular to the thickness direction is 10%. A porous polymer hollow fiber characterized by the above. 2. In a plane including the film thickness direction of the hollow fiber in a region in which the in-plane average pore diameter in the plane perpendicular to the film thickness direction is arranged in the order of a part with a minimum, a part larger than the minimum part, and a minimum part. 2. The porous polymer hollow fiber according to claim 1, wherein the shape of the porous hollow fiber is substantially circular or elliptical. 3. The polymer porous hollow according to claim 1, wherein the in-plane average pore diameter of the portion larger than the extremely small portion in the structure is 10 times or less of the in-plane average pore diameter of the extremely small portion. thread. 4. The porous polymer hollow fiber according to claim 1, which has an average porosity of 40% or more. 5. The average molecular weight of the polymeric substance constituting the hollow fiber is 5×10
The polymeric porous hollow fiber according to claim 1, which is copper ammonium cellulose having a carbon content of ^4 or more.
JP2571286A 1986-02-10 1986-02-10 Polymeric porous hollow fiber Pending JPS62184108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2571286A JPS62184108A (en) 1986-02-10 1986-02-10 Polymeric porous hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2571286A JPS62184108A (en) 1986-02-10 1986-02-10 Polymeric porous hollow fiber

Publications (1)

Publication Number Publication Date
JPS62184108A true JPS62184108A (en) 1987-08-12

Family

ID=12173403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2571286A Pending JPS62184108A (en) 1986-02-10 1986-02-10 Polymeric porous hollow fiber

Country Status (1)

Country Link
JP (1) JPS62184108A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148305A (en) * 1986-04-28 1989-06-09 Asahi Chem Ind Co Ltd High molecular porous hollow yarn and process for removing virus utilizing the same
WO2002057521A1 (en) * 2001-01-18 2002-07-25 Sk Chemicals Co., Ltd. Method for producing hollow rayon fibers
JP2008522081A (en) * 2004-11-30 2008-06-26 キャリア コーポレイション Waste heat power generation method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148305A (en) * 1986-04-28 1989-06-09 Asahi Chem Ind Co Ltd High molecular porous hollow yarn and process for removing virus utilizing the same
JPH0450054B2 (en) * 1986-04-28 1992-08-13 Asahi Chemical Ind
WO2002057521A1 (en) * 2001-01-18 2002-07-25 Sk Chemicals Co., Ltd. Method for producing hollow rayon fibers
JP2008522081A (en) * 2004-11-30 2008-06-26 キャリア コーポレイション Waste heat power generation method and apparatus

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
JPH0450054B2 (en)
US4604326A (en) Porous regenerated cellulose hollow fiber and process for preparation thereof
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
JPS5812932B2 (en) Hollow fiber manufacturing method
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JPS61283305A (en) Porous hollow yarn membrane
JPH06238139A (en) Polysulfone semipermeable membrane and its production
JPH025132B2 (en)
JPS62184108A (en) Polymeric porous hollow fiber
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JPH0929078A (en) Production of hollow yarn membrane
CN106000115A (en) Hollow fiber membrane with efficient filtering defect-free structure and preparation method of hollow fiber membrane
JPH0631145A (en) Dialyzer consisting of cellulose acetate or cellulose acetate derivative and having interior through space as in form of hollow fiber and its production
JP2550543B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JPS59204911A (en) Regenerated cellulose hollow fiber of novel structure
JP3422657B2 (en) Hollow fiber membrane for dehumidification
JP2003275300A (en) Regenerated cellulose hollow fiber membrane for blood purification, its manufacturing method, and blood purifying apparatus
JPS61296112A (en) Cuprammonium cellulose hollow yarn membrane
JPS5841883B2 (en) Plasma separation membrane and its manufacturing method
JPS62234510A (en) Drying method for regenerated hollow cellulose yarn
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
RU2676991C1 (en) Hollow fiber membrane