JPS62234510A - Drying method for regenerated hollow cellulose yarn - Google Patents

Drying method for regenerated hollow cellulose yarn

Info

Publication number
JPS62234510A
JPS62234510A JP7756786A JP7756786A JPS62234510A JP S62234510 A JPS62234510 A JP S62234510A JP 7756786 A JP7756786 A JP 7756786A JP 7756786 A JP7756786 A JP 7756786A JP S62234510 A JPS62234510 A JP S62234510A
Authority
JP
Japan
Prior art keywords
hollow fibers
yarn
hollow
drying
wet state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7756786A
Other languages
Japanese (ja)
Inventor
Michitaka Iwata
岩田 道隆
Seiichi Manabe
征一 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7756786A priority Critical patent/JPS62234510A/en
Publication of JPS62234510A publication Critical patent/JPS62234510A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To dry regenerated porous hollow cellulose yarn while maintaining the performance thereof by bundling said yarn and replacing the moisture in the hollow yarn with an org. solvent having <=70 deg.Cb.p., and >=10wt% solubility in water and having no hydroxyl groups, then stretching and elongating the hollow yarn. CONSTITUTION:Many pieces of the porous hollow cellulose yarn which is prepd. from a cellulose-cuproammonium soln. and is in a wet state are bundled to form a honeycomb structural body. The moisture in the hollow yarn is replaced with the org. solvent having <=70 deg.Cb.p., and >=10wt% solubility in water and having no hydroxyl groups. An acetone is representatively used as said org. solvent. The yarn is subjected to stretching then to drying after the replacement. The hollow yarn which is poorer in the form retentivity in the wet state is more preferably subjected to the multi-stages replacement at the time of replacing the moisture with the acetone. The regenerated porous hollow cellulose yarn which is inferior in the form retentivity in the wet state is thereby efficiently dried in a large amt. while approximately the same performance as the performance in the wet state is maintained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、湿潤状態にある多孔性再生セルロース中空糸
の乾燥方法に関する。さらに詳しくは。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for drying porous regenerated cellulose hollow fibers in a wet state. More details.

セルロース鋼アンモニア溶液から得られる多孔性再生セ
ルロース中空糸を乾燥するのに際し、該中空糸を束ねて
ハニカム構造体を形成させ、有機溶媒で該中空糸中の水
分等を置換し、さらにそのハニカム構造体を延伸し、乾
燥する乾燥方法に関する。
When drying porous regenerated cellulose hollow fibers obtained from a cellulose steel ammonia solution, the hollow fibers are bundled to form a honeycomb structure, water etc. in the hollow fibers are replaced with an organic solvent, and the honeycomb structure is further removed. This invention relates to a drying method for stretching and drying a body.

なお本発明に於ける「多孔性中空糸」とは、壁厚部を電
子顕微鏡で観察した際、壁厚部会面に於いて0.02μ
m以上の孔が106個/cut”以上観察される中空糸
と定義し、そうでないものを「非多孔性中空糸」と定義
する。
In addition, "porous hollow fiber" in the present invention refers to a thickness of 0.02μ on the surface of the wall thickness when the wall thickness is observed with an electron microscope.
It is defined as a hollow fiber in which pores of m or more are observed at 106 pieces/cut or more, and those that are not observed are defined as "non-porous hollow fiber".

本発明で得られた多孔性再生セルロース中空糸は、水を
含む液体又は気体混合物中の目的とする成分の分離除法
および濃縮に有用である。又、タンノ臂り質や電解質を
溶解する水溶液中に分散したフィルスあるいはリケッチ
ア、クラミジア マイコプラズマ等を含めた細菌の分離
除去、あるいは微生物粒子を含む水溶液よシタンノ臂り
質を分離濃縮する分離膜として利用出来る。
The porous regenerated cellulose hollow fibers obtained in the present invention are useful for separating and concentrating target components in liquid or gas mixtures containing water. It can also be used as a separation membrane to separate and remove bacteria, including fils, rickettsia, chlamydia, mycoplasma, etc., dispersed in an aqueous solution that dissolves tannolytes and electrolytes, or to separate and concentrate tannolytes from an aqueous solution containing microbial particles. I can do it.

〈従来の技術〉 物質の分離精製技術の中で、イオン、低分子物質あるい
は液相中での濁質や微粒子などミクロンオーダーの物質
を分離する手段としての膜分離技術の研究が盛んに行な
われている。この種の技術の経済的規模による実用化を
阻む最大の問題としては、物質分離速度が小さいことが
あけられる。
<Conventional technology> Among the separation and purification technologies for substances, research is being actively conducted on membrane separation technology as a means of separating micron-order substances such as ions, low-molecular substances, and suspended solids and fine particles in the liquid phase. ing. The biggest problem preventing commercialization of this type of technology on an economic scale is that the rate of material separation is low.

物質分離速度は膜面積に依存するため、処理物質量が増
大するに従って膜面積を増大せねばならず。
Since the substance separation rate depends on the membrane area, the membrane area must be increased as the amount of substance to be treated increases.

通常使用される平面膜では必然的に装置が大型化する。The normally used flat membrane inevitably increases the size of the device.

このような問題は極めて細い中空糸でその中空部を囲む
繊維壁を分離膜として物質分離を行なわせ、この中空糸
を多数本束ねて物質分離部分を形成することによって単
位体積当シの分離膜の有効面積を増大させ、装置を小型
化することで解決される。将来膜分離システムが中心と
なる可能性がある分野として、■低温で濃縮、精製1ロ
収を必要とする分野(食品、生物化学工業分野)、■無
菌、無塵を必要とする分野(医薬品および治療機関、電
子工業分野)、■微量な高価物質の濃縮回収(原子力1
重金属分野)、■特殊少量分離分野(医薬分野)、■エ
ネルギー多消費分離分野(蒸留代替)などが考えられる
が、これらの分野に利用される膜として、孔径の大きな
取扱いの容易な親水性膜の必要が高まっている。
This problem can be solved by separating substances using extremely thin hollow fibers and using the fiber wall surrounding the hollow part as a separation membrane, and by bundling a large number of these hollow fibers to form a substance separation part. This can be solved by increasing the effective area of the device and downsizing the device. Fields in which membrane separation systems may become the main focus in the future include: ■ Fields that require concentration and purification at low temperatures and 1-rot yield (food, biochemical industry fields), ■ Fields that require sterility and dust-free operation (pharmaceuticals, etc.) and treatment institutions, electronic industry field), ■Concentration and recovery of trace amounts of expensive substances (nuclear power 1
Hydrophilic membranes with large pores that are easy to handle are the membranes used in these fields. There is a growing need for

親水性の大きな素材として、再生セルロースがある。再
生セルロースは耐有機溶媒性および力学的性質に優れ、
また合成高分子と異なシ生体に対する毒性も少ない。し
たがって、再生セルロースで構成された平均孔径の大き
な中空糸の出現が期待されていた。
Regenerated cellulose is a highly hydrophilic material. Regenerated cellulose has excellent organic solvent resistance and mechanical properties,
Also, unlike synthetic polymers, it is less toxic to living organisms. Therefore, the appearance of hollow fibers composed of regenerated cellulose and having a large average pore diameter was expected.

本発明者らは、先にセルロース鋼アンモニア溶液を環状
紡出口よシ桿し出し、凝固、再生、水洗する1糧に於い
て、外側環状紡出口より該紡糸原液を、該紡糸原液に対
して凝固性液体を中央部紡出口よシそれぞれ吐出させ、
かつ凝固前にミクロ相分離を生起させることによシ全繊
維長にわたって連続貫通した中空部を有する多孔性再生
セルロース中空糸t−裂造することに成功した。
The present inventors first discharged the cellulose steel ammonia solution through the annular spinning spout, solidified it, regenerated it, and washed it with water. The coagulable liquid is discharged from the central spinning port,
Furthermore, by causing microphase separation before coagulation, we succeeded in fabricating a porous regenerated cellulose hollow fiber T-fiber structure having a continuous hollow portion extending throughout the entire fiber length.

〈発明が解決しようとする問題点〉 しかし、多孔性再生セルロース中空糸は壁厚部(内、外
壁)に平均孔径0.02〜lOμmの孔が存在している
ため、従来の非多孔性再生セルロースの乾燥方法、九と
えば、湿潤状態にある中空糸を高温の乾燥機内に送シ込
み、連続的に通過させて中空糸中の水分を加熱蒸発させ
る方法を本多孔性再生セルロース中空糸にそのまま適用
すれば、中空糸の中空部のつぶれや壁厚部の孔のつぶれ
などの問題が起こる。上記問題を克服するために鋭意研
究した結果、本発明に至った。
<Problems to be solved by the invention> However, since porous regenerated cellulose hollow fibers have pores with an average pore diameter of 0.02 to 10 μm in the wall thickness (inner and outer walls), conventional non-porous regenerated cellulose A method for drying cellulose, for example, a method in which hollow fibers in a wet state are fed into a high-temperature dryer, and the moisture in the hollow fibers is heated and evaporated by passing the hollow fibers continuously through this porous regenerated cellulose hollow fiber. If applied as is, problems such as collapse of the hollow portion of the hollow fiber and collapse of holes in the thick wall portion will occur. As a result of intensive research to overcome the above problems, the present invention has been achieved.

本発明の目的は、上述のような従来技術の問題点(中空
糸の中空部のつぶれや壁厚部の孔のつぶれなど)を解決
し、湿潤状態にある多孔性再生セルロース中空糸の機能
をなんら損なうことなく効率的に乾燥する方法を提供す
ることにある。
The purpose of the present invention is to solve the problems of the prior art as described above (such as the collapse of the hollow part of the hollow fiber and the collapse of the pores in the thick wall part), and to improve the function of the porous regenerated cellulose hollow fiber in a wet state. It is an object of the present invention to provide a method for efficiently drying without causing any damage.

く問題点を解決するための手段〉 本発明に係る多孔性再生セルロース中空糸の乾燥方法は
、多孔性再生セルロース中空糸の製造l1に於いて、湿
潤状態にある中空糸を乾燥するのに際し、該中空糸を束
ねてハニカム構造体を形成させ、かつ沸点が70℃以下
で、水への溶解度が10vt%以上で、水酸基を持たな
い有機溶媒で中空糸中の水分等を置換し、さらにそのハ
ニカム構造体を延伸し、乾燥することを特徴とする。
Means for Solving Problems> The method for drying porous regenerated cellulose hollow fibers according to the present invention includes the steps of drying the hollow fibers in a wet state in the production 11 of porous regenerated cellulose hollow fibers. The hollow fibers are bundled to form a honeycomb structure, and the water etc. in the hollow fibers are replaced with an organic solvent having a boiling point of 70°C or less, a solubility in water of 10vt% or more, and no hydroxyl group, and further It is characterized by stretching and drying the honeycomb structure.

本発明中、「湿潤状態とは」、表面張力が40dyn/
m以上で、かつ沸点が80℃以上の、いわゆる極性の大
きな溶媒を10wt%以上含む状態を意味するものであ
シ、その典型的な例は水を含む状態である。
In the present invention, "wet state" means that the surface tension is 40 dyn/
It means a state in which 10 wt % or more of a so-called highly polar solvent having a boiling point of 80° C. or higher is contained, and a typical example thereof is a state in which water is contained.

セルロース鋼アンモニア溶液から作製された湿潤状態に
ある多孔性再生セルロース中空糸は、親水性に優れ、か
つ多孔性であるため、形態保持性が非多孔性中空糸にく
らべて若干劣る。そのため水分等の表面張力の大きな溶
媒を含む状態からこれらの溶媒を除去する際、中空糸の
断面形状の変形および多孔性の消失がしばしば起こる。
Porous regenerated cellulose hollow fibers in a wet state made from a cellulose steel ammonia solution have excellent hydrophilicity and are porous, so their shape retention is slightly inferior to that of non-porous hollow fibers. Therefore, when removing solvents from a state containing solvents with high surface tension such as water, the cross-sectional shape of the hollow fibers often changes and the porosity disappears.

−力木発明に係る多孔性再生セルロース中空糸は円形断
面又はそれに近い楕円形断面を保持していることが好ま
しく、そのために、該中空糸を多数本束ねてハニカム構
造体を形成し、それによりて、強靭な中空糸束として、
乾燥することが本発明の方法の有する最大の特徴である
。ここで「ハニカム構造体」とは、中空糸の断面形状を
円形断面と近似した際、該断面を持つ中空糸を多数本束
ねることによシ、中空糸の断面方向から見た場合、ノ・
チの巣状の構造()・二カム構造)を取るところの構造
物を意味する。このハニカム構造体を形成させて乾燥す
ることによシ、乾燥時の中空糸の断面形状の変形が防止
できる。
- It is preferable that the porous regenerated cellulose hollow fibers according to the strength tree invention have a circular cross section or an elliptical cross section close to the circular cross section, and for this purpose, a large number of the hollow fibers are bundled to form a honeycomb structure. As a strong hollow fiber bundle,
Drying is the most important feature of the method of the present invention. Here, "honeycomb structure" means that when the cross-sectional shape of the hollow fibers is approximated to a circular cross-section, by bundling a large number of hollow fibers with the same cross-section, when viewed from the cross-sectional direction of the hollow fibers,
It means a structure that has a nest-like structure ()/bicam structure). By forming and drying this honeycomb structure, deformation of the cross-sectional shape of the hollow fibers during drying can be prevented.

水分を有機溶媒で置換し乾燥する方法自体は一般的な手
法であるが、本発明のように沸点が70℃以下で、水へ
の溶解度が10wt%以上で、かつ水酸基を持たない有
機溶媒で中空糸中の水分等を置換すると湿潤状態とほぼ
同じ性能を持つ中空糸が得られる。該有機溶媒以外の有
機溶媒(たとえばメタノール、エタノール)を用いて水
分を置換すると、多孔性再生セルロース中空糸の平均孔
径が乾燥の際著しく小さくなシ、ときには0.02μm
以下となる。ま念乾燥後の中空糸が固く、かつもろくな
るのが一般的である。したがって、沸点が70℃以下で
、水への溶解度が10wt% 以上で、かつ水酸基を持
たない有機溶媒で中空糸中の水分等を置換することが必
須であシ、かくしてマイクロフィルトレージ、ンなどに
用いられる中空糸としての性能を十分発揮出来る中空糸
が得られ、同時に柔軟性の高い中空糸が得られる。ここ
で、乾燥後の「中空糸」とは水分率が10%以下のもの
をいう。好ましい有機溶媒としてアセトンを用いるとよ
い。またアセトンで水分等を置換する際、湿潤状態で形
態保持性が劣るものほど50%、70係、90%、10
0%と多段置換をやる方が好ましい。このアセトンで水
分等を置換すると、理由は現在のところ不明であるが、
従来の非多孔性中空糸を該有機溶媒以外で置換して乾燥
し念中空糸にくらべて柔軟性に富み、微細構造的にも結
晶化度は低く、分子間、分子内水素結合も十分発達しな
い等の特徴がある。ま九、該有機溶媒で置換したハニカ
ム構造体を延伸することによシ、湿潤時の寸法安定性が
非常に良好となる。延伸する際の延伸倍率として中空糸
の紡糸条件によりて、その最適範囲は変動するが、通常
5係以上、15係以下の範囲であれば、湿潤時の寸法安
定性が良好となる。5%以下であれば、湿潤時に非常に
伸びが大きく、また15%以上であれば、非常に縮む。
The method of replacing water with an organic solvent and drying is a common method, but as in the present invention, an organic solvent with a boiling point of 70°C or less, a solubility in water of 10 wt% or more, and no hydroxyl group is used. By replacing the moisture etc. in the hollow fibers, hollow fibers having almost the same performance as in a wet state can be obtained. When water is replaced with an organic solvent other than the organic solvent (for example, methanol or ethanol), the average pore diameter of the porous regenerated cellulose hollow fibers becomes significantly smaller during drying, sometimes 0.02 μm.
The following is true. It is common for hollow fibers to become hard and brittle after thorough drying. Therefore, it is essential to replace the moisture in the hollow fibers with an organic solvent that has a boiling point of 70°C or lower, a solubility in water of 10 wt% or higher, and does not have hydroxyl groups. Hollow fibers can be obtained that can fully exhibit their performance as hollow fibers used for. At the same time, hollow fibers with high flexibility can be obtained. Here, the term "hollow fiber" after drying refers to one with a moisture content of 10% or less. Acetone is preferably used as the organic solvent. In addition, when replacing water etc. with acetone, the poorer the shape retention in the wet state, the 50%, 70%, 90%, 10%
It is preferable to perform multi-stage replacement with 0%. If water is replaced with this acetone, the reason is currently unknown, but
Conventional non-porous hollow fibers are substituted with a solvent other than the organic solvent and dried, making them more flexible than hollow fibers, with lower crystallinity in terms of microstructure, and well-developed intermolecular and intramolecular hydrogen bonds. There are some characteristics such as not. (9) By stretching the honeycomb structure substituted with the organic solvent, the dimensional stability when wetted becomes very good. The optimal range of the draw ratio during stretching varies depending on the spinning conditions of the hollow fiber, but generally, if it is in the range of 5 coefficients or more and 15 coefficients or less, dimensional stability in wet conditions will be good. If it is 5% or less, it will elongate significantly when wet, and if it is 15% or more, it will shrink significantly.

乾燥条件として真空状態での乾燥が短時間で行なえるの
で好ましく、温度は特に限定する必要はないが、室温以
上、該有機溶媒の沸点以下が好ましい。
As a drying condition, drying in a vacuum state is preferable because drying can be carried out in a short time, and the temperature does not need to be particularly limited, but it is preferably at least room temperature and at most the boiling point of the organic solvent.

実施例の説明に先立ち、本明細書中で用いられた各特性
値の測定方法を以下に示す。
Prior to the description of Examples, methods for measuring each characteristic value used in this specification will be shown below.

0平均分子量 銅アンモニア溶液中(20℃)で測定された極限粘度数
〔η〕Cml/1/)を下記(1)式に代入することに
よシ、平均分子量(粘度平均分子量)Mvを算出する。
Calculate the average molecular weight (viscosity average molecular weight) Mv by substituting the intrinsic viscosity number [η]Cml/1/) measured in a copper ammonia solution (20 ° C.) into the following formula (1). do.

Mv=〔η] X 3.2 X 103       
(1)0平均孔径、孔密度 多孔膜1 cm2当シの孔半径r−寸+drに存在する
孔の数をN(r)d rと表示すると(N(r)は孔径
分布関数)、平均孔半径ら および孔密度Nは下式(2
)および(3)で与えられる。ただし平均孔径は2r5
であN = 、10− [r)dr       (3
)本発明方法で得られた多孔性再生セルロース中空糸の
内外壁面および壁厚部に於ける中間面の電子顕微鏡写真
を走査型電子顕微鏡を用いて撮影する。壁厚部のサンプ
リングは、中空糸をエポキシ樹脂に包埋後、ワルトラミ
クロトーム(LKB社(スワエーデン)製Ultrat
om* I 8800型)に装着したガラスナイフを用
いて、外壁面から内壁面に向って厚さ1μm の試料を
順に切り出す。その切片をクロロホルムで脱包埋後それ
ぞれの電子顕微鏡写真を撮影する。該写真から公知の方
法で孔径分布関数N (r)を算出し、これを(2)式
に代入する。
Mv=[η] X 3.2 X 103
(1) 0 average pore diameter, pore density If the number of pores existing in the pore radius r-dimension + dr of 1 cm2 porous membrane is expressed as N(r)dr (N(r) is the pore size distribution function), the average The pore radius et al and the pore density N are calculated by the following formula (2
) and (3). However, the average pore diameter is 2r5
So N = , 10-[r)dr (3
) Electron micrographs of the inner and outer wall surfaces and the intermediate surface of the thick wall portion of the porous regenerated cellulose hollow fiber obtained by the method of the present invention are taken using a scanning electron microscope. Sampling of the thick wall part was performed using a Waltra microtome (LKB (Sweden)) after embedding the hollow fiber in epoxy resin.
om* I 8800 model), samples with a thickness of 1 μm were sequentially cut from the outer wall surface to the inner wall surface. After de-embedding the sections with chloroform, electron micrographs are taken of each section. The pore size distribution function N (r) is calculated from the photograph by a known method and substituted into equation (2).

すなわち、孔径分布を求め九い部分の走査型電子顕微鏡
写真を適当な大きさくたとえば20傷×20譚)に拡大
焼付し、得られ之写真上に等間隔にテストライン(直#
iりを20本描く。おのおのの直線は多数の孔を横切る
。孔を横切った際の孔内に存在する直線の長さを測定し
、この頻度分布関数を求める。この頻度分布関数を用い
て、たとえばステレオ0ゾ(九とえば、諏訪紀夫著“定
量形態学”岩波書店)の方法でN(r)を定める。
That is, the pore size distribution is determined, and a scanning electron micrograph of a small area is enlarged and printed to an appropriate size (for example, 20 scratches x 20 lines), and test lines (direct #s) are drawn at equal intervals on the resulting photograph.
Draw 20 lines. Each straight line crosses a number of holes. Measure the length of the straight line that exists within the hole when it crosses the hole, and find this frequency distribution function. Using this frequency distribution function, N(r) is determined, for example, by the method of StereoZo (for example, "Quantitative Morphology" by Norio Suwa, published by Iwanami Shoten).

0ワエツトシエリンケージ 得られた多孔性再生セルロース中空糸を温度20℃、湿
度65%下に16時間以上放置する。
0 Weight Shear Linkage The obtained porous regenerated cellulose hollow fibers are left at a temperature of 20° C. and a humidity of 65% for 16 hours or more.

その後、該中空糸を糸長25cW1に力y ) (Dr
y蜀し、その中空糸を25℃の純水中に浸漬する。
After that, the hollow fiber was applied with a force y ) (Dr
The hollow fibers are then immersed in pure water at 25°C.

30分後湿潤状態の中空糸の糸長を測定する(We を
長)。クエットシーリンケージは(4)式で与えられる
After 30 minutes, the length of the hollow fiber in a wet state is measured (We is the length). The Couette Sea linkage is given by equation (4).

ウエットシ1リンケージ(イ) = (We を長−Dry長)/DryDry長0  
(4)〈実施例〉 以下、実施例について本発明を具体的に説明する。
Wet cable 1 linkage (I) = (We length - Dry length)/Dry length 0
(4) <Examples> The present invention will be specifically described below with reference to Examples.

実施例1〜5 セルロースリンター(粘度平均分子i 2.3 X 1
05)を公知の方法で調製したアンモニア濃度6.8w
t%、銅濃度3.1wt%の銅アンモニア溶液中に6.
3 wt%で溶解せしめ、戸逸脱泡を行ない紡糸原液と
した。
Examples 1-5 Cellulose linter (viscosity average molecule i 2.3 X 1
05) prepared by a known method with an ammonia concentration of 6.8w
6.t% in a copper ammonia solution with a copper concentration of 3.1 wt%.
It was dissolved at 3 wt% and subjected to foaming to obtain a spinning stock solution.

該紡糸原液を環状紡出口の外側紡出口(外径2朋φ)よ
#)2,9m47分でご方、アセトンと水との比率が6
7.3wt%  で、アンモニアと水との比率が0.9
wi% の混合溶液を中央紡出口(外径0.4朋φ)よ
り2.5d/分でそれぞれアセトンと水との比率が67
.3 wt% で、アンモニアと水との比率が0、9 
wt%の混合溶液中に直接吐出し、1Orrv5!j−
の速度で巻取り念。なお、吐出直後の透明青色状の繊維
状物は次第に白色化し、ミクロ相分離を生起しながら凝
固が起こシ、繊維(中空糸)としての形状が維持されて
いた。その後、25℃の2wt係硫酸水溶液で再生し、
しかる後、25℃の水で水洗した。水洗後の中空糸10
0本を束ねてハニカム構造体を形成させ、100wt%
のアセトン中に1時間浸漬した。その後このハニカム構
造体を引張シ延伸器にセットして第1表に示すように延
伸倍率を変えて延伸し、2時間真空乾燥した。得られた
中空糸の外壁面の平均孔徂を第1表に示す。
The spinning stock solution was poured into the outer spinning spout (outer diameter: 2 mm) of the annular spinning spout for 2.9 m and 47 minutes, and the ratio of acetone and water was 6.
7.3wt%, the ratio of ammonia to water is 0.9
A mixed solution of wi% was spun at 2.5 d/min from the central spinneret (outer diameter 0.4 φ) so that the ratio of acetone and water was 67.
.. 3 wt%, and the ratio of ammonia to water is 0.9
Discharge directly into wt% mixed solution, 1Orrv5! j-
Make sure to wind it up at a speed of . Immediately after being discharged, the transparent blue fibrous material gradually turned white, coagulated while causing microphase separation, and maintained its shape as a fiber (hollow fiber). After that, it was regenerated with a 2wt sulfuric acid aqueous solution at 25°C,
Thereafter, it was washed with 25°C water. Hollow fiber 10 after washing with water
0 are bundled to form a honeycomb structure, 100wt%
It was immersed in acetone for 1 hour. Thereafter, this honeycomb structure was set in a tension stretching machine, stretched at different stretching ratios as shown in Table 1, and vacuum-dried for 2 hours. Table 1 shows the average pore size of the outer wall surface of the hollow fibers obtained.

〔第1表〕 実施例1〜5で得られた多孔性再生セルロース中空糸の
形態保持性(中空部の変形など)や性能は良好である。
[Table 1] The porous regenerated cellulose hollow fibers obtained in Examples 1 to 5 have good shape retention (deformation of hollow portions, etc.) and performance.

また、第1表に示すように、延伸倍率が5〜15%の範
囲でろれば、9工、トシーリンケーソは約±5%以内で
、湿潤状態時の寸法安定性は非常に良い。
Further, as shown in Table 1, if the stretching ratio is within the range of 5 to 15%, the dimensional stability in the wet state is within about ±5% for 9-fold and Toshilin keso, which is very good.

比較例1 実施例1で得られた湿潤状態の中空糸1本を実施例3と
同様の置換および延伸乾燥を行なった結果、Em後の中
空糸の中空部は著しく変形し、中空部の閉塞した個所も
混在した。
Comparative Example 1 One wet hollow fiber obtained in Example 1 was replaced and stretched and dried in the same manner as in Example 3. As a result, the hollow part of the hollow fiber after Em was significantly deformed and the hollow part was blocked. There were also a mixture of places where this was done.

比較例2 実施例1で得られた湿潤状態の中空糸100本を束ねて
ハニカム構造体を形成させ、100wt%のメタノール
中に1時間浸漬した。その後引張シ延伸器にセットして
10%延伸し、2時間真空乾燥し次。得られた中空糸の
形態保持性は非常に良いが、中空糸は透明に近く、電子
顕微鏡で中空糸の外壁面および内壁面を観察した結果、
孔は観察出来なかった。したがりて平均孔径は0.02
μm未満である。
Comparative Example 2 100 wet hollow fibers obtained in Example 1 were bundled to form a honeycomb structure, which was immersed in 100 wt % methanol for 1 hour. After that, it was set in a tensile stretching machine, stretched by 10%, and vacuum dried for 2 hours. The shape retention of the obtained hollow fibers was very good, but the hollow fibers were nearly transparent, and as a result of observing the outer and inner wall surfaces of the hollow fibers with an electron microscope,
No holes could be observed. Therefore, the average pore size is 0.02
It is less than μm.

〈発明の効果〉 本発明は前述のようは構成されているので、本発明によ
る方法を用いることによって、湿潤状態にhろ;形態保
持性の劣る多孔性再生セルロース中空糸を・湿潤状態と
ほぼ同じ性能を持たせな力Iら、中空糸をなんら損なう
ことなく効率的にかつ多硫に乾燥することが出来る@ 本発明方法で得られた多孔性再生セルロース中空糸が利
用できる対象としては、水を含む液体または気体混合物
中の目的とする成分の分離除去、たとえば濾過/透析型
あるいは濾過型人工腎+11i、人工肝臓、あるいは人
工すい臓用中空糸などが挙げられる。その細限外濾過膜
として利用できるが、親水性で力学的性質に優れた本多
孔性再生セルロース中空糸は、生体関連分野(医学、生
物化学工業)、あるいは食品醗酵分野に於いて適してい
る。
<Effects of the Invention> Since the present invention is configured as described above, by using the method according to the present invention, porous regenerated cellulose hollow fibers with poor shape retention can be brought into a wet state. However, the porous regenerated cellulose hollow fibers obtained by the method of the present invention can be used for drying without damaging the hollow fibers. For example, filtration/dialysis type or filtration type artificial kidney +11i, artificial liver, or hollow fiber for artificial pancreas can be used. This porous regenerated cellulose hollow fiber, which is hydrophilic and has excellent mechanical properties, is suitable for use in bio-related fields (medicine, biochemical industry) and food fermentation fields. .

またタンノ4り質を含む水溶液からフィルス等の微生物
を分離濃縮あるいは除去するのに最適である。
It is also ideal for separating and concentrating or removing microorganisms such as fils from an aqueous solution containing tannophosphates.

Claims (1)

【特許請求の範囲】 1、セルロース銅アンモニア溶液から得られる多孔性再
生セルロース中空糸の製造工程に於いて、湿潤状態にあ
る該中空糸を乾燥するのに際し、該中空糸を束ねてハニ
カム構造体を形成させ、かつ沸点が70℃以下で水への
溶解度が10wt%以上で、水酸基を持たない有機溶媒
で該中空糸中の水分等を置換し、さらにそのハニカム構
造体を延伸し、乾燥することを特徴とする再生セルロー
ス中空糸の乾燥方法。 2、延伸する際の延伸倍率が5%以上、15%以下であ
る特許請求の範囲第1項記載の乾燥方法。 3、有機溶媒がアセトンである特許請求の範囲第1項又
は第2項記載の乾燥方法。
[Claims] 1. In the manufacturing process of porous regenerated cellulose hollow fibers obtained from a cellulose cupric ammonia solution, when drying the hollow fibers in a wet state, the hollow fibers are bundled to form a honeycomb structure. is formed, and the water, etc. in the hollow fibers is replaced with an organic solvent having a boiling point of 70° C. or less and a solubility in water of 10 wt% or more and having no hydroxyl groups, and then the honeycomb structure is stretched and dried. A method for drying regenerated cellulose hollow fibers. 2. The drying method according to claim 1, wherein the stretching ratio during stretching is 5% or more and 15% or less. 3. The drying method according to claim 1 or 2, wherein the organic solvent is acetone.
JP7756786A 1986-04-05 1986-04-05 Drying method for regenerated hollow cellulose yarn Pending JPS62234510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7756786A JPS62234510A (en) 1986-04-05 1986-04-05 Drying method for regenerated hollow cellulose yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7756786A JPS62234510A (en) 1986-04-05 1986-04-05 Drying method for regenerated hollow cellulose yarn

Publications (1)

Publication Number Publication Date
JPS62234510A true JPS62234510A (en) 1987-10-14

Family

ID=13637590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7756786A Pending JPS62234510A (en) 1986-04-05 1986-04-05 Drying method for regenerated hollow cellulose yarn

Country Status (1)

Country Link
JP (1) JPS62234510A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335949A (en) * 2001-05-22 2002-11-26 Inst Of Physical & Chemical Res Cell three-dimensional tissue culture method using honeycomb structure film
JP2002347107A (en) * 2001-05-22 2002-12-04 Inst Of Physical & Chemical Res Stretched film and cell culture base material using the same
JP2014024064A (en) * 2006-03-02 2014-02-06 Seiichi Manabe Regenerated cellulose porous membrane for pore diffusion, and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335949A (en) * 2001-05-22 2002-11-26 Inst Of Physical & Chemical Res Cell three-dimensional tissue culture method using honeycomb structure film
JP2002347107A (en) * 2001-05-22 2002-12-04 Inst Of Physical & Chemical Res Stretched film and cell culture base material using the same
JP2014024064A (en) * 2006-03-02 2014-02-06 Seiichi Manabe Regenerated cellulose porous membrane for pore diffusion, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Tsai et al. Pervaporation of water/alcohol mixtures through chitosan/cellulose acetate composite hollow‐fiber membranes
JP2006528057A (en) Monolithically skinned asymmetric membrane with solvent resistance
Xu et al. Ultrafiltration hollow fiber membranes from poly (ether imide): preparation, morphologies and properties
CN113289499B (en) Internal pressure type hollow fiber ultrafiltration membrane and preparation method and application thereof
CN118236861A (en) Small-aperture polysulfone hollow fiber ultrafiltration membrane and preparation method thereof
JPS62234510A (en) Drying method for regenerated hollow cellulose yarn
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
CN1103241C (en) Method for making poly-meta-fluoethylene hollow fibre porous membrane and products thereof
CN1094380C (en) Material of artificial kidney for hemodialysis and its preparing process
CN112717714A (en) Preparation method of SMA and PVDF blended hollow fiber membrane
JPS61402A (en) Semipermeable membrane for separation
CN108043249B (en) Method for preparing hollow fiber membrane from lignin modified polyacrylonitrile
CN101596416A (en) Be used for the preparation of pachyhematous blend polyvinylidene fluoride hollow-fibre membrane
JP3422657B2 (en) Hollow fiber membrane for dehumidification
CN114797501B (en) Preparation method of pennisetum sinese nanofiber hollow fiber nanofiltration membrane
CN115501765B (en) Hollow fiber membrane, method for constructing hydrophilic network thereof, and use thereof
JPS62184108A (en) Polymeric porous hollow fiber
JP3290266B2 (en) Composite hollow fiber membrane
CN107913604A (en) A kind of preparation method of PVDF/PVDF HFP hollow-fibre membranes
JPS61296112A (en) Cuprammonium cellulose hollow yarn membrane
JPH041015B2 (en)
Li et al. Preparation and characterization of inner-pressure hollow fiber composite membrane via two-way coating technique for CO 2/CH 4 separation
JP2601312B2 (en) Method for drying porous regenerated cellulose hollow fiber
JPH0829243B2 (en) Method for producing polyethersulfone hollow fiber membrane
JPH027690B2 (en)