JPH06238139A - Polysulfone semipermeable membrane and its production - Google Patents

Polysulfone semipermeable membrane and its production

Info

Publication number
JPH06238139A
JPH06238139A JP4876893A JP4876893A JPH06238139A JP H06238139 A JPH06238139 A JP H06238139A JP 4876893 A JP4876893 A JP 4876893A JP 4876893 A JP4876893 A JP 4876893A JP H06238139 A JPH06238139 A JP H06238139A
Authority
JP
Japan
Prior art keywords
polysulfone
semipermeable membrane
hydrophilic polymer
membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4876893A
Other languages
Japanese (ja)
Other versions
JP3366040B2 (en
Inventor
Toru Kuroda
徹 黒田
Toshiji Uwazumi
敏士 上住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12812462&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06238139(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP04876893A priority Critical patent/JP3366040B2/en
Publication of JPH06238139A publication Critical patent/JPH06238139A/en
Application granted granted Critical
Publication of JP3366040B2 publication Critical patent/JP3366040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain such a membrane having high water permeability, filtering performance and diffusing performance while maintaining good adaptability with blood by forming a coating layer consisting of a hydrophilic polymer material infusibilized with water on at least one surface of a polysulfone semipermeable membrane. CONSTITUTION:A coating layer consisting of a hydrophilic polymer material 7 infusibilized with water is formed at least one surface of a polysulfone semipermeable membrane 6 consisting of polysulfone or ethersulfone. The hydrophilic polymer is soluble in water and crosslinked by physical or chemical treatment to make the polymer infusible in water, and for example, polyvinylpyrrolidone, polyethylene glycol, etc., are used. By forming a coating layer of the hydrophilic high molecular material 7 on at least one surface of the membrane, the hydrophilic high molecular material 7 exists very near the surface of the semipermeable membrane and maintained to prevent dissolution or isolation in water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリスルホン系半透膜
およびその製造方法に関し、更に詳しくは、ポリスルホ
ンおよび/またはポリエーテルスルホンよりなる半透膜
の少なくとも一表面に対し、親水性高分子物質よりなる
被覆層を形成させることにより、良好な血液適合性を維
持したまま高透水性能、高濾過性能、高拡散性能を有す
るポリスルホン系半透膜およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polysulfone-based semipermeable membrane and a method for producing the same, more specifically, a hydrophilic polymer substance for at least one surface of the semipermeable membrane made of polysulfone and / or polyethersulfone. The present invention relates to a polysulfone-based semipermeable membrane having high water permeability, high filtration performance, and high diffusion performance while maintaining good blood compatibility by forming a coating layer made of the above, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、選択的な透過性を有する膜を利用
する技術がめざましく進歩し、気体や液体の分離フィル
ター,医療分野に於ける血液透析器,血液濾過器,血液
成分選択分離フィルター等広範な分野での実用化が進ん
でいる。
2. Description of the Related Art In recent years, the technology of utilizing a membrane having selective permeability has been remarkably advanced, and a gas or liquid separation filter, a hemodialyzer in the medical field, a hemofilter, a blood component selective separation filter, etc. Practical application is progressing in a wide range of fields.

【0003】該膜の材料としては、セルロース系(再生
セルロース系,酢酸セルロース系,化学変性セルロース
系等),ポリアクリロニトリル系,ポリメチルメタクリ
レート系,ポリスルホン系、ポリエチレンビニルアルコ
ール系,ポリアミド系等のポリマーが用いられてきた。
As the material of the membrane, a polymer such as cellulose type (regenerated cellulose type, cellulose acetate type, chemically modified cellulose type), polyacrylonitrile type, polymethylmethacrylate type, polysulfone type, polyethylene vinyl alcohol type, polyamide type, etc. Has been used.

【0004】このうちポリスルホン系ポリマーは、その
熱安定性、耐酸・耐アルカリ性に加え、製膜原液に親水
化剤を添加して製膜することにより、血液適合性が向上
することから、半透膜素材として注目され研究が進めら
れてきた(例えば、特公平2ー18695号公報、特公
平3ー47127号公報、特開平4ー300636号公
報)。
Of these, the polysulfone-based polymer is semi-permeable because it is improved in blood compatibility by adding a hydrophilizing agent to the stock solution for film formation in addition to its thermal stability and acid / alkali resistance. As a film material, attention has been paid to the research (for example, Japanese Patent Publication No. 2-18695, Japanese Patent Publication No. 3-47127, and Japanese Unexamined Patent Publication No. 3003006).

【0005】これら従前のポリスルホン系ポリマーの親
水化技術は、いずれも製膜原液の段階でポリスルホン系
ポリマーと親水性高分子物質を混合した後に製膜する方
法であり、該方法が目的とするところの親水化による血
液適合性向上に対してはある程度の効果はえられ低た。
All of these conventional techniques for hydrophilizing a polysulfone-based polymer are methods of forming a membrane after mixing the polysulfone-based polymer and the hydrophilic polymer at the stage of the membrane-forming stock solution, and the purpose of the method is To some extent, the effect of improving the blood compatibility by hydrophilization was obtained.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従前の
方法で親水化したポリスルホン系半透膜は、分画分子量
の小さいものしか得られておらず、透水性能、濾過性
能、拡散性能の低い膜でしかなく、そのため、ポリスル
ホン系半透膜において良好な血液適合性を維持しつつ、
かつ高透水性能、高濾過性能、高拡散性能を発揮できる
膜の開発が望まれていた。
However, the polysulfone-based semipermeable membrane which has been hydrophilized by the conventional method has only a small molecular weight cut off, and is a membrane having low water permeability, filtration performance and diffusion performance. Therefore, while maintaining good blood compatibility in the polysulfone semipermeable membrane,
In addition, it has been desired to develop a membrane that can exhibit high water permeability, high filtration performance, and high diffusion performance.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記した
ポリスルホン系半透膜が有する問題点を解決し、良好な
血液適合性を維持しつつ、かつ高透水性能、高濾過性
能、高拡散性能を保有するポリスルホン系半透膜を得る
ことを目標に鋭意研究し、その結果、ポリスルホンおよ
び/またはポリエーテルスルホンよりなる半透膜の少な
くとも一表面に親水性高分子物質よりなる被覆層を形成
させることにより、良好な血液適合性と驚くべき程高い
透水性能、濾過性能、拡散性能を持った膜が得られるこ
とを見出し、本発明を完成した。
Means for Solving the Problems The present inventors have solved the problems of the polysulfone-based semipermeable membrane described above, and while maintaining good blood compatibility, have high water permeability, high filtration performance, and high filtration performance. With the aim of obtaining a polysulfone-based semipermeable membrane having diffusion ability, as a result of intensive research, as a result, a coating layer made of a hydrophilic polymer substance was formed on at least one surface of the semipermeable membrane made of polysulfone and / or polyethersulfone. It was found that a membrane having good blood compatibility and surprisingly high water permeability, filtration performance, and diffusion performance can be obtained by forming the membrane, and the present invention has been completed.

【0008】すなわち本発明は、ポリスルホンおよび/
またはポリエーテルスルホンよりなる半透膜であって、
少なくともその一表面に水に対して不溶化された親水性
高分子物質よりなる被覆層を形成することを特徴とした
ポリスルホン系半透膜であり、またポリスルホンおよび
/またはポリエーテルスルホンを原料として製膜された
ポリスルホン系半透膜の少なくとも一表面に親水性高分
子を接触させた後、該親水性高分子を架橋することを特
徴とするポリスルホン系半透膜の製造方法である。限定
されるものでは無く、血液透析,蛋白分画,血漿分離
等,その目的に照らして適切なものを選択すれば良い。
That is, the present invention relates to polysulfone and / or
Or a semipermeable membrane made of polyether sulfone,
A polysulfone-based semipermeable membrane having at least one surface thereof formed with a coating layer made of a hydrophilic polymer substance insolubilized in water, and formed from polysulfone and / or polyethersulfone as a raw material. The method for producing a polysulfone-based semipermeable membrane is characterized in that a hydrophilic polymer is brought into contact with at least one surface of the obtained polysulfone-based semipermeable membrane, and then the hydrophilic polymer is crosslinked. There is no limitation, and hemodialysis, protein fractionation, plasma separation, etc. may be selected appropriately depending on the purpose.

【0009】ここでいうポリスルホンおよび/またはポ
リエーテルスルホンとは、通常式(1)、または式
(2)の繰り返し単位を有するポリマーであり、官能基
を有していたり、芳香族系がアルキル系になっていても
よく、とくに限定されるものではない。
The polysulfone and / or polyether sulfone referred to here is a polymer having a repeating unit of the formula (1) or (2), which has a functional group or an aromatic aromatic group. It may be, but is not particularly limited.

【0010】[0010]

【化1】 また、半透膜とは、溶液または分散液中の一部の成分は
通過するが他の成分は通過させない膜のことをいい、そ
の使用目的、すなわち、血液透析、蛋白分画、血漿分離
等の目的に合った分画特性のものを選択使用することが
でき、また、その形状、寸法等は特に限定されるもので
なく、平膜状であっても中空糸状であってもよいが、中
空糸状のものは膜面積当たりの占有体積を小さくできる
ので好んで用いられる。
[Chemical 1] The semipermeable membrane refers to a membrane that allows some components of a solution or dispersion to pass through but does not allow other components to pass, and its purpose of use is hemodialysis, protein fractionation, plasma separation, etc. It is possible to select and use one having a fractionation property suitable for the purpose of, and its shape, dimensions, etc. are not particularly limited, and may be a flat membrane shape or a hollow fiber shape, Hollow fibers are preferred because they can reduce the occupied volume per membrane area.

【0011】中空糸状の場合、形状は通常円筒状の中空
糸が用いられるが、円筒の外側面にフィンの付いた形状
の中空糸も使用することができ、寸法は、膜厚が1〜1
00μm,好ましくは5〜50μm,内径が50〜50
0μm,好ましくは100〜300μm程度の中空糸が
使用できる。
In the case of a hollow fiber, a hollow fiber having a cylindrical shape is usually used, but a hollow fiber having fins on the outer surface of the cylinder can also be used.
00 μm, preferably 5 to 50 μm, inner diameter 50 to 50
Hollow fibers of 0 μm, preferably about 100 to 300 μm can be used.

【0012】分画特性については、その用途により透析
用であれば低分子量物質からアルブミンより小さい分子
量の物質の透過性が高いもの,蛋白分画用であれば低分
子蛋白が透過し、高分子蛋白や免疫複合体の様な物質が
透過し難いもの,血漿分離用であれば血漿成分は透過す
るが血球成分は透過しないものなどが好適に用いられ
る。
With regard to the fractionation characteristics, depending on the application, those having a high permeability from a low molecular weight substance to a substance having a molecular weight smaller than albumin are used for dialysis, and low molecular weight proteins are permeated for a protein fractionation. A substance such as a protein or an immune complex which is difficult to permeate, and a substance which is permeable to a plasma component but not a blood cell component for plasma separation are preferably used.

【0013】また親水性高分子とは、水に可溶であり、
かつ物理的処理および/または化学的処理により架橋
し、それにより水に対し不溶化し得る物質をいい、例示
すと、ポリビニルピロリドン,ポリエチレングリコー
ル,ポリビニルアルコール,ポリプロピレングリコール
等が挙げられるが、これらに限定されるものではなく、
これらの中では、ポリビニルピロリドンおよび/または
ポリエチレングリコールが生体適合性改善の面から特に
推奨しうるものである。
The hydrophilic polymer is soluble in water,
In addition, it refers to a substance that can be crosslinked by physical treatment and / or chemical treatment and thereby become insoluble in water, and examples thereof include polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, polypropylene glycol, and the like, but are not limited thereto. Not what is done,
Of these, polyvinylpyrrolidone and / or polyethylene glycol are particularly recommended from the viewpoint of improving biocompatibility.

【0014】親水性高分子物質の分子量は、大きい方が
架橋が進み易いが、水溶液にした時の粘度が高くなり取
り扱いにくくなる。したがって、それらの分子量として
は、500から100万,好ましくは1万から50万,
更に好ましくは2万から40万が推奨しうるものであ
る。
The larger the molecular weight of the hydrophilic polymer substance, the more easily the crosslinking proceeds, but the viscosity of the aqueous solution becomes high and the handling becomes difficult. Therefore, their molecular weight is 500 to 1,000,000, preferably 10,000 to 500,000,
More preferably, 20,000 to 400,000 can be recommended.

【0015】水に対し不溶化された親水性高分子物質と
は、上記した親水性高分子が架橋され、更に高分子化し
た結果水に対する溶解性が失なわれるということであ
る。
The hydrophilic polymer substance insolubilized in water means that the above-mentioned hydrophilic polymer is cross-linked and the solubility in water is lost as a result of further polymerization.

【0016】また、少なくともその一表面に親水性高分
子物質よりなる被覆層を有するという意味は、水に対し
不溶化された親水性高分子物質がポリスルホンおよび/
またはポリエーテルスルホンよりなる半透膜が極めて表
面近傍に存在して被覆層を形成し、水中に溶離あるいは
遊離して行かない様にかない様に保持されている状態を
いう。
Further, the meaning of having a coating layer made of a hydrophilic polymer substance on at least one surface thereof means that the hydrophilic polymer substance insolubilized in water is polysulfone and / or
Alternatively, it means a state in which a semi-permeable membrane made of polyether sulfone is present very near the surface to form a coating layer and is held so as not to be eluted or liberated in water.

【0017】これを模式図でしめすと図2のようにな
り、図中6はポリスルホンおよび/またはポリエーテル
スルホンよりなる半透膜断面を示し、7は親水性高分子
物質を示す。この図は中空糸状半透膜の断面を示してお
り、その中空糸内表面に親水性高分子物質よりなる被覆
層が形成されていることを示しており、これに対して、
従来技術により製造された中空糸断面を模式図に示すと
図3に示すが如きであり、従前の技術で製造した中空糸
は親水性高分子物質が膜の表面だけでなく膜の構造全体
に分布している。
A schematic view of this is shown in FIG. 2. In the figure, 6 shows a semipermeable membrane cross section made of polysulfone and / or polyether sulfone, and 7 shows a hydrophilic polymer substance. This figure shows a cross section of a hollow fiber-shaped semipermeable membrane, and shows that a coating layer made of a hydrophilic polymer is formed on the inner surface of the hollow fiber.
A cross-sectional view of a hollow fiber manufactured by a conventional technique is shown in FIG. 3. As shown in FIG. 3, the hollow fiber manufactured by the conventional technique has a hydrophilic polymer substance not only on the surface of the membrane but also on the entire structure of the membrane. It is distributed.

【0018】本発明において、親水性高分子物質よりな
る被覆層の存在部位は、膜の一方の表面に限定されるこ
となく、他方の表面に存在しても差し支えない。
In the present invention, the site where the coating layer made of the hydrophilic polymer is present is not limited to one surface of the membrane, and may be present on the other surface.

【0019】親水性高分子物質を半透性中空糸膜に接触
させる方法は、親水性高分子を水または適当な溶剤、あ
るいはこれらの混合溶媒に溶解させた後半透性中空糸に
接触させ、その後余分な溶液を適当な気体により吹き飛
ばしてしまう方法、霧状にした親水性高分子溶液を半透
性中空糸に吹き付ける方法等、公知のコーティング方法
を使用することができ、また、上記した処理は、中空糸
の状態で行なってもよいし、中空糸を容器に充填した透
析器,蛋白分画用濾過器等モジュールの状態にした後に
行なってもよい。
The hydrophilic polymer substance is brought into contact with the semipermeable hollow fiber membrane by contacting the hydrophilic polymer with the latter half permeable hollow fiber obtained by dissolving the hydrophilic polymer in water or an appropriate solvent or a mixed solvent thereof. After that, known coating methods such as a method of blowing off an excess solution with an appropriate gas, a method of spraying a nebulized hydrophilic polymer solution onto a semipermeable hollow fiber, and the above-mentioned treatment can be used. This may be carried out in the state of hollow fibers, or may be carried out after the hollow fibers are filled in a container, such as a dialysis machine and a filter for protein fractionation, and the like.

【0020】親水性高分子溶液の濃度は、親水性高分子
物質の分子量,すなわち溶液にした場合の溶液粘度,架
橋後の半透性中空糸の濾過性能等を考慮して任意に選択
しうるが、0.01から10重量%,好ましくは0.0
5から5重量%,更に好ましくは0.1から1重量%の
溶液濃度が推奨しうるものである。
The concentration of the hydrophilic polymer solution can be arbitrarily selected in consideration of the molecular weight of the hydrophilic polymer substance, that is, the solution viscosity of the solution, the filtration performance of the semipermeable hollow fiber after crosslinking, and the like. Is 0.01 to 10% by weight, preferably 0.0
A solution concentration of 5 to 5% by weight, more preferably 0.1 to 1% by weight is recommended.

【0021】親水性高分子物質を架橋させる方法を例示
すると、γ線,X線等を用いる放射線架橋法,紫外線架
橋法,熱架橋法,架橋試薬を用いる方法あるいはこれら
の組み合わせ等が挙げられ、また、架橋を促進させるた
め、種々の開始剤,開始助剤あるいは重合性モノマー,
オリゴマー,ポリマー等を使用することもでき、上記し
た架橋法のうち、半透性中空糸の膜構造に与える影響が
少なく、残留試薬の問題が少ないことなどから放射線架
橋法および/または熱架橋法が特に推奨しうるものであ
る。
Examples of the method for crosslinking the hydrophilic polymer substance include a radiation crosslinking method using γ-rays and X-rays, an ultraviolet crosslinking method, a thermal crosslinking method, a method using a crosslinking reagent, and a combination thereof. In order to promote crosslinking, various initiators, initiator aids or polymerizable monomers,
It is also possible to use oligomers, polymers and the like, and among the above-mentioned crosslinking methods, there is little influence on the membrane structure of the semipermeable hollow fiber, and there are few problems with residual reagents. Is especially recommended.

【0022】放射線架橋法のうちγ線を用いる場合、そ
の線量の選択は親水性高分子の架橋の程度,素材の劣化
の程度を考慮して任意に選定できるが、1から100k
Gy,好ましくは5から50kGy,更に好ましくは1
0から25kGyが推奨しうる線量であり、また、熱架
橋法を用いる場合には、120℃から200℃程度の温
度条件を用いるのが一般的であり、特に150℃から1
80℃のの温度範囲が好ましい。
When γ-ray is used in the radiation crosslinking method, the dose can be selected arbitrarily in consideration of the degree of crosslinking of the hydrophilic polymer and the degree of deterioration of the material.
Gy, preferably 5 to 50 kGy, more preferably 1
The recommended dose is 0 to 25 kGy, and when the thermal crosslinking method is used, it is common to use a temperature condition of about 120 ° C to 200 ° C, particularly 150 ° C to 1 ° C.
A temperature range of 80 ° C. is preferred.

【0023】本発明のポリスルホン系半透膜は、中空糸
状の場合、その多数本を容器に接着固定したモジュール
の形で使用されるのが一般的であり、以下、透析器を例
にとり説明すると、図1は透析器の一例を示す模式図で
あり、ポリスルホン系半透膜中空糸1は透析液出入口
5、5’を有する容器2にその多数本が集束されポリウ
レタンの様なポッティング材3により端部が接着され、
容器に固定される。
When the polysulfone-based semipermeable membrane of the present invention is in the form of a hollow fiber, it is generally used in the form of a module in which a large number of them are adhered and fixed to a container. Hereinafter, a dialyzer will be described as an example. FIG. 1 is a schematic diagram showing an example of a dialysis machine. A polysulfone-based semipermeable membrane hollow fiber 1 is bundled in a container 2 having dialysate inlets and outlets 5 and 5 ′, and a large number thereof are bundled by a potting material 3 such as polyurethane. The edges are glued together,
It is fixed to the container.

【0024】ポリスルホン系半透膜中空糸1の中空部分
は血液出入口4,4′に開放されており、血液はポリス
ルホン系半透膜中空糸の内側を流れる構造になってお
り、ここでポリスルホン系半透膜中空糸1の本数は10
00から20000本,有効長は150から400mm
の範囲が一般的であるがこの範囲に限定されるものでは
ない。
The hollow portion of the polysulfone-based semipermeable membrane hollow fiber 1 is open to the blood inlet / outlet ports 4 and 4 ', and blood is structured to flow inside the polysulfone-based semipermeable membrane hollow fiber. The number of semipermeable membrane hollow fibers 1 is 10
00 to 20000, effective length 150 to 400 mm
However, the range is not limited to this range.

【0025】透析液は入口5′から入り、ポリスルホン
系半透膜中空糸1の外表面に接触し、出口5から排出さ
れ、血液は入口4′から入り、ポリスルホン系半透膜中
空糸1内を通り透析された後出口4から排出されるとい
う使い方が一般的である。血液はポリスルホン系半透膜
中空糸1の内面に接触するのであるが、ポリスルホン系
半透膜中空糸1内表面には親水性高分子物質の被覆層が
形成されているのでポリスルホンおよび/またはポリエ
ーテルスルホンよりなる半透膜構造体の素材そのものの
表面と血液とが直接接触する頻度が低く抑えられ、結果
として、血液適合性が改善される。本発明のポリスルホ
ン系半透膜においては親水性高分子物質は、膜の表面部
分にのみ存在するので、その結果、従前の技術の如き親
水性高分子物質が膜内部に分散して孔径を小さくしてし
まうことがなく、高い透水性能、濾過性能、拡散性能を
有する半透膜が得られる。
The dialysate enters through the inlet 5 ', contacts the outer surface of the polysulfone-based semipermeable membrane hollow fiber 1 and is discharged through the outlet 5, and the blood enters through the inlet 4', and inside the polysulfone-based semipermeable membrane hollow fiber 1. It is generally used after being dialyzed through and discharged from the outlet 4. Blood comes into contact with the inner surface of the polysulfone-based semipermeable membrane hollow fiber 1, but since the coating layer of the hydrophilic polymer substance is formed on the inner surface of the polysulfone-based semipermeable membrane hollow fiber 1, polysulfone and / or polysulfone is used. The frequency of direct contact between blood and the surface of the material itself of the semipermeable membrane structure made of ether sulfone is suppressed to be low, and as a result, blood compatibility is improved. In the polysulfone-based semipermeable membrane of the present invention, the hydrophilic polymer substance is present only on the surface portion of the membrane, and as a result, the hydrophilic polymer substance as in the prior art is dispersed inside the membrane to reduce the pore size. A semipermeable membrane having high water permeation performance, filtration performance, and diffusion performance can be obtained.

【0026】[0026]

【実施例】【Example】

(実施例1〜6および比較例1〜2)ポリスルホン(P
−1700,UCC社製)18部、ポリビニルピロリド
ン(K−90,分子量36万)5部、ジメチルアセタミ
ド(以下,「DMAc」という。)74.5部、水2.
5部からなる紡糸原液を調整し、中空部に水を注入しな
がら5%DMAc水溶液を凝固液とする凝固浴中で中空
糸を紡糸し、得られた中空糸を水洗し、グリセリンを付
着させた後、乾燥し、該中空糸を比較例1の原糸とし
た。
(Examples 1 to 6 and Comparative Examples 1 and 2) Polysulfone (P
-1700, manufactured by UCC) 18 parts, polyvinylpyrrolidone (K-90, molecular weight 360,000) 5 parts, dimethylacetamide (hereinafter referred to as "DMAc") 74.5 parts, water 2.
A spinning stock solution consisting of 5 parts was prepared, and the hollow fiber was spun in a coagulation bath using a 5% DMAc aqueous solution as a coagulating liquid while pouring water into the hollow part, and the resulting hollow fiber was washed with water to attach glycerin. After that, it was dried and the hollow fiber was used as the raw yarn of Comparative Example 1.

【0027】上記紡糸原液組成からポリビニルピロリド
ン(以下「PVP」という。)を除いた以外は同様に紡
糸原液を調整し、紡糸し、後処理し、得られた中空糸を
比較例2の原糸とした。
The hollow fiber obtained was prepared in the same manner as in Comparative Example 2 except that polyvinylpyrrolidone (hereinafter referred to as "PVP") was omitted from the composition of the above spinning dope. And

【0028】比較例1の原糸および比較例2原糸を用
い、図1に示す透析器をそれぞれ試作した。該透析器
は、中空糸の膜厚50μm,内径200μm,フィラメ
ント数9400本,膜面積1.5m2 であり、この状態
の透析器を比較例1および比較例2の試験に供した。
Using the raw yarn of Comparative Example 1 and the raw yarn of Comparative Example 2, the dialyzer shown in FIG. The dialyzer had a hollow fiber membrane thickness of 50 μm, an inner diameter of 200 μm, a number of filaments of 9400, and a membrane area of 1.5 m 2 , and the dialyzer in this state was subjected to the tests of Comparative Example 1 and Comparative Example 2.

【0029】比較例2と同様の透析器に対して、親水性
高分子としてPVPを用い以下の処理を行い各実施例1
〜6の試験に供する透析器を製造した。
Using the same dialyzer as in Comparative Example 2 and using PVP as the hydrophilic polymer, the following treatment was performed.
A dialyzer for the ~ 6 tests was produced.

【0030】PVPはK30(分子量4万)およびK4
0(分子量36万)を使用し、それぞれ表1に示す濃度
の水溶液を調製し、それぞれの未処理透析器に対して血
液入口4’から各々のPVP溶液200mlを800m
l/分の流速で流した後、0.2kg/cm2 の圧縮空
気で残存するPVP溶液を吹き飛ばして血液出口4から
排出し、その後10kGyのγ線を照射し、次いで中空
糸の内側,外側すなわち容器2内部全体を水で充填して
実施例1〜6の試験に供する透析器とした。表1にその
処理条件を示す。
PVP is K30 (molecular weight 40,000) and K4
0 (molecular weight: 360,000) was used to prepare aqueous solutions having the concentrations shown in Table 1, and 200 ml of each PVP solution from the blood inlet 4'to 800 m of each untreated dialyzer.
After flowing at a flow rate of 1 / min, the remaining PVP solution was blown off with 0.2 kg / cm 2 of compressed air and discharged from the blood outlet 4, after which 10 kGy of γ-ray was irradiated, and then inside and outside of the hollow fiber. That is, the inside of the container 2 was filled with water to prepare a dialyzer for the tests of Examples 1 to 6. Table 1 shows the processing conditions.

【0031】[0031]

【表1】 以上の様にして作成した透析器を用いて実施例1〜6お
よび比較例1〜2として以下の試験を行なった。
[Table 1] The following tests were performed as Examples 1 to 6 and Comparative Examples 1 and 2 using the dialyzer prepared as described above.

【0032】1).日本人工臓器学会の性能評価基準に
従い、透水量(以下uFRと略す,単位はml/hr/
mmHg),クレアチニンおよびビタミンB12(以下V
12)のクリアランス(膜間圧力0mmHgの時の値)
を測定した。
1). Permeability (hereinafter abbreviated as uFR, unit: ml / hr /
mmHg), creatinine and vitamin B 12 (hereinafter V
Clearance B 12) (the value when the transmembrane pressure 0 mmHg)
Was measured.

【0033】2).日本人工臓器学会の性能測定基準に
準じミオグロビン(以下Mb)のクリアランス(但し膜
間圧力0mmHgの時の値)を測定した。
2). The clearance of myoglobin (hereinafter referred to as Mb) (however, the value when the transmembrane pressure was 0 mmHg) was measured according to the performance measurement standard of the Japan Society for Artificial Organs.

【0034】3).実施例1〜6,比較例1〜2と同様
に作成した透析器より中空糸を切り出し、フィラメント
数100本,長さ150mmのミニモジュールを作成
し、これにヘパリン添加ヒト新鮮血液10mlを1ml
/minの流速で流し、ミニモジュールを通過した血液
につき以下の分析を行なった。 a) 血小板数(電気抵抗検出法) b) 血小板第4因子(以下PF−4,酵素免疫分析) 各透析器について測定した結果を表2に、ミニモジュー
ルで測定した結果を表3に示す。
3). Hollow fibers were cut out from the dialyzer prepared in the same manner as in Examples 1 to 6 and Comparative Examples 1 to 2 to prepare a mini module having 100 filaments and a length of 150 mm, and 1 ml of heparin-added human fresh blood 10 ml was prepared.
The following analysis was performed on the blood that passed through the mini-module at a flow rate of / min. a) Platelet count (electric resistance detection method) b) Platelet factor 4 (hereinafter PF-4, enzyme immunoassay) Table 2 shows the results measured for each dialyzer, and Table 3 shows the results measured with the mini module.

【0035】表2および表3は比較例1の測定値を10
0とした場合の各々の実施例1〜6の測定値を示す。
In Tables 2 and 3, the measured values of Comparative Example 1 are 10
The measured value of each Example 1-6 when set to 0 is shown.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 比較例1と比較例2との比較でPVPを紡糸原液に加え
ないとuFRおよびクリアランス、特に高分子量物質で
あるMbのクリアランスが高くなっていることが判明し
(表2)、しかしながら、血液適合性の点では血小板の
付着量が多くなり、PF−4の放出も多くなってしまう
ことが判る(表3)。これに対して、各実施例では、高
いuFR,クリアランスを発現しつつ、かつ血液適合性
も良好であることが判る(表2、3)。
[Table 3] Comparison between Comparative Example 1 and Comparative Example 2 revealed that if PVP was not added to the spinning dope, the uFR and clearance, especially the clearance of Mb, which is a high molecular weight substance, were increased (Table 2). From the viewpoint of sex, it can be seen that the amount of adhered platelets increases and the amount of PF-4 released also increases (Table 3). On the other hand, in each of the examples, it is understood that high uFR and clearance are expressed and blood compatibility is also good (Tables 2 and 3).

【0038】[0038]

【発明の効果】以上述べた如く、本発明によるポリスル
ホン系半透膜は、良好な血液適合性を維持しつつ、かつ
高透水性能、高濾過性能、高拡散性能を発揮すうる半透
膜であり、また、本発明のポリスルホン系半透膜を用い
て血液透析器、血液濾過器、血漿分離器等の医療用具を
形成すると血液適合性の良好で、高い濾過、透析、分離
性能を持った医療器具が得られた。
As described above, the polysulfone-based semipermeable membrane according to the present invention is a semipermeable membrane capable of exhibiting high water permeability, high filtration performance and high diffusion performance while maintaining good blood compatibility. Also, when a medical device such as a hemodialyzer, a hemofilter, and a plasma separator is formed using the polysulfone-based semipermeable membrane of the present invention, it has good blood compatibility and high filtration, dialysis, and separation performance. A medical device was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のポリスルホン系半透膜からなる中空糸
を用いた透析器の一例を示す模式図である。
FIG. 1 is a schematic view showing an example of a dialyzer using a hollow fiber made of a polysulfone-based semipermeable membrane of the present invention.

【図2】本発明のポリスルホン系半透膜に於ける親水性
高分子物質の存在状態の一例を示す断面模式図である。
FIG. 2 is a schematic cross-sectional view showing an example of a state in which a hydrophilic polymer substance is present in the polysulfone-based semipermeable membrane of the present invention.

【図3】従来技術により製造されたポリスルホン系半透
膜に於ける親水性高分子物質の存在状態の一例を示す断
面模式図である。
FIG. 3 is a schematic cross-sectional view showing an example of a state in which a hydrophilic polymer substance is present in a polysulfone-based semipermeable membrane manufactured by a conventional technique.

【符号の説明】[Explanation of symbols]

1 ポリスルホン系半透膜からなる中空糸 2 容器 3 ポッティング材 4 血液出口 4′ 血液入口 5 透析液出口 5′ 透析液入口 6 ポリスルホン系半透膜 7 親水性高分子物質 1 Hollow Fiber Made of Polysulfone Semipermeable Membrane 2 Container 3 Potting Material 4 Blood Outlet 4'Blood Inlet 5 Dialysis Fluid Outlet 5'Dialysate Inlet 6 Polysulfone Semipermeable Membrane 7 Hydrophilic Polymer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリスルホンおよび/またはポリエーテ
ルスルホンよりなる半透膜であって、少なくともその一
表面に水に対して不溶化された親水性高分子物質よりな
る被覆層を形成することを特徴とするポリスルホン系半
透膜。
1. A semipermeable membrane made of polysulfone and / or polyethersulfone, characterized in that a coating layer made of a hydrophilic polymer insolubilized in water is formed on at least one surface thereof. Polysulfone-based semipermeable membrane.
【請求項2】 親水性高分子物質がポリビニルピロリド
ンおよび/またはポリエチレングリコールであることを
特徴とする請求項1記載のポリスルホン系半透膜。
2. The polysulfone-based semipermeable membrane according to claim 1, wherein the hydrophilic polymer substance is polyvinylpyrrolidone and / or polyethylene glycol.
【請求項3】 ポリスルホンおよび/またはポリエーテ
ルスルホンを原料として製膜されたポリスルホン系半透
膜の少なくとも一表面に親水性高分子を接触させた後、
該親水性高分子を架橋することを特徴とするポリスルホ
ン系半透膜の製造方法。
3. A hydrophilic polymer is brought into contact with at least one surface of a polysulfone-based semipermeable membrane formed by using polysulfone and / or polyethersulfone as a raw material,
A method for producing a polysulfone-based semipermeable membrane, which comprises crosslinking the hydrophilic polymer.
【請求項4】 架橋する方法が放射線架橋および/また
は熱架橋であることを特徴とする請求項3記載のポリス
ルホン系半透膜の製造方法。
4. The method for producing a polysulfone-based semipermeable membrane according to claim 3, wherein the method for crosslinking is radiation crosslinking and / or thermal crosslinking.
JP04876893A 1993-02-16 1993-02-16 Polysulfone-based semipermeable membrane and method for producing the same Expired - Fee Related JP3366040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04876893A JP3366040B2 (en) 1993-02-16 1993-02-16 Polysulfone-based semipermeable membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04876893A JP3366040B2 (en) 1993-02-16 1993-02-16 Polysulfone-based semipermeable membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06238139A true JPH06238139A (en) 1994-08-30
JP3366040B2 JP3366040B2 (en) 2003-01-14

Family

ID=12812462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04876893A Expired - Fee Related JP3366040B2 (en) 1993-02-16 1993-02-16 Polysulfone-based semipermeable membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP3366040B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018085A1 (en) * 2002-08-21 2004-03-04 Toray Industries, Inc. Modified substrate and process for producing modified substrate
JP2005065711A (en) * 2003-08-21 2005-03-17 Toray Ind Inc Absorption material and manufacturing method of the same
JP2005230408A (en) * 2004-02-23 2005-09-02 Toray Ind Inc Method for treating substrate and method for manufacturing separation membrane by using this treatment method
JP2008110054A (en) * 2006-10-30 2008-05-15 Kuraray Medical Inc Hollow fiber membrane for blood purification and its manufacturing method
JP2009189743A (en) * 2008-02-18 2009-08-27 Toru Tani Method for allowing endothelial progenitor cell to grow
JP2011173115A (en) * 2010-01-29 2011-09-08 Toray Ind Inc Hollow fiber membrane and method for producing hollow fiber membrane
JP2011183384A (en) * 2011-04-01 2011-09-22 Toray Ind Inc Adsorption material and manufacturing method for the same
JP2012011221A (en) * 2011-09-12 2012-01-19 Asahi Kasei Kuraray Medical Co Ltd Hollow fiber membrane for blood purification and manufacturing method thereof
WO2012133803A1 (en) 2011-03-30 2012-10-04 独立行政法人 国立長寿医療研究センター Membrane-separation-type culture device, membrane-separation-type culture kit, stem cell separation method using same, and separation membrane
US8613361B2 (en) 2008-03-31 2013-12-24 Toray Industries, Inc. Separation membrane, method of producing the same and separation membrane module using the separation membrane
KR20170133341A (en) 2015-03-31 2017-12-05 도레이 카부시키가이샤 Copolymers and medical devices using them, medical membrane modules, and blood purifiers
WO2018025979A1 (en) 2016-08-05 2018-02-08 東レ株式会社 Copolymer, as well as separation membrane, medical device, and blood purifier in which said copolymer is used
WO2018062451A1 (en) 2016-09-30 2018-04-05 東レ株式会社 Separation membrane module
KR20190038763A (en) 2016-08-05 2019-04-09 도레이 카부시키가이샤 Biomaterial adhesion inhibiting material
KR20190046754A (en) 2016-08-31 2019-05-07 도레이 카부시키가이샤 Medical Materials, Medical Membranes, and Blood Purifiers

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810827B2 (en) * 2002-08-21 2011-11-09 東レ株式会社 Modified substrate and method for producing modified substrate
JPWO2004018085A1 (en) * 2002-08-21 2005-12-08 東レ株式会社 Modified substrate and method for producing modified substrate
WO2004018085A1 (en) * 2002-08-21 2004-03-04 Toray Industries, Inc. Modified substrate and process for producing modified substrate
KR101157244B1 (en) * 2002-08-21 2012-06-15 도레이 카부시키가이샤 Process for producing modified substrate and process for modifying separation membrane system
JP2005065711A (en) * 2003-08-21 2005-03-17 Toray Ind Inc Absorption material and manufacturing method of the same
JP2005230408A (en) * 2004-02-23 2005-09-02 Toray Ind Inc Method for treating substrate and method for manufacturing separation membrane by using this treatment method
JP2008110054A (en) * 2006-10-30 2008-05-15 Kuraray Medical Inc Hollow fiber membrane for blood purification and its manufacturing method
JP2009189743A (en) * 2008-02-18 2009-08-27 Toru Tani Method for allowing endothelial progenitor cell to grow
US8613361B2 (en) 2008-03-31 2013-12-24 Toray Industries, Inc. Separation membrane, method of producing the same and separation membrane module using the separation membrane
US9561478B2 (en) 2008-03-31 2017-02-07 Toray Industries, Inc. Separation membrane, method of producing the same and separation membrane module using the separation membrane
JP2011173115A (en) * 2010-01-29 2011-09-08 Toray Ind Inc Hollow fiber membrane and method for producing hollow fiber membrane
WO2012133803A1 (en) 2011-03-30 2012-10-04 独立行政法人 国立長寿医療研究センター Membrane-separation-type culture device, membrane-separation-type culture kit, stem cell separation method using same, and separation membrane
JP2011183384A (en) * 2011-04-01 2011-09-22 Toray Ind Inc Adsorption material and manufacturing method for the same
JP2012011221A (en) * 2011-09-12 2012-01-19 Asahi Kasei Kuraray Medical Co Ltd Hollow fiber membrane for blood purification and manufacturing method thereof
KR20170133341A (en) 2015-03-31 2017-12-05 도레이 카부시키가이샤 Copolymers and medical devices using them, medical membrane modules, and blood purifiers
US10308745B2 (en) 2015-03-31 2019-06-04 Toray Industries, Inc. Copolymer and medical device, separation membrane module for medical use, and blood purifier including the same
WO2018025979A1 (en) 2016-08-05 2018-02-08 東レ株式会社 Copolymer, as well as separation membrane, medical device, and blood purifier in which said copolymer is used
KR20190038763A (en) 2016-08-05 2019-04-09 도레이 카부시키가이샤 Biomaterial adhesion inhibiting material
KR20190039076A (en) 2016-08-05 2019-04-10 도레이 카부시키가이샤 Copolymers and membranes, medical devices and blood purifiers using them
US10953142B2 (en) 2016-08-05 2021-03-23 Toray Industries, Inc. Biological component adhesion-suppressing material
KR20190046754A (en) 2016-08-31 2019-05-07 도레이 카부시키가이샤 Medical Materials, Medical Membranes, and Blood Purifiers
US10912868B2 (en) 2016-08-31 2021-02-09 Toray Industries, Inc. Medical material, medical separation membrane, and blood purifier
WO2018062451A1 (en) 2016-09-30 2018-04-05 東レ株式会社 Separation membrane module

Also Published As

Publication number Publication date
JP3366040B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
EP0568045B1 (en) Polysulfone-based hollow fiber membrane and process for manufacturing the same
KR100432463B1 (en) Polysulfone Hollow Fiber Membrane
JP3097149B2 (en) Medical dialysis module and method of manufacturing the same
CN100457242C (en) Dialysis membrane having improved average molecular distance
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
JP5011722B2 (en) Method for producing medical separation membrane and method for producing medical separation membrane module using the medical separation membrane
JP3366040B2 (en) Polysulfone-based semipermeable membrane and method for producing the same
WO2015046411A1 (en) Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
JP3617194B2 (en) Permselective separation membrane and method for producing the same
AU672856B2 (en) High flux hollow fiber membrane
JP3966481B2 (en) Semipermeable membrane
US6632359B1 (en) Blood purifying apparatus
JP3297707B2 (en) Modified hollow fiber and method for producing the same
JPH10118472A (en) Hollow fiber membrane and its manufacturing
JP4352709B2 (en) Polysulfone-based semipermeable membrane and artificial kidney using the same
CN111050888A (en) Microporous membrane and method for producing same
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JPH11104235A (en) Polysulfone hollow fiber type artificial kidney and its production
JPH09220455A (en) Hollow yarn type selective separation membrane
JP2000325763A (en) Production of hollow-fiber membrane for hemocatheresis, and hollow-fiber membrane thereof
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JP2003126664A (en) Method for producing semipermeable membrane and dialyzer using the semipermeable membrane

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081101

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091101

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091101

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111101

LAPS Cancellation because of no payment of annual fees