JP3424807B2 - Hollow fiber membrane - Google Patents

Hollow fiber membrane

Info

Publication number
JP3424807B2
JP3424807B2 JP18035898A JP18035898A JP3424807B2 JP 3424807 B2 JP3424807 B2 JP 3424807B2 JP 18035898 A JP18035898 A JP 18035898A JP 18035898 A JP18035898 A JP 18035898A JP 3424807 B2 JP3424807 B2 JP 3424807B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
weight
water
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18035898A
Other languages
Japanese (ja)
Other versions
JP2000005577A (en
Inventor
憲幸 玉村
基樹 京
秀彦 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP18035898A priority Critical patent/JP3424807B2/en
Publication of JP2000005577A publication Critical patent/JP2000005577A/en
Application granted granted Critical
Publication of JP3424807B2 publication Critical patent/JP3424807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は乾湿式紡糸法により
得られ、限外ろ過、透析、透析ろ過用に好適に用いられ
る中空糸膜に関するものである。 【0002】 【従来技術】近年、長期透析患者の増加に伴う透析合併
症が注目されており尿素、クレアチニンなどの低分子量
物質だけでなく、中高分子量物質(低分子タンパク)ま
で除去対象が拡大してきている。また掻痒、疼痛等の臨
床症状の改善や脂質代謝の改善効果が分子量1〜3万物
質の除去にあることが示唆されている。これらの治療に
用いられる膜はハイパフォーマンス膜と呼ばれ、従来の
透析膜より孔径を拡大することにより、より大きな物質
の除去を可能にしている。ハイパフォーマンス膜に求め
られる性質としては透水性が高くかつシャープなカット
オフ性(分子量1〜3万物質の除去性に優れかつ有用な
血中タンパクである分子量66000のアルブミンを漏
出しない)を有することが必要である。従来セルロース
エステルに代表されるセルロース系中空糸膜は低分子物
質の除去性能は高いが、低分子タンパク領域の除去性能
はポリスルホン系中空糸膜に比較すると十分な性能を有
するものではなかった。 【0003】 【発明が解決しようとする課題】本発明は、上記の欠点
を解決しようとするものであり、その目的は透水性が高
く、溶質のカットオフ性がシャープであるセルロース系
中空糸膜を提供することにある。 【0004】 【課題を解決するための手段】すなわち本発明は下記
〜の中空糸膜を提供するものである。 37℃の純水を透過させたときの透水速度が200〜
500ml/m2 ・hr・mmHgであり、血液流量2
00ml/minにおけるin vitroでのβ2-ミ
クログロブリンのクリアランスが30ml/min・m
2 以上、尿素のクリアランスが170ml/min・m
2 以上で、アルブミンの篩い係数が0.05以下であり
かつ中空糸膜の降伏強度が10g/filament以
上であることを特徴とする中空糸膜。 中空糸膜がセルローストリアセテートを主成分として
なる上記に記載の中空糸膜。 膜厚が10〜30μmである上記乃至に記載の中
空糸膜。 【0005】本発明の中空糸膜は37℃の純水を透過さ
せたときの透水速度(以下UFR)が200〜500m
l/m2 ・hr・mmHgにあることが必要である。U
FRが200ml/m2 ・hr・mmHg未満の場合には膜面
に開口している孔の大きさが小さすぎたり孔数が少なす
ぎるために目的とする尿素などの低分子物質の除去性が
低くなったり、β2-ミクログロブリン等の中分子量以上
の物質の高い透過性が得られなくなるなど、低分子物質
と中分子以上物質の除去を高い次元で両立させることが
出来なくなってしまう。UFRが500ml/m2 ・h
r・mmHgを超えると中空糸の強度が低下するため可
紡性やモジュール化性が低下してしまう。また孔径が大
きくなりすぎるためにアルブミンの漏出を低く抑えるこ
とが出来なくなってしまう。中空糸膜の降伏強度は10
g/filament以上であることが必要である。降
伏強度が10g/filamentより低い場合にはモ
ジュール化のハンドリング性が悪化し歩留まりが低下し
てしまう。 【0006】本発明における中空糸膜素材としては再生
セルロース、改質セルロース、ポリスルフォン、アクリ
ロニトリル等が挙げられ、タンパク質の吸着量が少ない
ものであれば何でも良いが透水性、溶質透過性に優れる
セルロースアセテートが好ましく、生体適合性の面から
セルローストリアセテートが特に好ましい。 【0007】本発明の中空糸膜の膜厚は可紡性やモジュ
ール化性向上の面から10〜100μmの範囲にあるこ
とが好ましい。さらに高い透過性能を得るためには10
〜30μmが特に好ましい。 【0008】本発明の中空糸膜の紡糸法は特に限定され
るものではなく溶融、乾式、湿式、乾湿式等の紡糸方法
によって得ることができるが、相分離制御の幅を広げる
意味から中空形成剤を用いる乾湿式紡糸法で製膜される
ことが好ましい。中空形成剤としては紡糸原液に対して
不活性であれば良く、例えば液体のものは流動パラフィ
ンやミリスチン酸イソプロピル、気体としては乾燥空
気、窒素、ヘリウム、アルゴン等を用いることができ
る。 【0009】本発明の中空糸膜は例えば以下のように製
造することができるが、本発明は何ら以下に限定される
ものではない。セルロースアセテート等の膜素材16〜
25重量部、溶媒45〜75.6重量部、非溶媒8.4
〜39重量部からなる紡糸原液を130〜190℃に加
熱して溶解し、二重管紡糸口金の外側から押し出し、内
側からは流動パラフィンを押し出す。押し出した紡糸原
液は気体雰囲気中を通過した後、溶媒/非溶媒/水の重
量比が6/4/90〜27/3/70に調整した0〜5
0℃の凝固性液体中で凝固され水洗浴で過剰の溶媒、非
溶媒を洗浄する。本発明の中空糸膜を得るためには、セ
ルローストリアセテート等の膜素材、溶媒、非溶媒から
なる紡糸原液を紡糸口金から気体雰囲気中に吐出し次い
で凝固浴に導いて中空糸膜を製造する際に、セルロース
トリアセテート等の膜素材濃度を16〜25重量%に調
整することおよび溶媒/非溶媒/水からなる凝固浴中の
溶媒濃度を6〜27重量%に調整することが好ましい。 【0010】次に中空糸を30〜70重量%のグリセリ
ン水溶液中に通すことにより膜孔中にグリセリンを含浸
させ、乾燥工程を経て巻取る。上記溶媒としてはセルロ
ースアセテートを溶解するものであれば特に限定されな
いが、N、N−ジメチルアセトアミド、N、N−ジメチ
ルホルムアミド、γ−ブチロラクトン、N−メチルピロ
リドン、ジメチルスルフホキシド、N、N−ジメチルイ
ミダゾリジノンなどの極性溶媒を用いるのが好ましい。
これらは単独または混合して用いることもできる。非溶
媒としてはエチレングリコール、トリエチレングリコー
ル、ポリエチレングリコール、グリセリン等の多価アル
コールあるいはそれらの低級アルキルエーテル誘導体等
が挙げられ、単独あるいは混合して使用することができ
る。 【0011】このような方法により製造されたセルロー
ス系中空糸膜は、透水性に優れかつ溶質のカットオフ性
がシャープであるので限外ろ過、透析、透析ろ過用に好
適に使用され具体的には血液透析、血液ろ過透析等に使
用される。 【0012】 【実施例】以下、本発明を実施例を挙げてより詳細に説
明するが本発明は実施例により何ら限定されるものでは
ない。 【0013】〔実施例1〕セルローストリアセテート1
9重量部、N−メチルピロリドン56.7重量部、トリ
エチレングリコール24.3重量部を170℃にて加熱
溶解し、さらに真空脱泡してセルローストリアセテート
の紡糸原液を得た。これを孔径20μmの焼結フィルタ
ーでろ過し不純物を除去した後、二重管構造の口金の外
側から1.1cc/minで吐出し同時に口金の内側か
ら流動パラフィンを吐出した。中空糸状の紡糸原液は空
気中を通過した後N−メチルピロリドン/トリエチレン
グリコール/水=10.5/4.5/85(重量比)か
らなる40℃の凝固浴に導き、次いで水洗浴、60%グ
リセリン水浴、乾燥工程を経てワインダーにてチーズ状
に巻取った。得られた中空糸の内径は198μm、膜厚
は15μmであり、降伏強度は32gであった。 【0014】このようにして得られた中空糸5000〜
20000本を束にしプラスチック成型品の中に入れ性
能評価用モジュールを作製した。 【0015】測定方法 1.純水の透水速度(UFR)の測定 上記作製したモジュールを純水で十分洗浄し、37℃に
調整した純水を中空糸膜に流し水のろ過量を測定した。
透水速度UFRは次式を用いて算出した。 UFR(ml/m2 ・hr・mmHg)=ろ過量/入口
圧力・時間・膜面積 【0016】2.尿素およびβ2-ミクログロブリンのク
リアランスの測定 尿素およびβ2-ミクログロブリンのクリアランスは「膜
の性能評価法」(ハイパフォーマンスメンブレン研究
会)に従い測定した。 CL(ml/min )=(入口濃度−出口濃度)/入口濃
度・供給液量 モジュールの中空糸膜の外側には生理食塩水を流し、中
空糸の内側には血液(血漿)を200ml/minで流
し、ろ過流量15ml/minで測定した。中空糸膜の入
口における測定原液の溶質濃度、出口における測定原液
の溶質濃度および供給液量を測定してクリアランスCL
を算出した。 【0017】3.アルブミン篩い係数の測定 アルブミンの篩い係数SCは「膜の性能評価法」(ハイ
パフォーマンスメンブレン研究会)に従い5.0g/d
lのアルブミン−リン酸緩衝液(pH7.4)を用いて
測定した。 SC=(2×ろ液濃度)/(入口濃度+出口濃度) 中空糸膜の入口における測定原液の濃度、出口における
測定原液の濃度およびろ液濃度を測定して篩い係数SC
を算出した。 【0018】4.中空糸の降伏強度の測定 東洋ボールドウイン製テンシロンUTMIIを用いて、
引っ張り速度100mm/min 、チャック間距離100
mmで測定した。 【0019】〔比較例1〕セルローストリアセテート3
2重量部、N−メチルピロリドン61.2重量部、トリ
エチレングリコール6.8重量部を170℃にて加熱溶
解し、さらに真空脱泡してセルローストリアセテートの
紡糸原液を得た。これを孔径20μmの焼結フィルター
でろ過し不純物を除去した後、二重管構造の口金の外側
から1.1cc/minで吐出し同時に口金の内側から
流動パラフィンを吐出した。中空糸状の紡糸原液は空気
中を通過した後N−メチルピロリドン/トリエチレング
リコール/水=27/3/70(重量比)からなる25
℃の凝固浴に導き、次いで水洗浴、60%グリセリン水
浴、乾燥工程を経てワインダーにてチーズ状に巻取っ
た。得られた中空糸の内径は198μm、膜厚は16μ
mであり、降伏強度は25gであった。実施例1と同様
にモジュールを作製し性能評価をおこなったところUF
Rが低いために低分子物質(尿素)と高分子物質(β2-
ミクログロブリン)のクリアランス性能を両立すること
ができなかった。 【0020】〔比較例4〕セルローストリアセテート1
7重量部、N−メチルピロリドン49.8重量部、トリ
エチレングリコール33.2重量部を170℃にて加熱
溶解し、さらに真空脱泡してセルローストリアセテート
の紡糸原液を得た。これを孔径20μmの焼結フィルタ
ーでろ過し不純物を除去した後、二重管構造の口金の外
側から1.3cc/minで吐出し同時に口金の内側か
ら流動パラフィンを吐出した。中空糸状の紡糸原液は空
気中を通過した後N−メチルピロリドン/トリエチレン
グリコール/水=9/6/85(重量比)からなる33
℃の凝固浴に導き、次いで水洗浴、60%グリセリン水
浴、乾燥工程を経てワインダーにてチーズ状に巻取っ
た。得られた中空糸の内径は196μm、膜厚は17μ
mであり、降伏強度は18gであった。実施例1と同様
にモジュールを作製し性能評価を行った。結果を表1に
まとめた。 【0021】〔比較例2〕セルローストリアセテート1
8重量部、N−メチルピロリドン57.4重量部、トリ
エチレングリコール24.6重量部を170℃にて加熱
溶解し、さらに真空脱泡してセルローストリアセテート
の紡糸原液を得た。これを孔径20μmの焼結フィルタ
ーでろ過し不純物を除去した後、二重管構造の口金の外
側から1.1cc/minで吐出し同時に口金の内側か
ら流動パラフィンを吐出した。中空糸状の紡糸原液は空
気中を通過した後N−メチルピロリドン/トリエチレン
グリコール/水=35/15/50(重量比)からなる
40℃の凝固浴に導き、次いで水洗浴、60%グリセリ
ン水浴、乾燥工程を経てワインダーにてチーズ状に巻取
った。得られた中空糸の内径は201μm、膜厚は14
μmであり、降伏強度は9gであった。実施例1と同様
にモジュールを作製し性能評価を行おうとしたが、降伏
強度が低いためにモジュールを組み立てることができな
かった。 【0022】〔比較例3〕セルローストリアセテート1
5重量部、N−メチルピロリドン59.5重量部、トリ
エチレングリコール25.5重量部を170℃にて加熱
溶解し、さらに真空脱泡してセルローストリアセテート
の紡糸原液を得た。これを孔径20μmの焼結フィルタ
ーでろ過し不純物を除去した後、二重管構造の口金の外
側から1.1cc/minで吐出し同時に口金の内側か
らN−メチルピロリドン/トリエチレングリコール/水
=35/15/50(重量比)からなる凝固性液体を吐
出した。中空糸状の紡糸原液は空気中を通過した後N−
メチルピロリドン/トリエチレングリコール/水=35
/15/50(重量比)からなる40℃の凝固浴に導
き、次いで水洗浴を通過した後かせ捲き機にて巻取っ
た。得られた中空糸膜の内径は201μm、膜厚は65
μmであり、降伏強度は21gであった。これを60w
t%のグリセリン水溶液に浸漬した後、遠心脱液して過
剰のグリセリンを落としモジュールを作製した。実施例
1と同様に性能評価を行ったが、UFRが高くなり(孔
径が大きくなり)すぎアルブミンの篩い係数が大きくな
ってしまった。 【0023】 【表1】 【0024】表1から明らかなように実施例1および実
施例2で得られた中空糸膜は、透水速度が高く、低分子
物質および中高分子物質のクリアランス性能を高い次元
で両立しかつ有用タンパクであるアルブミンの漏出を抑
えるシャープなカットオフ性を有していた。 【0025】 【発明の効果】以上の説明で明らかなように、本発明に
よれば透水性が高く、低分子物質および中高分子物質の
除去性を高い次元で両立しかつアルブミンの漏出の少な
いシャープなカットオフ性を有する血液浄化用中空糸膜
を提供することが可能である。また破断強度、破断伸度
に優れたセルロース系中空糸膜を得ることができるの
で、モジュール化が容易である。
Description: TECHNICAL FIELD [0001] The present invention relates to a hollow fiber membrane obtained by a dry-wet spinning method and suitably used for ultrafiltration, dialysis, and diafiltration. [0002] In recent years, dialysis complications accompanying the increase in long-term dialysis patients have attracted attention, and not only low-molecular-weight substances such as urea and creatinine but also medium-high-molecular-weight substances (low-molecular proteins) have been removed. ing. It has also been suggested that the effects of improving clinical symptoms such as pruritus and pain and improving lipid metabolism are due to the removal of substances having a molecular weight of 10,000 to 30,000. The membranes used in these treatments are called high performance membranes, which allow larger substances to be removed by increasing the pore size compared to conventional dialysis membranes. The properties required for a high-performance membrane are that it has high water permeability and a sharp cutoff property (excellent in removing molecular substances of 10,000 to 30,000 and does not leak albumin with a molecular weight of 66,000, which is a useful blood protein). is necessary. Conventionally, a cellulose-based hollow fiber membrane represented by a cellulose ester has a high performance of removing low-molecular substances, but the performance of removing a low-molecular-weight protein region is not sufficient as compared with a polysulfone-based hollow fiber membrane. [0003] The present invention aims to solve the above-mentioned drawbacks, and an object of the present invention is to provide a cellulose-based hollow fiber membrane having high water permeability and sharp solute cutoff properties. Is to provide. [0004] That is, the present invention provides the following hollow fiber membranes. Permeation rate when passing pure water at 37 ° C. is 200 to
500 ml / m 2 · hr · mmHg, blood flow 2
The clearance of β 2 -microglobulin in vitro at 00 ml / min is 30 ml / min · m
2 or more, clearance of urea is 170ml / min.m
2. A hollow fiber membrane, wherein the sieving coefficient of albumin is 2 or more, and the yield strength of the hollow fiber membrane is 10 g / filament or more. The hollow fiber membrane as described above, wherein the hollow fiber membrane comprises cellulose triacetate as a main component. The hollow fiber membrane according to any one of the above, wherein the thickness is 10 to 30 µm. [0005] The hollow fiber membrane of the present invention has a water permeation speed (hereinafter, UFR) of 200 to 500 m when permeating pure water at 37 ° C.
l / m 2 · hr · mmHg. U
When the FR is less than 200 ml / m 2 · hr · mmHg, the size of the pores opened on the membrane surface is too small or the number of pores is too small, so that the removability of the target low molecular substance such as urea is insufficient. In other words, it becomes impossible to achieve both high-dimensional removal of low-molecular substances and medium-molecular substances or more, for example, because of low molecular weight or high permeability of substances having medium molecular weight or more such as β 2 -microglobulin. UFR is 500ml / m 2 · h
If it exceeds r · mmHg, the strength of the hollow fiber is reduced, so that the spinnability and modularity are reduced. In addition, since the pore diameter becomes too large, it becomes impossible to suppress the leakage of albumin to a low level. The yield strength of the hollow fiber membrane is 10
g / filament or more. When the yield strength is lower than 10 g / filament, the handleability of modularization is deteriorated and the yield is reduced. Examples of the hollow fiber membrane material in the present invention include regenerated cellulose, modified cellulose, polysulfone, acrylonitrile, etc. Any material may be used as long as it has a small amount of protein adsorption, but cellulose having excellent water permeability and solute permeability. Acetate is preferred, and cellulose triacetate is particularly preferred from the viewpoint of biocompatibility. The thickness of the hollow fiber membrane of the present invention is preferably in the range of 10 to 100 μm from the viewpoint of improving spinnability and modularity. In order to obtain higher transmission performance, 10
-30 μm is particularly preferred. The spinning method of the hollow fiber membrane of the present invention is not particularly limited, and can be obtained by a spinning method such as melting, dry, wet, and dry-wet methods. The film is preferably formed by a dry-wet spinning method using an agent. Any hollow forming agent may be used as long as it is inert to the spinning dope. For example, liquid paraffin or isopropyl myristate can be used as the liquid, and dry air, nitrogen, helium, argon or the like can be used as the gas. The hollow fiber membrane of the present invention can be produced, for example, as follows, but the present invention is not limited to the following. Membrane materials 16 such as cellulose acetate
25 parts by weight, solvent 45 to 75.6 parts by weight, non-solvent 8.4
A spinning dope consisting of 3939 parts by weight is dissolved by heating to 130-190 ° C., extruded from the outside of a double-tube spinneret, and extruded from a liquid paraffin from the inside. After the extruded spinning dope passed through the gas atmosphere, the weight ratio of solvent / non-solvent / water was adjusted to 6/4/90 to 27/3/70 to 0-5.
Coagulated in a coagulating liquid at 0 ° C., and the excess solvent and non-solvent are washed in a washing bath. In order to obtain the hollow fiber membrane of the present invention, a spinning solution comprising a membrane material such as cellulose triacetate, a solvent and a non-solvent is discharged from a spinneret into a gaseous atmosphere and then guided to a coagulation bath to produce a hollow fiber membrane. Preferably, the concentration of the membrane material such as cellulose triacetate is adjusted to 16 to 25% by weight, and the concentration of the solvent in the coagulation bath composed of solvent / non-solvent / water is adjusted to 6 to 27% by weight. Next, the membrane fiber is impregnated with glycerin by passing the hollow fiber through a 30 to 70% by weight aqueous glycerin solution, and wound up through a drying step. The solvent is not particularly limited as long as it dissolves cellulose acetate, but N, N-dimethylacetamide, N, N-dimethylformamide, γ-butyrolactone, N-methylpyrrolidone, dimethylsulfoxide, N, N- It is preferable to use a polar solvent such as dimethylimidazolidinone.
These can be used alone or in combination. Examples of the non-solvent include polyhydric alcohols such as ethylene glycol, triethylene glycol, polyethylene glycol, and glycerin, and lower alkyl ether derivatives thereof, and these can be used alone or as a mixture. The cellulosic hollow fiber membrane produced by such a method is excellent in water permeability and sharp in solute cut-off, so that it is suitably used for ultrafiltration, dialysis, and diafiltration. Is used for hemodialysis, hemofiltration dialysis and the like. Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples. [Example 1] Cellulose triacetate 1
9 parts by weight, 56.7 parts by weight of N-methylpyrrolidone, and 24.3 parts by weight of triethylene glycol were dissolved by heating at 170 ° C., and further degassed under vacuum to obtain a spinning solution of cellulose triacetate. This was filtered through a sintered filter having a pore diameter of 20 μm to remove impurities, and then discharged at 1.1 cc / min from the outside of the double-tube structure base, and simultaneously, liquid paraffin was discharged from the inside of the base. After passing through the air, the hollow fiber spinning solution is led to a coagulation bath of 40 ° C. composed of N-methylpyrrolidone / triethylene glycol / water = 10.5 / 4.5 / 85 (weight ratio), and then a washing bath. After passing through a 60% glycerin water bath and a drying step, it was wound into a cheese shape by a winder. The inner diameter of the obtained hollow fiber was 198 μm, the film thickness was 15 μm, and the yield strength was 32 g. The thus obtained hollow fiber 5,000 to 5,000
20,000 pieces were bundled and put into a plastic molded product to produce a module for performance evaluation. Measurement method 1. Measurement of Pure Water Permeation Rate (UFR) The above-prepared module was sufficiently washed with pure water, pure water adjusted to 37 ° C. was passed through the hollow fiber membrane, and the amount of filtered water was measured.
The water permeation speed UFR was calculated using the following equation. UFR (ml / m 2 · hr · mmHg) = filtration amount / inlet pressure / time / membrane area Urea and β 2 - measurement urea microglobulin clearance and β 2 - microglobulin clearance was measured in accordance with the "performance evaluation method of the film" (High Performance Membrane Research Group). CL (ml / min) = (inlet concentration−outlet concentration) / inlet concentration / supply liquid flow physiological saline solution outside the hollow fiber membrane of the module, and 200 ml / min blood (plasma) inside the hollow fiber. And measured at a filtration flow rate of 15 ml / min. Measure the solute concentration of the undiluted solution at the inlet of the hollow fiber membrane, the solute concentration of the undiluted solution at the outlet, and the amount of the supplied solution to determine the clearance CL.
Was calculated. 3. Measurement of albumin sieving coefficient The sieving coefficient SC of albumin was 5.0 g / d in accordance with “Evaluation method of membrane performance” (High Performance Membrane Research Society).
The measurement was performed using 1 l of an albumin-phosphate buffer (pH 7.4). SC = (2 × filtrate concentration) / (inlet concentration + outlet concentration) The concentration of the undiluted solution at the inlet of the hollow fiber membrane, the concentration of the undiluted solution at the outlet and the concentration of the filtrate were measured, and the sieving coefficient SC was measured.
Was calculated. 4. Measurement of yield strength of hollow fiber Using Tensilon UTMII manufactured by Toyo Baldwin,
Pulling speed 100mm / min, distance between chucks 100
mm. Comparative Example 1 Cellulose Triacetate 3
2 parts by weight, 61.2 parts by weight of N-methylpyrrolidone and 6.8 parts by weight of triethylene glycol were dissolved by heating at 170 ° C., and further degassed under vacuum to obtain a spinning solution of cellulose triacetate. This was filtered through a sintered filter having a pore diameter of 20 μm to remove impurities, and then discharged at 1.1 cc / min from the outside of the double-tube structure base, and simultaneously, liquid paraffin was discharged from the inside of the base. After passing through the air, the hollow fiber spinning solution is composed of N-methylpyrrolidone / triethylene glycol / water = 27/3/70 (weight ratio) 25
C., followed by a water-washing bath, a 60% glycerin water bath, and a drying process, followed by winding into a cheese by a winder. The inner diameter of the obtained hollow fiber is 198 μm, and the film thickness is 16 μm.
m, and the yield strength was 25 g. A module was fabricated and performance was evaluated in the same manner as in Example 1.
Because of low R, low molecular weight substances (urea) and high molecular weight substances (β 2-
Microglobulin) clearance performance could not be compatible. Comparative Example 4 Cellulose Triacetate 1
7 parts by weight, 49.8 parts by weight of N-methylpyrrolidone, and 33.2 parts by weight of triethylene glycol were heated and dissolved at 170 ° C., and further degassed under vacuum to obtain a spinning solution of cellulose triacetate. This was filtered through a sintered filter having a pore diameter of 20 μm to remove impurities, and then discharged at 1.3 cc / min from the outside of the double-tube structure base, and simultaneously, liquid paraffin was discharged from the inside of the base. After passing through the air, the hollow-fiber stock solution is composed of N-methylpyrrolidone / triethylene glycol / water = 9/6/85 (weight ratio) 33
C., followed by a water-washing bath, a 60% glycerin water bath, and a drying process, followed by winding into a cheese by a winder. The inner diameter of the obtained hollow fiber is 196 μm, and the film thickness is 17 μm.
m and the yield strength was 18 g. A module was fabricated and performance was evaluated in the same manner as in Example 1. The results are summarized in Table 1. Comparative Example 2 Cellulose Triacetate 1
8 parts by weight, 57.4 parts by weight of N-methylpyrrolidone, and 24.6 parts by weight of triethylene glycol were heated and dissolved at 170 ° C., and further degassed under vacuum to obtain a spinning solution of cellulose triacetate. This was filtered through a sintered filter having a pore diameter of 20 μm to remove impurities, and then discharged at 1.1 cc / min from the outside of the double-tube structure base, and simultaneously, liquid paraffin was discharged from the inside of the base. After passing through the air, the hollow fiber spinning solution is led to a coagulation bath of N-methylpyrrolidone / triethylene glycol / water = 35/15/50 (weight ratio) at 40 ° C., followed by a water washing bath and a 60% glycerin water bath. After passing through a drying process, it was wound into a cheese shape by a winder. The inner diameter of the obtained hollow fiber is 201 μm and the film thickness is 14
μm, and the yield strength was 9 g. An attempt was made to produce a module and evaluate its performance in the same manner as in Example 1, but the module could not be assembled due to low yield strength. Comparative Example 3 Cellulose Triacetate 1
5 parts by weight, 59.5 parts by weight of N-methylpyrrolidone and 25.5 parts by weight of triethylene glycol were dissolved by heating at 170 ° C., and further degassed under vacuum to obtain a spinning solution of cellulose triacetate. This was filtered through a sintered filter having a pore diameter of 20 μm to remove impurities, and then discharged at 1.1 cc / min from the outside of the double-tube structure base, and simultaneously N-methylpyrrolidone / triethylene glycol / water = from the inside of the base. A solidifying liquid composed of 35/15/50 (weight ratio) was discharged. After passing through the air, the hollow fiber-like spinning stock solution becomes N-
Methylpyrrolidone / triethylene glycol / water = 35
/ 15/50 (weight ratio) to a coagulation bath at 40 ° C., and after passing through a washing bath, was wound up with a skein winding machine. The inner diameter of the obtained hollow fiber membrane is 201 μm and the film thickness is 65 μm.
μm, and the yield strength was 21 g. This is 60w
After being immersed in a t% aqueous glycerin solution, the solution was centrifuged to remove excess glycerin to prepare a module. Performance evaluation was performed in the same manner as in Example 1, but the UFR was too high (the pore size was too large) and the sieving coefficient of albumin was too large. [Table 1] As is clear from Table 1, the hollow fiber membranes obtained in Examples 1 and 2 have a high water permeation rate, are compatible with a high level of clearance performance of low molecular weight substances and medium molecular weight substances, and are useful proteins. Had a sharp cut-off property to suppress the leakage of albumin. As is apparent from the above description, according to the present invention, the sharpness which is high in water permeability, has a high level of removability of low-molecular substances and medium-molecular substances, and has little leakage of albumin. It is possible to provide a blood purification hollow fiber membrane having an excellent cutoff property. Further, since a cellulose-based hollow fiber membrane having excellent breaking strength and breaking elongation can be obtained, modularization is easy.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−85569(JP,A) 特開 平9−70431(JP,A) 特開 平9−154936(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 69/08 B01D 71/16 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-10-85569 (JP, A) JP-A-9-70431 (JP, A) JP-A-9-154936 (JP, A) (58) Field (Int.Cl. 7 , DB name) B01D 69/08 B01D 71/16

Claims (1)

(57)【特許請求の範囲】 【請求項1】37℃の純水を透過させたときの透水速度が
200〜500ml/m2・hr・mmHgであり、血液流量200ml/minにお
けるin vitroでのβ2-ミクログロブリンのクリアランス
が30ml/min・m2 以上、尿素のクリアランスが170 ml/min
・m2 以上、アルブミンの篩い係数が0.012以上0.05以下
でかつ中空糸膜の降伏強度が10g/filament以上、膜厚が
10〜30μmであり、紡糸原液に対して不活性な液体を中
空形成剤として用いることを特徴とするセルローストリ
アセテート中空糸膜。
(57) [Claims] [Claim 1] The water permeation speed when permeating pure water at 37 ° C is
200-500 ml / m is 2 · hr · mmHg, the blood flow rate 200 ml / beta2-microglobulin clearance in in vitro in min is 30 ml / min · m 2 or more, clearance urea 170 ml / min
・ M 2 or more, the sieving coefficient of albumin is 0.012 or more and 0.05 or less, and the yield strength of the hollow fiber membrane is 10 g / filament or more, and the film thickness is
10 ~ 30μm, inactive liquid for spinning solution
Cellulose tris for use as vacant forming agents
Acetate hollow fiber membrane.
JP18035898A 1998-06-26 1998-06-26 Hollow fiber membrane Expired - Fee Related JP3424807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18035898A JP3424807B2 (en) 1998-06-26 1998-06-26 Hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18035898A JP3424807B2 (en) 1998-06-26 1998-06-26 Hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2000005577A JP2000005577A (en) 2000-01-11
JP3424807B2 true JP3424807B2 (en) 2003-07-07

Family

ID=16081857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18035898A Expired - Fee Related JP3424807B2 (en) 1998-06-26 1998-06-26 Hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP3424807B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126459B2 (en) * 2005-10-17 2013-01-23 東洋紡株式会社 Cellulose ester hollow fiber membrane and method for producing the same
JP4725524B2 (en) * 2007-01-25 2011-07-13 東洋紡績株式会社 Cellulose acetate asymmetric hollow fiber membrane
JP5780319B2 (en) * 2014-01-30 2015-09-16 東洋紡株式会社 Hollow fiber membrane
JP6502111B2 (en) * 2015-02-03 2019-04-17 旭化成メディカル株式会社 Hollow fiber type blood purifier and method of manufacturing the same

Also Published As

Publication number Publication date
JP2000005577A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
EP0294737B1 (en) Polysulfone hollow fiber membrane and process for making the same
JP4940576B2 (en) Hollow fiber membrane and blood purifier
JPWO2007102528A1 (en) Hollow fiber membrane excellent in performance stability, blood purifier, and method for producing hollow fiber membrane
CA2202969C (en) Selectively permeable hollow fiber membrane and process for producing same
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
EP0012630B1 (en) Process for producing a cellulose acetate-type permselective membrane, permselective membrane thus produced, and use of such membrane in artificial kidney
AU672856B2 (en) High flux hollow fiber membrane
JP3427658B2 (en) Cellulose hollow fiber membrane and method for producing the same
JP3424807B2 (en) Hollow fiber membrane
JP3253861B2 (en) Permselective hollow fiber membrane
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP3995228B2 (en) Hollow fiber membrane for blood purification
JP6699750B2 (en) Cellulose acetate-based asymmetric hollow fiber membrane
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP3020016B2 (en) Hollow fiber membrane
JPH10263375A (en) Selective permeable hollow fiber membrane
JP2818366B2 (en) Method for producing cellulose ester hollow fiber membrane
JP3236233B2 (en) Method for producing selectively permeable hollow fiber membrane
JP2003275300A (en) Regenerated cellulose hollow fiber membrane for blood purification, its manufacturing method, and blood purifying apparatus
JPWO2018079808A1 (en) Cellulose acetate hollow fiber membrane
JP2000107577A (en) Production of permselective hollow fiber membranes
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JPH0566169B2 (en)
JP3205268B2 (en) Method for producing selectively permeable hollow fiber membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees