JPS5841883B2 - Plasma separation membrane and its manufacturing method - Google Patents

Plasma separation membrane and its manufacturing method

Info

Publication number
JPS5841883B2
JPS5841883B2 JP7999677A JP7999677A JPS5841883B2 JP S5841883 B2 JPS5841883 B2 JP S5841883B2 JP 7999677 A JP7999677 A JP 7999677A JP 7999677 A JP7999677 A JP 7999677A JP S5841883 B2 JPS5841883 B2 JP S5841883B2
Authority
JP
Japan
Prior art keywords
spinning
membrane
plasma separation
hollow
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7999677A
Other languages
Japanese (ja)
Other versions
JPS5415476A (en
Inventor
正紘 三城
守正 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7999677A priority Critical patent/JPS5841883B2/en
Publication of JPS5415476A publication Critical patent/JPS5415476A/en
Publication of JPS5841883B2 publication Critical patent/JPS5841883B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate

Description

【発明の詳細な説明】 本発明は血液から血漿を効率よく分離する血漿分離膜に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma separation membrane that efficiently separates plasma from blood.

さらに詳述すると、セルロースアセテートの中空繊維で
、血漿分離能が高い血漿分離膜およびその製法に関する
ものである。
More specifically, the present invention relates to a plasma separation membrane that is made of cellulose acetate hollow fibers and has a high plasma separation ability, and a method for producing the same.

従来、血液を血球と血漿に分離するには各種の方法が考
案され、実用化されているが、血球の損傷を少なく、再
利用できる方法としては膜済過方式が採用されている。
Conventionally, various methods have been devised and put into practical use to separate blood into blood cells and plasma, but a membrane filtration method has been adopted as a method that causes less damage to blood cells and allows for reuse.

この膜は平均孔径が0.05〜1.0μのものが使用さ
れるが、最近の研究では平均孔径が0.7μでも膜材質
および製造方法によって血球が濾過されたり、溶血現象
を起している。
This membrane is used with an average pore size of 0.05 to 1.0μ, but recent research has shown that even with an average pore size of 0.7μ, blood cells may be filtered or hemolysis may occur depending on the membrane material and manufacturing method. There is.

また、血漿分離ができても極めて血漿分離度が遅く、そ
のため膜面積を大きくすることが必要である。
Further, even if plasma separation is possible, the degree of plasma separation is extremely slow, and therefore it is necessary to increase the membrane area.

そこで開発されてきた中空繊維膜は、膜済過型中空繊維
と称され、限外済過膜や逆浸透沢過膜といった半透膜と
は分離機能が著しく異なり、巨大分子量の物質分離に用
いられるものである。
The hollow fiber membranes that have been developed for this purpose are called pre-filtered hollow fibers, and have a significantly different separation function from semipermeable membranes such as ultrafiltration membranes and reverse osmosis filtration membranes, and are used for the separation of substances with large molecular weights. It is something that can be done.

この膜済過型中空繊維は、血漿分離能は優れているが、
血漿分離時間の短縮と、小型化の要求にはまだ不足であ
る。
This pre-membrane hollow fiber has excellent plasma separation ability, but
The requirements for shortening plasma separation time and miniaturization are still insufficient.

本発明者らは、血漿分離速度が高い中空繊維で、血球の
漏洩がなく、血球の溶血、凝血を起さず、さらに血漿分
離した後、各種用途に利用できるだけでなく、患者から
直接採血して本発明中空繊維で血漿分離後、血球と血漿
を混合して患者に再注入できるほど安全性のある膜素材
の開発研究を鋭意行った結果、血液の直接接触する膜表
面が、血液の流れ方向に一定の組織構造を有していれば
、血球の流れを円滑にし、血球に損傷を与えず、膜表面
を流れると同時に血漿が血液の流れ方向に垂直方向に膜
を界してp別されることを解明し、本発明の成功に達し
た。
The present inventors have developed a hollow fiber that has a high plasma separation rate, does not leak blood cells, does not cause hemolysis or coagulation of blood cells, and can be used for various purposes after plasma separation, as well as being able to collect blood directly from patients. After conducting plasma separation using the hollow fibers of the present invention, we conducted intensive research to develop a membrane material that is safe enough to mix blood cells and plasma and re-inject it into a patient. If it has a certain tissue structure in the direction, the flow of blood cells will be smooth, the blood cells will not be damaged, and at the same time as the plasma flows on the membrane surface, it will cross the membrane in a direction perpendicular to the blood flow direction and separate the blood cells. The present invention has been successfully developed.

すなわちこの発明の分離膜は、少なくとも膜の内表面に
、フィブリルが中空空洞軸方向に少くとも500以下配
向した中空繊維膜である。
That is, the separation membrane of the present invention is a hollow fiber membrane in which at least 500 or less fibrils are oriented in the axial direction of the hollow cavity on at least the inner surface of the membrane.

同様なフィブリルは外表面にも設けてもよい。Similar fibrils may also be provided on the outer surface.

この膜は、セルロースアセテート、溶媒、金属化合物、
添加溶媒からなる紡糸原液を環状紡糸孔から吐出すると
共に、環状紡糸孔の中央から上記紡糸原液に対して緩慢
な凝固作用を有する内部凝固液を定量に流出させ、環状
紡糸孔下にある凝固浴に導き、凝固させて捲取る工程に
おいて、環状紡糸孔からの紡糸原液の吐出速度で捲取速
度を除した値(以下ドラフトという)が1.5〜6.0
で紡糸して得られる。
This membrane consists of cellulose acetate, solvent, metal compound,
A spinning dope consisting of an added solvent is discharged from an annular spinning hole, and an internal coagulating liquid having a slow coagulating effect on the spinning dope is discharged from the center of the annular spinning hole in a fixed amount to create a coagulation bath below the annular spinning hole. In the step of coagulating, coagulating, and winding, the value obtained by dividing the winding speed by the discharge speed of the spinning dope from the annular spinning hole (hereinafter referred to as draft) is 1.5 to 6.0.
Obtained by spinning.

本発明においてフィブリルとは、中空繊維の外表面、中
空空洞部にある内表面に、環状紡糸孔から吐出された紡
糸原液中のセルロースアセテートがゲル、凝固する際に
凝集沈澱した繊維素の集合体である。
In the present invention, fibrils are aggregates of cellulose that coagulate and precipitate when cellulose acetate in the spinning dope discharged from the annular spinning hole gels and coagulates on the outer surface of the hollow fiber and the inner surface in the hollow cavity. It is.

中空空洞部軸方向とは、中空繊維の中央部に存在する空
洞が中空繊維の長さ方向に連続している軸方向である。
The axial direction of the hollow hollow portion is the axial direction in which the hollow existing in the center of the hollow fiber is continuous in the length direction of the hollow fiber.

0〜500の範囲に配向とは、フィブリルが存在する中
空繊維の外表面、内表面において、中空空洞部軸方向と
フィブリルの長軸方向とのなす角度が0°から500の
範囲にあることをいう。
Orientation in the range of 0 to 500 means that the angle between the axial direction of the hollow part and the long axis direction of the fibril is in the range of 0 to 500 on the outer and inner surfaces of the hollow fiber where fibrils are present. say.

0°とは、上記の説明から明らかなように、フィブリル
の長軸方向が中空空洞部軸方向と一致していることを示
す。
As is clear from the above description, 0° indicates that the long axis direction of the fibril coincides with the axial direction of the hollow cavity.

フィブリルの長軸方向とは、繊維素が凝集沈澱し、集合
した結果互いに接合し線状の模様を描く場合は、主とな
る線状方向をいう。
The long axis direction of fibrils refers to the main linear direction when cellulose coagulates and precipitates, aggregates and joins together to form a linear pattern.

一方、接合の結果、環状または長円形等を描く場合は、
その形成された環状、長円形の長軸方向をいう。
On the other hand, when drawing an annular or oval shape as a result of joining,
Refers to the long axis direction of the annular or oval shape formed.

本フィブリルの観察は電子顕微鏡下で倍率800倍から
可能で、2400〜8000倍が好ましい。
The present fibrils can be observed under an electron microscope at a magnification of 800 times, preferably 2,400 to 8,000 times.

本発明の好ましい実施態様によれば、血漿分離速度が4
0〜75−A−のものが得られる。
According to a preferred embodiment of the invention, the plasma separation rate is 4
0 to 75-A- is obtained.

ここで、血漿分離速度は血漿分離用中空繊維を束ね、内
径換算濾過面積0.5ホの血漿処理装置に組み込み、た
とえば緬羊保存血(ヘマトクリット14±0.5係;総
蛋白3.5±0.5g)を用い150d/脳で中空繊維
の内側に供給し、血液処理装置入口での血液側の圧力が
150(ホ)Hg、中空繊維の外側が除圧100闘Hg
(差圧250 timHg)の場合に炉出してくる血漿
速度をml、/*nで表示することができる。
Here, the plasma separation rate can be determined by bundling hollow fibers for plasma separation and incorporating them into a plasma processing device with an inner diameter equivalent filtration area of 0.5 mm. The pressure on the blood side at the inlet of the blood processing device is 150 (e) Hg, and the pressure on the outside of the hollow fiber is 100 to Hg.
(differential pressure 250 timHg), the rate of plasma discharged from the furnace can be expressed in ml, /*n.

また、ヘマトクリット値と総蛋白を上記と同様に調整し
た他の血液、たとえば生新鮮血を用いてもよい。
Other blood, such as fresh blood, whose hematocrit value and total protein have been adjusted in the same manner as above may also be used.

血液処理において最も重要なことは、溶血および凝血を
起さないことである。
The most important thing in blood treatment is to avoid hemolysis and coagulation.

特に溶血は赤血球の損傷・破壊によるものである。In particular, hemolysis is due to damage and destruction of red blood cells.

この解決には駆集中〔(2)、血液流体のレオロジー性
を示すもので、毛細血管を血液が流動する際、血球は血
管の中央部を流れることで血管中心軸に血球が集中する
ことをいう。
The solution to this problem is the central point [(2), which shows the rheological properties of blood fluid, and when blood flows through capillaries, blood cells flow through the center of the blood vessel and concentrate at the central axis of the blood vessel. say.

〕の効果を活用し、中空繊維で血液の直接接触する面、
たとえば中空空洞部の大きさく内径という)を小さくし
、血球は中空空洞部の内壁より空洞軸部を通るようにす
ることである。
] Utilizing the effect of
For example, the size of the hollow cavity (inner diameter) is made small so that blood cells pass through the hollow shaft part rather than the inner wall of the hollow cavity.

すなわち、内壁面に膜素材であるセルロースアセテート
のフィブリルを形成させ、このフィブリルが血液の流れ
方向である中空空洞軸方向に゛5o0以下配向している
ことである。
That is, fibrils of cellulose acetate, which is a membrane material, are formed on the inner wall surface, and these fibrils are oriented at 5o0 or less in the axial direction of the hollow cavity, which is the blood flow direction.

上記フィブリルの配向により血漿が内壁面に多量集り、
中空壁膜の厚さを透過して外表面に済出し、中空空洞部
には血球が存在する。
Due to the orientation of the fibrils mentioned above, a large amount of plasma collects on the inner wall surface,
It passes through the thickness of the hollow wall membrane and exits to the outer surface, and blood cells are present in the hollow cavity.

しかも驚くべきことに、上記フィブリルの配向により血
漿分離速度は極めて大きくなり、血球に損傷を与えず分
離できる。
Surprisingly, the orientation of the fibrils allows the plasma separation rate to be extremely high, allowing blood cells to be separated without damaging them.

従来、人工腎臓や血漿分離用の中空繊維はセルロース系
が主体であり、血流通路である中空空洞部にフィブリル
が存在しているものもある。
Conventionally, hollow fibers for artificial kidneys and plasma separation have mainly been made of cellulose, and some have fibrils in the hollow cavities that serve as blood flow passages.

しかし、中空空洞部軸方向に配向しているものはほとん
どなく、配向が存在しても血漿分離速度が低いものであ
る。
However, there are very few that are oriented in the axial direction of the hollow cavity, and even if they are oriented, the plasma separation rate is low.

特開昭51−93786に開示された膜濾過型中空繊維
にはフィブリルが存在し、部配向はしているものの、フ
ィブリル方向が中空空洞部軸方向となす角度はほぼ90
°に近く、また血漿分離速度は40 m17=@満であ
る。
Fibrils exist in the membrane filtration type hollow fiber disclosed in JP-A-51-93786, and although they are partially oriented, the angle that the fibril direction makes with the hollow axial direction is approximately 90.
The plasma separation rate is close to 40 m17.

さらに血漿分離速度を高めるには駆集中効果をより顕著
に作用させ、中空繊維の形状である外径内径・膜厚に制
約をつけることであり、内径350〜50μ、膜厚15
σ〜5μ、外径550〜1ooμであることが好ましい
のである。
Furthermore, in order to increase the plasma separation rate, it is necessary to make the concentration effect more pronounced and to limit the outer diameter, inner diameter, and membrane thickness, which are the shape of the hollow fiber.
It is preferable that the diameter is σ~5μ and the outer diameter is 550~1ooμ.

一方血漿分離速度を高めすぎると血液中の血球だけが中
空繊維の中空空洞部に存在し、流動性が失なわれ、凝血
が生じ、実用に供されず、単なる研究用の分離にのみに
利用される膜が得られるにすぎない。
On the other hand, if the plasma separation rate is too high, only the blood cells in the blood will exist in the hollow part of the hollow fiber, and fluidity will be lost and blood clots will occur, making it unusable and used only for research separation. However, only a film that can be obtained is obtained.

この意味で、血漿分離速度は75 ml、A−以下がよ
い。
In this sense, the plasma separation rate is preferably 75 ml, A- or less.

なお、血漿分離を完全に行うには、中空繊維の形状を小
型化することでなしえる。
Note that complete plasma separation can be achieved by reducing the size of the hollow fiber.

本発明の製造方法は、セルロースアセテートを溶媒(た
とえばアセトン、アセトンとメタノールやアセトンとエ
タノール等の混合溶媒など)に溶解し、金属化合物と添
加溶媒を加えた紡糸原液を調製する。
In the production method of the present invention, cellulose acetate is dissolved in a solvent (for example, acetone, a mixed solvent of acetone and methanol, acetone and ethanol, etc.), and a metal compound and an additive solvent are added to prepare a spinning stock solution.

金属化合物は一価、二価の陽イオン金属の塩酸塩、硝酸
塩、臭化物、ヨウ化物のうち少なくとも一種類のもの、
たとえば硝酸ナトリウム、塩化カルシウム、塩化マグネ
シウム、臭化リチウム、ヨウ化リチウム等であり、結晶
水含有のものも使用できる。
The metal compound is at least one type of monovalent or divalent cationic metal hydrochloride, nitrate, bromide, or iodide;
Examples include sodium nitrate, calcium chloride, magnesium chloride, lithium bromide, lithium iodide, and those containing crystal water can also be used.

添加溶媒は飽和環状−価アルコール、炭素数が5〜10
の環状炭化水素類の少なくとも一種類からなるものであ
る。
The added solvent is a saturated cyclic-hydric alcohol having 5 to 10 carbon atoms.
It consists of at least one kind of cyclic hydrocarbons.

たとえば、シクロヘキサノール、シクロペンタノール、
デカリン、テトラリン、シクロヘキサン等である。
For example, cyclohexanol, cyclopentanol,
These include decalin, tetralin, and cyclohexane.

調製した紡糸原液を環状紡糸孔から吐出すると同時に環
状紡糸孔の中央部から上記紡糸原液に対して緩慢な凝固
作用を有する内部凝固液(たとえばメタノール水、エタ
ノール水、アセトン水等である。
The prepared spinning dope is discharged from the annular spinning hole, and at the same time an internal coagulating liquid (for example, methanol water, ethanol water, acetone water, etc.) having a slow coagulation effect on the spinning dope is discharged from the center of the annular spinning hole.

)を定量的に流出させ、環状紡糸孔下にある凝固浴に導
き、凝固させて中空繊維状に捲取る。
) is quantitatively flowed out, introduced into a coagulation bath located below the annular spinning hole, coagulated, and wound into a hollow fiber.

この巻取り工程において、捲取速度(単位m/*π換算
)を環状紡糸孔からの紡糸原液の吐出速度(単位m/’
van換算)で除去した値、すなわちトラフI・が1.
5〜6.0の範囲内で紡糸することが重要である。
In this winding process, the winding speed (unit: m/*π conversion) is adjusted to the discharge speed of the spinning dope from the annular spinning hole (unit: m/'
van conversion), that is, the trough I· is 1.
It is important to perform spinning within the range of 5 to 6.0.

従来、上記紡糸原液を用いて紡糸する際のドラフトは1
.5未満であり、特にトラフl−1付近で紡糸するもの
であった。
Conventionally, the draft when spinning using the above spinning dope was 1
.. It was less than 5, and spinning was particularly performed near trough 1-1.

それは、ドラフトは環状紡糸孔から吐出された紡糸原液
に凝固前後で延伸効果を与え、ミクロ相分離を阻害する
ので、膜済過型の中空繊維を形成することにならないと
いう理由からである。
This is because the draft imparts a stretching effect to the spinning dope discharged from the annular spinning hole before and after solidification, inhibiting microphase separation, and thus does not result in the formation of membrane-filled hollow fibers.

さらに、この技術分野ではドラフトはかけないものだと
いう一般的通説があり、多孔質の網状組織構造は外力が
作用すると形成されにくいのも事実であった。
Furthermore, there is a general belief in this technical field that drafts should not be applied, and it is also true that a porous network structure is difficult to form when external forces are applied.

そのために半乾半湿式または乾湿式紡糸法に種々の考案
がなされた。
To this end, various ideas have been devised for semi-dry, semi-wet or dry-wet spinning methods.

ただし、透析、ガス分離等の分画分子量の小さい中空繊
維の製造では本願のミクロ相分離の発現を必要とせず、
ドラフトをかける場合がある。
However, the production of hollow fibers with a small molecular weight cut-off, such as in dialysis and gas separation, does not require the microphase separation of the present application.
A draft may be applied.

膜済過型中空繊維のように、分画分子量の大きいもの、
特に微粒子というμ単位の炉別の膜は、ドラフトは1付
近であり、はとんど自重落下で距離の短い中空間体を通
過させる紡糸法である。
Those with a high molecular weight cutoff, such as pre-membrane hollow fibers,
In particular, the draft of microparticles, which are produced by a furnace in units of μ, is around 1, and the spinning method is such that the particles mostly fall under their own weight and pass through a hollow space over a short distance.

本発明はこの技術通念を打破し、ドラフトを大きくした
ことに基本がある。
The present invention is based on overcoming this conventional wisdom and increasing the draft.

紡糸時のドラフトを大きくすることは、環状紡糸孔から
吐出された紡糸原液がゲル化、凝固する前後の流動性を
有している部分に、捲取速度と吐出速度の差分の延伸力
が集中し、フィブリルが配向を受ける。
Increasing the draft during spinning means that the drawing force of the difference between the winding speed and the discharge speed is concentrated in the part where the spinning stock solution discharged from the annular spinning hole has fluidity before and after it gels and solidifies. and the fibrils undergo orientation.

この配向とゲル化・凝固の進行で中空繊維の外・表面に
線状のフィブリルの接合体が発現する。
As a result of this orientation and the progress of gelation and coagulation, a linear fibril conjugate appears on the outside and surface of the hollow fiber.

紡糸時ドラフトを大きくする際、紡糸糸切れが発生する
結果を招き易いが、従来の乾式・湿式紡糸技法で採用さ
れる公知の方法で解決できる。
When increasing the draft during spinning, spun yarn breakage tends to occur, but this can be solved by known methods employed in conventional dry and wet spinning techniques.

特に紡糸原液に金属化合物、添加溶媒を含有する場合は
曳糸性低下を起し、糸切れ発生度が大きくなるため、増
粘または増粘弾性を付与する原液組成に修正したり、そ
の組成に適合した紡糸条件を設定ずればてきる。
In particular, if the spinning stock solution contains metal compounds or additive solvents, the spinnability will decrease and the occurrence of thread breakage will increase. This can be achieved by setting suitable spinning conditions.

本発明で最も著効ある技法は捲取速度を低下させ、環状
紡糸孔径を小さくすることである。
The most effective technique in the present invention is to reduce the winding speed and the annular spinning hole diameter.

以上述べたように、本発明は血液処理特に血漿分離に最
適であるが、微粒子が変形自在でありかつ全体としてサ
スペンションを形成した溶液での微粒子の分離に好適で
あり、繊維工場でのエマルジョン油剤や油水分離、牛乳
の稀釈水廖液からの牛乳粒子の濃縮、ラテックス稀釈液
の濃縮、ビール、ブドウ酒、清酒、ジュースの清澄化等
には直接使用できる。
As described above, the present invention is most suitable for blood processing, particularly plasma separation, but is also suitable for separating fine particles in a solution in which the fine particles are deformable and form a suspension as a whole, and is suitable for use in emulsion oil preparations in textile factories. It can be directly used for oil and water separation, concentration of milk particles from milk dilution solution, concentration of latex dilution solution, clarification of beer, grape wine, sake, juice, etc.

また、無機粒子の懸濁液の清澄炉別、無菌済過、超純水
製造にも可能であり、極めて優れたものである。
It is also possible to use a clarification furnace for inorganic particle suspensions, sterilize filtration, and produce ultrapure water, making it extremely excellent.

以下、さらに本発明の実施例を示す。Examples of the present invention are further shown below.

実施例 1 紡糸原液は酢化度54.3%、重合度190のセルロー
スアセテート162 gr、 ’Fl媒としてアセトン
326gr、メタノール82grの混合溶媒408gr
、金属化合物として塩化カルシウム2水塩86gr、添
加溶媒としてシクロヘキサノール344 gr、を完全
均一溶液になるように攪拌し、脱泡する。
Example 1 The spinning stock solution was 162 gr of cellulose acetate with a degree of acetylation of 54.3% and a degree of polymerization of 190, and 408 gr of a mixed solvent of 326 gr of acetone and 82 gr of methanol as a 'Fl medium.
, 86 gr of calcium chloride dihydrate as a metal compound, and 344 gr of cyclohexanol as an added solvent were stirred to form a completely homogeneous solution and defoamed.

この紡糸原液を環状紡糸孔から吐出させた。This spinning dope was discharged from an annular spinning hole.

環状紡糸孔の中央部にある内部凝固液の流出孔から50
Vo1%メタノール水溶液を定量的に流出させ、下方に
8Qmrn空中を通過させたのち、50Vo1%メタノ
ール水溶液の凝固浴に導き、凝固した中空繊維をメタノ
ール浴で処理した。
50 mm from the internal coagulation liquid outflow hole in the center of the annular spinning hole.
The 1% Vo methanol aqueous solution was quantitatively discharged and passed through 8Qmrn air downward, and then led to a coagulation bath of 50 Vo1% methanol aqueous solution, and the coagulated hollow fibers were treated in the methanol bath.

この紡糸において次の条件を採用し、第1表の結果を得
た。
The following conditions were adopted in this spinning, and the results shown in Table 1 were obtained.

本発明の方法におけるドラフト範囲から外れる比較例は
フィブリルの配向が存在するが、血漿分離速度が低い。
Comparative examples outside the draft range of the method of the present invention have fibril orientation, but the plasma separation rate is low.

透水量は、上記各中空繊維を用いた血液処理装置に血液
を流す前に無菌水を100 mllLHgで1時間透過
した量を単位l/ m h rmmHgに換算したもの
である。
The amount of water permeation is the amount of sterile water permeated at 100 ml LHg for 1 hour before flowing blood into the blood processing device using each of the hollow fibers described above, converted into units of l/m hr mmHg.

第1図は比較例の内表面、第2図は本発明(1)の内表
面、第3図は本発明(3)の内表面のそれぞれ8000
倍の電子顕微鏡写真である。
Figure 1 shows the inner surface of the comparative example, Figure 2 shows the inner surface of the present invention (1), and Figure 3 shows the inner surface of the present invention (3).
This is a magnified electron micrograph.

実施例 2 紡糸原液の成分は実施例1と全く同じで、組成が、セル
ロースアセテート11.4 wt%、アセトン28.9
wt%、メタノール7.2wt東塩東方化カルシウム9
.1係、シクロヘキサノール43.4wt係からなるよ
うに調合した紡糸原液を、実施例1と同じ方法下で紡糸
した。
Example 2 The components of the spinning stock solution were exactly the same as in Example 1, and the composition was 11.4 wt% of cellulose acetate and 28.9 wt% of acetone.
wt%, methanol 7.2wt Toshio Tohoka Calcium 9
.. A spinning dope containing 43.4 wt of cyclohexanol and 43.4 wt of cyclohexanol was spun in the same manner as in Example 1.

実施例1と異なる条件および結果は第2表の通りである
Conditions and results different from Example 1 are shown in Table 2.

第4図は比較例、第5図は本発明のそれぞれ中空繊維内
表面の5ooo倍率の電子顕微鏡写真である。
FIG. 4 is an electron micrograph at 500 magnification of the inner surface of the hollow fiber of the comparative example and FIG. 5 of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第4図は従来品の内表面を示す電子顕微鏡写真
、第2.3.5図は本発明品の内表面を示す電子顕微鏡
写真である。
FIGS. 1 and 4 are electron micrographs showing the inner surface of the conventional product, and FIGS. 2.3.5 are electron micrographs showing the inner surface of the product of the present invention.

Claims (1)

【特許請求の範囲】 1 セルロースアセテートからなる中空繊維膜で、中空
形状の内表面にフィブリルが、中空空洞部軸方向に00
から50’の範囲に配向したものであることを特徴とす
る血漿分離用膜。 2 セルロースアセテート、溶媒、金属化合物、添加溶
媒からなる紡糸原液を環状紡糸孔から吐出すると同時に
、環状紡糸孔の中央から、上記紡糸原液の凝固液を流出
させ、環状紡糸孔の下方の凝固浴に導き、凝固させ、捲
取る工程において、捲取速度と環状紡糸孔から吐出する
紡糸原液の吐出速度比が1.5〜6.0であることを特
徴とする血漿分離用膜の製法。
[Claims] 1. A hollow fiber membrane made of cellulose acetate, with fibrils on the hollow inner surface extending 000 mm in the axial direction of the hollow cavity.
A membrane for plasma separation, characterized in that the membrane is oriented in a range of 50' to 50'. 2. A spinning dope consisting of cellulose acetate, a solvent, a metal compound, and an additive solvent is discharged from the annular spinning hole, and at the same time, the coagulated solution of the spinning dope is discharged from the center of the annular spinning hole, and flows into the coagulation bath below the annular spinning hole. A method for producing a membrane for plasma separation, characterized in that in the steps of guiding, coagulating, and winding up, the ratio of the winding speed to the discharge speed of the spinning dope discharged from the annular spinning hole is 1.5 to 6.0.
JP7999677A 1977-07-06 1977-07-06 Plasma separation membrane and its manufacturing method Expired JPS5841883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7999677A JPS5841883B2 (en) 1977-07-06 1977-07-06 Plasma separation membrane and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7999677A JPS5841883B2 (en) 1977-07-06 1977-07-06 Plasma separation membrane and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5415476A JPS5415476A (en) 1979-02-05
JPS5841883B2 true JPS5841883B2 (en) 1983-09-16

Family

ID=13705902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7999677A Expired JPS5841883B2 (en) 1977-07-06 1977-07-06 Plasma separation membrane and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5841883B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139702A (en) * 1982-02-13 1983-08-19 Sumitomo Bakelite Co Ltd Production of ultrafilter membrane
JP2502033Y2 (en) * 1993-06-23 1996-06-19 日本ライナー株式会社 Gaze guide
TWI549744B (en) 2012-03-28 2016-09-21 東麗股份有限公司 Hollow fiber membrane of polysulfone and hollow fiber membrane module for purification of blood product
US9446074B2 (en) 2012-11-30 2016-09-20 Toray Industries, Inc. Method of preparing platelet solution replaced with artificial preservation solution

Also Published As

Publication number Publication date
JPS5415476A (en) 1979-02-05

Similar Documents

Publication Publication Date Title
US10188991B2 (en) Permselective asymmetric membranes
CN111549448B (en) Performance enhancing additives for fiber formation and polysulfone fibers
JP2012125557A (en) Ascites filtration concentrator, and method for producing high-concentration protein solution
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
AU672856B2 (en) High flux hollow fiber membrane
JPS5841883B2 (en) Plasma separation membrane and its manufacturing method
JPH025132B2 (en)
JP3093821B2 (en) Method for producing regenerated cellulose porous hollow fiber membrane by cuprammonium method
JP4103037B2 (en) Diaphragm cleaning hollow fiber membrane and method for producing the same
JP2805873B2 (en) Hollow fiber type plasma separation membrane
JPH0194902A (en) Polysulfone hollow fibrous membrane and production thereof
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JP4190445B2 (en) Hollow fiber plasma component separator with low protein adsorption
JP3995228B2 (en) Hollow fiber membrane for blood purification
JP3424807B2 (en) Hollow fiber membrane
JP2003275300A (en) Regenerated cellulose hollow fiber membrane for blood purification, its manufacturing method, and blood purifying apparatus
JP2005007004A (en) Hollow fiber type body fluid treatment apparatus, hollow fiber bundle used therefor, and method for producing them
JP3167370B2 (en) Hollow fiber membrane having novel structure and method for producing the same
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JP3431623B1 (en) Method for producing plasma purification membrane
JPH0566169B2 (en)
JPH07106303B2 (en) Hollow fiber type plasma separation membrane and method for producing the same
JPS62184108A (en) Polymeric porous hollow fiber