JP3431623B1 - Method for producing plasma purification membrane - Google Patents

Method for producing plasma purification membrane

Info

Publication number
JP3431623B1
JP3431623B1 JP2002267267A JP2002267267A JP3431623B1 JP 3431623 B1 JP3431623 B1 JP 3431623B1 JP 2002267267 A JP2002267267 A JP 2002267267A JP 2002267267 A JP2002267267 A JP 2002267267A JP 3431623 B1 JP3431623 B1 JP 3431623B1
Authority
JP
Japan
Prior art keywords
membrane
film
polymer
weight
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002267267A
Other languages
Japanese (ja)
Other versions
JP2004098026A (en
Inventor
輝彦 大石
Original Assignee
旭メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭メディカル株式会社 filed Critical 旭メディカル株式会社
Priority to JP2002267267A priority Critical patent/JP3431623B1/en
Application granted granted Critical
Publication of JP3431623B1 publication Critical patent/JP3431623B1/en
Priority to EP03795429A priority patent/EP1547628B1/en
Priority to AU2003261571A priority patent/AU2003261571A1/en
Priority to CA2498244A priority patent/CA2498244C/en
Priority to MXPA05002747A priority patent/MXPA05002747A/en
Priority to US10/527,802 priority patent/US7563376B2/en
Priority to CNB038234785A priority patent/CN100503020C/en
Priority to PCT/JP2003/011715 priority patent/WO2004024216A1/en
Priority to AT03795429T priority patent/ATE511868T1/en
Publication of JP2004098026A publication Critical patent/JP2004098026A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

【要約】 【課題】 内圧濾過による血漿浄化のための、目詰ま
りが少なく、高強度で、しかも透水性能および分画性能
にも優れた血漿浄化膜を製造する方法を提供する。 【解決手段】 製膜原液と内部液を2重環状ノズルから
吐出させた後、エアギャップを通過させてから凝固浴で
凝固させる中空糸状膜の製造方法において、 a)製膜原液が、膜形成ポリマー、該ポリマーの溶剤、
及び親水性ポリマーからなり、膜形成ポリマーに対する
親水性ポリマーの比率が27〜60重量%、 b)内部液が水と少なくとも1種類以上の溶剤からな
り、水の含有量が35〜50重量%、 c)ノズル部での製膜原液の温度が50℃以上、 d)凝固浴温度が90〜100℃、且つ e)紡速に対するエアギャップの比率が0.01〜0.
1m/(m/分) であることを特徴とする中空糸状血漿浄化膜の製造方
法。
An object of the present invention is to provide a method for producing a plasma purification membrane which is less clogged, has high strength, and is excellent in water permeability and fractionation performance, for plasma purification by internal pressure filtration. SOLUTION: A method for producing a hollow fiber membrane in which a stock solution and an internal solution are discharged from a double annular nozzle and then passed through an air gap and then coagulated in a coagulation bath, comprising the steps of: A polymer, a solvent for the polymer,
And the ratio of the hydrophilic polymer to the film-forming polymer is 27 to 60% by weight. B) The internal liquid is composed of water and at least one or more solvents, and the content of water is 35 to 50% by weight. c) The temperature of the stock solution at the nozzle portion is 50 ° C. or higher, d) the coagulation bath temperature is 90 to 100 ° C., and e) the ratio of the air gap to the spinning speed is 0.01 to 0.
1 m / (m / min).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内圧濾過による血
漿浄化のための、目詰まりが少なく、且つ高強度で、さ
らに溶出量が極めて少ない優れた血漿浄化膜の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an excellent plasma purification membrane for purification of plasma by internal pressure filtration, which has less clogging, high strength, and an extremely small amount of elution.

【0002】[0002]

【従来の技術】中空糸状膜は、精密濾過から限外濾過ま
での工業的用途に広く使われており、膜の素材としてポ
リエチレン、酢酸セルロース、ポリスルホン、ポリフッ
化ビニリデン、ポリカーボネート、ポリアクリロニトリ
ル等が用いられている。これらの素材からなる従来の中
空糸状膜は、濾過性能の向上に注力して開発されたもの
であるため、中空糸状膜の破断強度や破断時の伸びが小
さく、急激な温度変化や逆洗時の圧力変化により、しば
しば中空糸状膜が破断することが指摘されている。
Hollow fiber membranes are widely used for industrial applications from microfiltration to ultrafiltration. Polyethylene, cellulose acetate, polysulfone, polyvinylidene fluoride, polycarbonate, polyacrylonitrile, etc. are used as membrane materials. Has been. Conventional hollow fiber membranes made of these materials were developed with a focus on improving filtration performance, so the hollow fiber membranes have a small breaking strength and elongation at break, and do not undergo rapid temperature changes or backwashing. It has been pointed out that the hollow fiber membrane is often ruptured due to the pressure change.

【0003】この点を解決するため種々の試みがなされ
てきたが、一般的には特許文献1に記載された発明に示
唆されているように、製膜原液中のポリマー濃度を高く
して、中空糸状膜全体のポリマー密度を上げる方法が考
えられる。しかしながら、この方法では膜の強度が向上
する反面、膜の孔径が小さくなるとともに膜の透水量が
大幅に低下するため、強度と透水性能のバランスに優れ
た中空糸状膜は得られていない。一方、膜の透水性能を
向上させるためには、膜の孔径を大きくする方法が一般
的に行なわれるが、孔径の増大は一般に膜の分画性能と
膜強度の低下を招く。
Various attempts have been made to solve this point, but generally, as suggested by the invention described in Patent Document 1, the polymer concentration in the membrane-forming stock solution is increased to A method of increasing the polymer density of the entire hollow fiber membrane can be considered. However, in this method, the strength of the membrane is improved, but the pore diameter of the membrane is reduced and the water permeation rate of the membrane is significantly reduced. Therefore, a hollow fiber membrane having an excellent balance between strength and water permeation performance has not been obtained. On the other hand, in order to improve the water permeability of the membrane, a method of enlarging the pore size of the membrane is generally performed, but an increase in the pore size generally causes a reduction in the membrane fractionation performance and the membrane strength.

【0004】以上のように、従来技術では、強度、透水
性能及び分画性能のバランスがとれた高性能の中空糸状
膜は得られていなかった。例えば、特許文献2には、高
強度でかつ透水性能に優れた膜の製法が提案されている
が、この製法によって作られた膜は孔径が大きく、透水
性能と分画性能とのバランスがとれていない。
As described above, in the prior art, a high performance hollow fiber membrane having a good balance of strength, water permeability and fractionation performance has not been obtained. For example, Patent Document 2 proposes a method for producing a membrane having high strength and excellent water permeability. However, the membrane produced by this method has a large pore size, and water permeability and fractionation performance are well balanced. Not not.

【0005】特許文献3には、膜の外表面から内部に向
かって孔径が連続的に小さくなり内部の最小孔径を経て
再び連続的に孔径が大きくなり内表面に開孔する中空糸
状精密濾過膜が開示されている。しかしながら、この構
造の膜を用いて膜の中空部側(内表面側)から液体等を
濾過した場合、急激な目詰まりを起こし長時間安定的に
濾過を行なうことができない。
In Patent Document 3, a hollow fiber type microfiltration membrane in which the pore diameter continuously decreases from the outer surface of the membrane toward the inside thereof, and the pore diameter continuously increases again through the minimum pore diameter of the inner portion to open on the inner surface. Is disclosed. However, when liquid or the like is filtered from the hollow side (inner surface side) of the membrane using the membrane of this structure, rapid clogging occurs and stable filtration cannot be performed for a long time.

【0006】以上のごとく、従来、中空糸膜において、
所望の強度と透水性能および分画性能とをバランスよく
有しており、且つ中空部側(内表面側)から液体を濾過
しても目詰まりがないという特性を有している膜を製造
することはなされていなかった。
As described above, in the conventional hollow fiber membrane,
A membrane having desired strength, water permeability and fractionation performance in a well-balanced manner, and having no clogging even when liquid is filtered from the hollow part side (inner surface side) is produced. Nothing had been done.

【0007】[0007]

【特許文献1】特開昭59−228016号公報[Patent Document 1] JP-A-59-228016

【特許文献2】特開平4−260424号公報[Patent Document 2] Japanese Patent Laid-Open No. 4-260424

【特許文献3】特開平2−102722号公報[Patent Document 3] Japanese Patent Laid-Open No. 2-102722

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、前記
の問題点を解決するものであって、内圧濾過における血
漿浄化において、目詰まりが少なく、高強度で、且つ透
水性能および分画性能にも優れた血漿浄化膜の製造方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and in plasma purification in internal pressure filtration, there is little clogging, high strength, and water permeability and fractionation performance. Another object of the present invention is to provide an excellent method for producing a plasma purification membrane.

【0009】[0009]

【課題を解決するための手段】以上の如く、膜の中空部
側から液体等を濾過(以下「内圧濾過」ともいう)した
場合、目詰まりが少なく、透水性能に優れ、さらに溶出
量が少ない精密濾過膜はこれまでなかった。何故なら
ば、膜の外表面から内表面に向かって孔径が連続的に小
さくなる傾斜構造の膜の膜内表面に、膜強度を高く維持
したまま、0.01μm以上の(精密濾過領域の)孔を
開口させることは、従来不可能であったからである。
[Means for Solving the Problems] As described above, when a liquid or the like is filtered from the hollow side of the membrane (hereinafter also referred to as "internal pressure filtration"), there is little clogging, excellent water permeation performance, and less elution amount. There has never been a microfiltration membrane. The reason for this is that, while maintaining high membrane strength on the inner surface of the membrane having a graded structure in which the pore size continuously decreases from the outer surface to the inner surface of the membrane, the membrane strength of 0.01 μm or more (in the microfiltration region) This is because it has been impossible to open the holes in the past.

【0010】そこで本発明者は、基本的に、1)目詰ま
りを防止するために、膜の外表面から内表面に向かって
孔径が連続的に小さくなる傾斜構造にすることと、2)
特にろ過する液体が接する膜内表面の親水性を高めた膜
にしてタンパク質等が疎水吸着を起こさないようにしな
がら、上記の課題を解決するために鋭意研究を進めた結
果、本発明に至ったものである。
Therefore, the present inventor basically 1) uses a gradient structure in which the pore diameter continuously decreases from the outer surface to the inner surface of the membrane in order to prevent clogging, and 2).
In particular, as a result of conducting intensive research to solve the above-mentioned problems while preventing the protein and the like from being hydrophobically adsorbed by using a membrane having an increased hydrophilicity on the inner surface of the membrane that is in contact with the liquid to be filtered, the present invention has been achieved. It is a thing.

【0011】すなわち本発明は、 (1)製膜原液と内部液を2重環状ノズルから吐出させ
た後、エアギャップを通過させて凝固浴で凝固させる方
法によって、膜の外表面から内表面に向かって孔径が連
続的に小さくなるスポンジ構造からなり、膜の破断強度
が50kgf/cm 以上で、且つ牛血漿を内圧濾過し
た時の総タンパク質の透過率が50%以上、イムノグロ
ブリンの透過率が90%以下である中空糸状血漿浄化膜
を製造する方法であって、 a)製膜原液が、膜形成ポリマー、該ポリマーの溶剤、
及び親水性ポリマーからなり、膜形成ポリマーに対する
親水性ポリマーの比率が27〜60重量%、 b)内部液が水と少なくとも1種類以上の溶剤からな
り、水の含有量が40〜55重量%、 c)ノズル部での製膜原液の温度が50℃以上、 d)凝固浴温度が90℃を超え100℃以下、且つ e)紡速に対するエアギャップの比率が0.01〜0.
1m/(m/分)であることを特徴とする中空糸状血漿
浄化膜の製造方法、 (2)さらに放射線照射することを特徴とする(1)に
記載の中空糸状血漿浄化膜の製造方法、 (3)膜の内径に対する膜厚の比率が0.15〜0.4
であることを特徴とする(1)又は(2)に記載の中空
糸状血漿浄化膜の製造方法、 (4)膜の外径が400μm以下であることを特徴とす
る(1)〜(3)に記載の中空糸状血漿浄化膜の製造方
法、 (5)膜形成ポリマーがポリスルホン系ポリマーである
ことを特徴とする(1)〜(4)に記載の中空糸状血漿
浄化膜の製造方法、 (6)親水性ポリマーが重量平均分子量900,000
以上のポリビニルピロリドンであることを特徴とする
(1)〜(5)に記載の中空糸状血漿浄化膜の製造方
法、 (7)膜形成ポリマーの溶剤がN−メチル−2−ピロリ
ドンであることを特徴とする(1)〜(6)に記載の中
空糸状血漿浄化膜の製造方法、および (8)紡速が60m/分以上であることを特徴とする
(1)〜(7)に記載の中空糸状血漿浄化膜の製造方
法、に関するものである。
[0011] That is, the present invention provides (1) made after the spinning solution and the internal fluid was discharged from a double annular nozzle, it is solidified in a solid bath coagulation by passing an air gap
Method, the pore size becomes continuous from the outer surface to the inner surface of the membrane.
The rupture strength of the membrane is made up of a sponge structure that becomes smaller continuously
Is 50 kgf / cm 2 or more, and bovine plasma is subjected to internal pressure filtration.
When the total protein permeability is 50% or more,
Hollow fiber plasma purification membrane having a brin permeability of 90% or less
A ) a film-forming stock solution, a film-forming polymer, a solvent for the polymer,
And a hydrophilic polymer, the ratio of the hydrophilic polymer to the film-forming polymer is 27 to 60% by weight, b) the internal liquid is water and at least one kind of solvent, and the water content is 40 to 55% by weight, c) The temperature of the film forming stock solution in the nozzle portion is 50 ° C. or higher, d) the coagulation bath temperature is higher than 90 ° C. and 100 ° C. or lower , and e) the ratio of the air gap to the spinning speed is 0.01 to 0.
1 m / (m / min), a method for producing a hollow fiber plasma purification membrane, (2) a method for producing a hollow fiber plasma purification membrane according to (1), which further comprises irradiation. (3) The ratio of the film thickness to the inner diameter of the film is 0.15 to 0.4
The method for producing a hollow fiber plasma purification membrane according to (1) or (2), characterized in that (4) the outer diameter of the membrane is 400 μm or less (1) to (3) (5) A method for producing a hollow fiber plasma purification membrane according to (1) to (4), wherein the membrane-forming polymer is a polysulfone-based polymer. ) The hydrophilic polymer has a weight average molecular weight of 900,000
The method for producing a hollow fiber plasma purification membrane according to any one of (1) to (5) above, which is polyvinylpyrrolidone, (7) the solvent of the membrane-forming polymer is N-methyl-2-pyrrolidone (1) to (6), the method for producing a hollow fiber plasma purification membrane, and (8) the spinning speed is 60 m / min or more, (1) to (7) The present invention relates to a method for producing a hollow fiber plasma purification membrane.

【0012】本発明の製造方法によって、膜の外表面か
ら内表面に向かって孔径が連続的に小さくなるスポンジ
構造からなり、膜の破断強度が50kgf/cm以上
で、且つ牛血漿を内圧濾過した時の総タンパク質の透過
率が50%以上、イムノグロブリンの透過率が90%以
下であることを特徴とする優れた血漿浄化膜を製造する
ことができる。
According to the production method of the present invention, the membrane has a sponge structure in which the pore size continuously decreases from the outer surface to the inner surface, the membrane has a breaking strength of 50 kgf / cm 2 or more, and bovine plasma is subjected to internal pressure filtration. An excellent plasma purification membrane characterized by having a total protein permeability of 50% or more and an immunoglobulin permeability of 90% or less can be produced.

【0013】[0013]

【発明の実施の形態】以下に、本発明の中空糸状血漿浄
化膜(以下単に「膜」又は「中空糸状膜」ともいう)の
製造方法について説明する。本発明において、血漿浄化
とは、血漿中の成分を分離することをいう。例えば、血
漿中の有用タンパク質であるアルブミンやγ−グロブリ
ンは透過させ、不要タンパク質や脂質を除去することを
いうが、疾病によって、除去すべき成分、分画分子量な
どは異なってくるので、本発明の血液浄化には、血漿中
の成分分離を行うことを広く包含する。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing the hollow fiber plasma purification membrane of the present invention (hereinafter also simply referred to as "membrane" or "hollow fiber membrane") will be described below. In the present invention, plasma purification refers to separation of plasma components. For example, it means that albumin and γ-globulin, which are useful proteins in plasma, are permeated and unnecessary proteins and lipids are removed. However, the components to be removed, the molecular weight cut-off, etc. differ depending on the disease. The blood purification of (1) widely includes the separation of components in plasma.

【0014】本発明の製造方法は、膜形成ポリマー、該
ポリマーの溶剤、及び親水性ポリマーからなる添加剤か
ら本質的になる特定温度の製膜原液を、該ポリマーに対
する良溶剤の特定濃度の水溶液からなる内部液とともに
2重環状ノズルから吐出させ、紡速に対して特定の比率
のエアギャップを通過させた後、特定温度の凝固浴で凝
固させることにより製造される。
In the production method of the present invention, a stock solution for film formation essentially consisting of a film-forming polymer, a solvent for the polymer, and an additive consisting of a hydrophilic polymer is treated with an aqueous solution of a good solvent for the polymer at a specific concentration. Is produced from a double annular nozzle together with an internal liquid consisting of ## STR2 ## and passed through an air gap of a specific ratio to the spinning speed, and then solidified in a coagulating bath at a specific temperature.

【0015】本発明の製造方法において用いられる膜形
成ポリマーは、湿式製膜により膜を形成することができ
るポリマーであればよく、例えばポリスルホン系ポリマ
ー、ポリフッ化ビニリデン系ポリマー、ポリアクリロニ
トリル系ポリマー、ポリメタクリル酸系ポリマー、ポリ
アミド系ポリマー、ポリイミド系ポリマー、ポリエーテ
ルイミド系ポリマー及び酢酸セルロース系ポリマー等が
挙げられる。中でも芳香族ポリスルホンは、その熱安定
性、耐酸、耐アルカリ性に加え、製膜原液に親水化剤を
添加して製膜することにより、血液適合性が向上するこ
とから好ましく用いられる。芳香族ポリスルホンとして
は、ビスフェノールA型ポリスルホンが特に好ましく用
いられる。
The film-forming polymer used in the production method of the present invention may be any polymer capable of forming a film by wet film formation, and examples thereof include polysulfone-based polymers, polyvinylidene fluoride-based polymers, polyacrylonitrile-based polymers, and polyacrylonitrile-based polymers. Examples thereof include methacrylic acid-based polymers, polyamide-based polymers, polyimide-based polymers, polyetherimide-based polymers and cellulose acetate-based polymers. Among them, aromatic polysulfone is preferably used because it is improved in blood compatibility by adding a hydrophilizing agent to a stock solution for film formation in addition to its thermal stability, acid resistance and alkali resistance. Bisphenol A type polysulfone is particularly preferably used as the aromatic polysulfone.

【0016】本発明で用いられる芳香族ポリスルホンと
しては、下記の式(1)、または式(2)で示される繰
り返し単位を有するものが挙げられる。なお、式中のA
rはパラ位での2置換のフェニル基を示し、重合度や分
子量については特に限定しない。 −O−Ar−C(CH−Ar−O−Ar−SO−Ar− (1) −O−Ar−SO−Ar− (2)
Examples of the aromatic polysulfone used in the present invention include those having a repeating unit represented by the following formula (1) or formula (2). In addition, A in the formula
r represents a 2-substituted phenyl group at the para position, and the degree of polymerization and the molecular weight are not particularly limited. -O-Ar-C (CH 3 ) 2 -Ar-O-Ar-SO 2 -Ar- (1) -O-Ar-SO 2 -Ar- (2)

【0017】添加剤は、溶剤と相溶性があり、膜形成ポ
リマーを溶解しない親水性ポリマーが用いられる。膜形
成ポリマーがポリスルホン系ポリマーであれば、添加剤
としてはポリビニルピロリドンが好ましく用いられる。
膜形成ポリマーが芳香族ポリスルホンの場合、ポリビニ
ルピロリドン以外の添加剤を用いたのでは本発明の膜は
得られにくい。
As the additive, a hydrophilic polymer which is compatible with the solvent and does not dissolve the film-forming polymer is used. If the film-forming polymer is a polysulfone-based polymer, polyvinylpyrrolidone is preferably used as an additive.
When the film-forming polymer is aromatic polysulfone, it is difficult to obtain the film of the present invention by using an additive other than polyvinylpyrrolidone.

【0018】ポリビニルピロリドンは高分子量のものほ
ど膜への親水化効果が高いため、高分子量のものほど少
量で十分な効果が発揮できることから、本発明において
は重量平均分子量900,000以上のポリビニルピロ
リドンが使用される。900,000より小さい重量平
均分子量を有するポリビニルピロリドンを用いて膜への
親水化効果を付与するためには大量のポリビニルピロリ
ドンを膜中に残存させる必要があるが、このために膜か
らの溶出物が増加することになる。また、逆に溶出物を
下げるために900,000より小さい重量平均分子量
のポリビニルピロリドンの膜中での残存量を少なくする
と親水化効果が不十分となってしまう。また、重量平均
分子量900,000以上のポリビニルピロリドンを用
いないと膜厚部での親水性が不十分であることから、膜
内表面緻密層(膜内表面部位)を通過した血漿タンパク
質が膜厚部で吸着されてしまい、結果として良好な分離
特性を発揮できない。
The higher the molecular weight of polyvinylpyrrolidone, the higher the hydrophilic effect on the membrane. Therefore, the higher the molecular weight of polyvinylpyrrolidone, the smaller the amount of polyvinylpyrrolidone. Is used. A large amount of polyvinylpyrrolidone must be left in the membrane in order to impart a hydrophilic effect to the membrane by using polyvinylpyrrolidone having a weight average molecular weight of less than 900,000. Will increase. On the contrary, if the residual amount of polyvinylpyrrolidone having a weight average molecular weight of less than 900,000 in the film is reduced in order to reduce the eluate, the hydrophilic effect becomes insufficient. In addition, since the hydrophilicity in the film thickness portion is insufficient unless polyvinylpyrrolidone having a weight average molecular weight of 900,000 or more is used, the plasma protein that has passed through the inner membrane surface dense layer (inner membrane surface site) has a membrane thickness. It is adsorbed on the part, and as a result, good separation characteristics cannot be exhibited.

【0019】ポリマーの溶剤としては、N−メチル−2
−ピロリドン、N,N−ジメチルホルムアミド、N,N
−ジメチルアセトアミド等の溶剤が挙げられるが、膜形
成ポリマーがポリスルホン系ポリマーの場合、N−メチ
ル−2−ピロリドン(以下単に「NMP」ともいう)が
好ましい。NMPは、ポリスルホン系ポリマーに対して
最も溶解力の高い溶剤である。例えば、良溶剤である
N,N−ジメチルアセトアミドと比較して室温で約1.
5倍の溶解力を有する。膜の外表面から内表面に向かっ
て孔径が連続的に小さくなる傾斜構造において膜内表面
に0.01μm以上の大孔径を開口させるには、内部液
中の非溶剤により液液相分離が誘発されてから相分離
(凝固)が終了するまでの時間、即ち粒子成長時間を長
くする必要がある。ポリスルホン系ポリマーにおいて
は、非常に高い溶解力を有するNMPを用いることによ
ってこの粒子成長時間をどの溶剤を用いるよりも長くす
ることが可能である。故に、膜形成ポリマーがポリスル
ホン系ポリマーの場合、NMP以外の溶剤を用いたので
は、膜の外表面から内表面に向かって孔径が連続的に小
さくなる傾斜構造を有する高強度血液浄化膜は得られに
くい。
As the solvent for the polymer, N-methyl-2
-Pyrrolidone, N, N-dimethylformamide, N, N
Examples of the solvent include dimethylacetamide, and when the film-forming polymer is a polysulfone-based polymer, N-methyl-2-pyrrolidone (hereinafter simply referred to as “NMP”) is preferable. NMP is a solvent having the highest dissolving power for polysulfone-based polymers. For example, compared with N, N-dimethylacetamide, which is a good solvent, at about 1.
It has 5 times the dissolving power. In order to open a large pore size of 0.01 μm or more on the inner surface of the membrane in a graded structure where the pore size decreases continuously from the outer surface of the membrane to the inner surface, liquid-liquid phase separation is induced by the non-solvent in the inner liquid. It is necessary to lengthen the time from the completion of the separation to the completion of phase separation (solidification), that is, the particle growth time. In polysulfone-based polymers, it is possible to extend the particle growth time by using NMP, which has a very high dissolving power, than by using any solvent. Therefore, when the membrane-forming polymer is a polysulfone-based polymer, using a solvent other than NMP produces a high-strength blood purification membrane having a gradient structure in which the pore size continuously decreases from the outer surface to the inner surface of the membrane. It is hard to be caught.

【0020】製膜原液は、本質的に膜形成ポリマー、ポ
リビニルピロリドン等の特定の添加剤、N−メチル−2
−ピロリドン等の特定のポリマーの溶剤からなる。製膜
原液にその他の添加剤、例えば従来添加剤として知られ
ている水や金属塩等を加えると、本発明の膜は得られに
くい。
The stock solution for film formation is essentially a film-forming polymer, a specific additive such as polyvinylpyrrolidone, and N-methyl-2.
Consisting of a solvent of a particular polymer such as pyrrolidone. If other additives such as water and metal salts, which are conventionally known as additives, are added to the film-forming stock solution, it is difficult to obtain the film of the present invention.

【0021】以上から、本発明の製造方法から得られた
膜は、芳香族ポリスルホンとポリビニルピロリドンから
なることが最も好ましい。さらに本発明の製造方法から
得られた血漿浄化膜は、内圧濾過によって用いられるこ
とから、濾過しようとする液が接触する膜内表面におけ
るポリビニルピロリドンの濃度が20〜45重量%であ
ることが好ましい。膜の血漿適合性に重要な因子は、血
漿が接する膜内表面の親水性であり、ポリビニルピロリ
ドン(以下単に「PVP」ともいう)を含有するポリス
ルホン系膜では、膜内表面のPVP濃度が重要である。
膜内表面のPVP濃度が低すぎると膜内表面が疎水性を
示し、血漿タンパク質が吸着しやすく、血液の凝固も起
こりやすい。すなわち、膜の血漿適合性不良となる。逆
に膜内表面のPVP濃度が高すぎると、PVPの血液系
への溶出量が増加し好ましくない結果を与える。従っ
て、血漿、血清等を内圧濾過する場合のPVPの濃度
は、20〜45重量%の範囲であり、好ましくは25〜
40重量%である。
From the above, it is most preferable that the membrane obtained by the production method of the present invention is composed of aromatic polysulfone and polyvinylpyrrolidone. Furthermore, since the plasma purification membrane obtained by the production method of the present invention is used by internal pressure filtration, it is preferable that the concentration of polyvinylpyrrolidone on the inner surface of the membrane with which the liquid to be filtered comes into contact is 20 to 45% by weight. . An important factor for the plasma compatibility of the membrane is the hydrophilicity of the inner surface of the membrane in contact with plasma. In the polysulfone-based membrane containing polyvinylpyrrolidone (hereinafter also simply referred to as “PVP”), the PVP concentration on the inner surface of the membrane is important. Is.
When the PVP concentration on the inner surface of the membrane is too low, the inner surface of the membrane exhibits hydrophobicity, plasma proteins are easily adsorbed, and blood coagulation easily occurs. That is, the plasma compatibility of the membrane is poor. On the other hand, if the PVP concentration on the inner surface of the membrane is too high, the amount of PVP eluted into the blood system increases, giving unfavorable results. Therefore, the concentration of PVP in the case of internal pressure filtration of plasma, serum, etc. is in the range of 20 to 45% by weight, preferably 25 to
It is 40% by weight.

【0022】膜内表面のPVP濃度は、エックス線光量
子スペクトル(X−ray Photoelectro
n spectroscopy、以下XPS)によって
決定される。すなわち、膜内表面のXPSの測定は、試
料を両面テープ上に並べた後、カッターで繊維軸方向に
切開し、膜の内側が表になるように押し広げた後、通常
の方法で測定する。すなわち、C1s、O1s、N1
s、S2pスペクトルの面積強度から、装置付属の相対
感度係数を用いて窒素の表面濃度(窒素原子濃度)とイ
オウの表面濃度(イオウ原子濃度)から求めた濃度をい
うものであり、ポリスルホン系ポリマーが(2)式の構
造であるときには(3)式により計算で求めることがで
きる。 PVP濃度(重量%)=C×100/(C+C) (3) ここで、C:窒素原子濃度(%) C:イオウ原子濃度(%) M:PVPの繰り返しユニットの分子量(111) M:ポリスルホン系ポリマーの繰り返しユニットの分
子量(442)
The PVP concentration on the inner surface of the film was determined by X-ray photoelectron spectroscopy (X-ray Photoelectron spectroscopy).
n spectroscopy, hereinafter XPS). That is, the XPS of the inner surface of the film is measured by arranging the samples on the double-sided tape, incising in the fiber axis direction with a cutter, expanding the inside of the film so that it is on the front side, and then measuring by an ordinary method. . That is, C1s, O1s, N1
It means the concentration obtained from the surface intensity of s, S2p spectrum and the surface concentration of nitrogen (nitrogen atom concentration) and the surface concentration of sulfur (sulfur atom concentration) using the relative sensitivity coefficient attached to the device. When is the structure of equation (2), it can be calculated by equation (3). PVP concentration (% by weight) = C 1 M 1 × 100 / (C 1 M 1 + C 2 M 2 ) (3) where C 1 : nitrogen atom concentration (%) C 2 : sulfur atom concentration (%) M 1 : Molecular weight of PVP repeating unit (111) M 2 : Molecular weight of repeating unit of polysulfone polymer (442)

【0023】本発明で用いられる製膜原液のポリマー濃
度は、該原液からの製膜が可能で、かつ得られた膜が膜
としての性能を有するような濃度の範囲であれば特に制
限されず、10〜35重量%、好ましくは10〜30重
量%である。高い透水性能又は大きな分画分子量を達成
するためには、ポリマー濃度は低い方がよく、10〜2
5重量%が好ましい。
The polymer concentration of the stock solution for film formation used in the present invention is not particularly limited as long as the film can be formed from the stock solution and the obtained film has a performance as a film. , 10 to 35% by weight, preferably 10 to 30% by weight. In order to achieve high water permeability or large molecular weight cutoff, it is preferable that the polymer concentration is low,
5% by weight is preferred.

【0024】さらに重要なことは製膜原液中の添加剤
(親水性ポリマー)の量であり、ポリマーに対する添加
剤の混和比率が27〜60重量%、好ましくは30〜6
0重量%である。ポリマーに対する添加剤の混和比率が
27重量%未満では牛血漿を内圧濾過した時のタンパク
質の透過率が低下する傾向にあり、60重量%を超える
と製膜原液の粘性が高くなり製膜時の可紡性が悪くなる
傾向にあるため好ましくない。
What is more important is the amount of the additive (hydrophilic polymer) in the stock solution for film formation, and the mixing ratio of the additive to the polymer is 27 to 60% by weight, preferably 30 to 6%.
It is 0% by weight. When the admixture ratio of the additive to the polymer is less than 27% by weight, the protein permeability when bovine plasma is subjected to internal pressure filtration tends to decrease, and when it exceeds 60% by weight, the viscosity of the membrane-forming stock solution becomes high and the membrane-forming stock solution has high viscosity. It is not preferable because the spinnability tends to deteriorate.

【0025】さらに製膜原液の温度が重要であり、ノズ
ルでの吐出時の製膜原液の温度は50℃以上、好ましく
は60〜100℃である。50℃未満であると製膜時の
可紡性が悪い傾向にある。
Further, the temperature of the film-forming stock solution is important, and the temperature of the film-forming stock solution at the time of discharging by the nozzle is 50 ° C. or higher, preferably 60 to 100 ° C. If it is less than 50 ° C, the spinnability during film formation tends to be poor.

【0026】内部液は、中空糸状膜の中空部を形成させ
るために用いるものであり、水と少なくとも1種類以上
の膜形成ポリマーに対する良溶剤からなる。水の含有量
は、40〜55重量%であることが好ましい。水の含有
量が40重量%未満では製膜時の可紡性が悪く、55重
量%を超えると牛血漿を内圧濾過した時のタンパク質の
透過率が低下する傾向にある。
The internal liquid is used for forming the hollow portion of the hollow fiber membrane, and is composed of water and a good solvent for at least one or more membrane-forming polymers. The water content is preferably 40 to 55% by weight. If the water content is less than 40% by weight, the spinnability during film formation is poor, and if it exceeds 55% by weight, the protein permeability tends to decrease when bovine plasma is subjected to internal pressure filtration.

【0027】エアギャップとは、ノズルと凝固浴との間
の隙間を意味する。本発明の膜を得るには紡速(m/
分)に対するエアギャップ(m)の比率が極めて重要で
ある。何故ならば本発明の膜構造は、内部液中の非溶剤
が製膜原液と接触することによって該製膜原液の内表面
部位から外表面部位側へと経時的に相分離が誘発され、
さらに該製膜原液が凝固浴に入るまでに膜内表面部位か
ら外表面部位までの相分離が完了しなければ、得られな
いからである。
Air gap means the gap between the nozzle and the coagulation bath. In order to obtain the membrane of the present invention, the spinning speed (m /
The ratio of air gap (m) to minute) is extremely important. Because the membrane structure of the present invention, the non-solvent in the internal solution is contacted with the film-forming stock solution to induce phase separation over time from the inner surface part of the film-forming stock solution to the outer surface part side,
Further, if the phase separation from the inner surface portion to the outer surface portion of the film is not completed by the time the stock solution for film formation enters the coagulation bath, it cannot be obtained.

【0028】紡速に対するエアギャップの比率は、0.
01〜0.1m/(m/分)であることが好ましく、さ
らに好ましくは0.01〜0.05m/(m/分)であ
る。紡速に対するエアギャップの比率が0.010m/
(m/分)未満では、本発明の構造と性能を有する膜を
得ることが難しく、0.1m/(m/分)を超える比率
では、膜へのテンションが高いことからエアギャップ部
で膜切れを多発し製造しにくい傾向にあり好ましくな
い。
The ratio of air gap to spinning speed is 0.
It is preferably from 01 to 0.1 m / (m / min), more preferably from 0.01 to 0.05 m / (m / min). The ratio of air gap to spinning speed is 0.010m /
When it is less than (m / min), it is difficult to obtain a film having the structure and performance of the present invention, and when it exceeds 0.1 m / (m / min), the tension to the film is high, so that the film is formed in the air gap portion. It is not preferable because it often breaks and tends to be difficult to manufacture.

【0029】また、紡速は生産効率に大きく寄与するこ
とから、早い程良いが、紡速が早くなると共にテンショ
ンが高くなることから早くすることが不可能であった
が、本発明において紡速は60m/分以上、さらには7
0〜120m/分が可能である。ここで、紡速とはノズ
ルから内部液とともに吐出した製膜原液がエアギャップ
を通過して凝固浴にて凝固した膜が巻き取られる中空糸
状膜の一連の製造工程において、該工程中に延伸操作が
無い時の巻き取り速度を意味する。また、エアギャップ
を円筒状の筒などで囲み、一定の温度と湿度を有する気
体を一定の流量でこのエアギャップに流すと、より安定
した状態で中空糸状膜を製造することができる。
[0029] Further, the higher the spinning speed, the better, because it greatly contributes to the production efficiency. However, it is impossible to increase the spinning speed because the spinning speed becomes fast and the tension becomes high. 60m / min or more, and even 7
0 to 120 m / min is possible. Here, the spinning speed is a series of manufacturing steps of a hollow fiber membrane in which a stock solution for film formation discharged from a nozzle together with an internal solution passes through an air gap and a film coagulated in a coagulation bath is wound, and stretched during the process. It means the winding speed when there is no operation. Also, by enclosing the air gap with a cylindrical tube or the like and flowing a gas having a constant temperature and humidity at a constant flow rate into the air gap, the hollow fiber membrane can be manufactured in a more stable state.

【0030】凝固浴としては、例えば水;メタノール、
エタノール等のアルコール類;エーテル類;n−ヘキサ
ン、n−ヘプタン等の脂肪族炭化水素類などポリマーを
溶解しない液体が用いられるが、水が好ましい。また、
凝固浴にポリマーを溶解する溶剤を若干添加することに
より凝固速度等をコントロールすることも可能である。
凝固浴の温度は、90〜100℃が好ましい。凝固浴の
温度が90℃未満では牛血漿を内圧濾過した時のタンパ
ク質の透過率が低下する傾向にあり、100℃以上では
製膜時に糸切れ等を多発し好ましくない。
As the coagulation bath, for example, water; methanol,
Liquids such as alcohols such as ethanol; ethers; aliphatic hydrocarbons such as n-hexane and n-heptane that do not dissolve the polymer are used, and water is preferable. Also,
It is also possible to control the coagulation rate and the like by adding a small amount of a solvent that dissolves the polymer to the coagulation bath.
The temperature of the coagulation bath is preferably 90 to 100 ° C. If the temperature of the coagulation bath is lower than 90 ° C., the protein permeability tends to decrease when bovine plasma is subjected to internal pressure filtration, and if the temperature is 100 ° C. or higher, thread breakage and the like frequently occur during film formation, which is not preferable.

【0031】さらに、本発明の膜を得るためには凝固後
の膜の内径に対する膜厚の比率が0.15〜0.4、好
ましくは0.2〜0.3である。膜の内径に対する膜厚
の比率が0.15未満では膜の絶対強度が弱くなる傾向
にある。また、該比率が0.4を超えると本発明の様な
膜の外表面から内表面(又は内表面部位)に向かって孔
径が小さくなる傾斜構造は得られにくい傾向にある。何
故ならば、内部液中の非溶剤量に対する製膜原液中の溶
剤量の割合が多いために、内部液中の非溶剤量のみでは
凝固浴に入るまでに製膜原液の膜内表面部位から外表面
部位までの相分離を完了できないためである。
Further, in order to obtain the film of the present invention, the ratio of the film thickness to the inner diameter of the film after coagulation is 0.15 to 0.4, preferably 0.2 to 0.3. If the ratio of the film thickness to the inner diameter of the film is less than 0.15, the absolute strength of the film tends to be weak. If the ratio exceeds 0.4, it tends to be difficult to obtain a graded structure in which the pore diameter decreases from the outer surface to the inner surface (or the inner surface portion) of the membrane as in the present invention. Because the ratio of the amount of solvent in the film-forming stock solution to the amount of non-solvent in the internal solution is large, only the amount of non-solvent in the internal solution is enough to remove the amount of non-solvent in the internal solution from the inner surface of the film before entering the coagulation bath. This is because the phase separation up to the outer surface part cannot be completed.

【0032】また、膜の外径は400μm以下、好まし
くは300μm以下である。膜の外径が大きくなるとモ
ジュール内の膜面積(充填量)を低下せざるを得ないた
め、結果として単位時間当たりの処理能力が劣り、好ま
しくない。逆に膜の外径を大きくしてモジュール内の膜
面積(充填量)を同一にするにはモジュール容器を大き
くせざるを得ず、結果としてコストアップとなり好まし
くない。本発明の製造方法から得られた膜は、医療用途
で使用されることから、患者の医療費負担を軽減するた
め高価な大型モジュールにすることは避ける必要があ
る。以上の処理能力とコストの関係から膜の外径は40
0μm以下であることが好ましい。
The outer diameter of the film is 400 μm or less, preferably 300 μm or less. When the outer diameter of the membrane becomes large, the membrane area (filling amount) in the module is unavoidably reduced, resulting in poor processing capacity per unit time, which is not preferable. On the contrary, in order to increase the outer diameter of the membrane to make the membrane area (filling amount) in the module the same, the module container must be enlarged, resulting in an increase in cost, which is not preferable. Since the membrane obtained by the production method of the present invention is used for medical purposes, it is necessary to avoid making an expensive large-sized module in order to reduce the medical cost burden on the patient. The outer diameter of the membrane is 40 because of the above processing capacity and cost.
It is preferably 0 μm or less.

【0033】さらに、本発明の膜は乾燥させることも可
能であり、乾燥に際しては、グリセリン等の保湿剤を含
浸させてもさせなくても良い。
Further, the film of the present invention can be dried, and it may be impregnated with a moisturizing agent such as glycerin during the drying.

【0034】さらに、膜に電子線及びγ線等の放射線を
照射することにより、膜中のPVPの一部を水に不溶化
できることから、膜からの溶出量を低減することが可能
である。放射線の照射は、モジュール化前又はモジュー
ル化後のどちらでも良い。本発明でいう水に不溶である
PVPとは、膜中の全PVP量から水に可溶であるPV
P量を差し引いたものである。膜中の全PVP量は、窒
素及びイオウの元素分析により容易に算出することがで
きる。
Further, by irradiating the membrane with radiation such as electron rays and γ rays, a part of PVP in the membrane can be insolubilized in water, so that the amount of elution from the membrane can be reduced. Irradiation may be performed before or after modularization. The water-insoluble PVP referred to in the present invention means PV that is soluble in water from the total amount of PVP in the membrane.
The amount of P is subtracted. The total amount of PVP in the film can be easily calculated by elemental analysis of nitrogen and sulfur.

【0035】また、水に可溶であるPVP量は、以下の
方法により求めることができる。例えば、膜形成ポリマ
ーがポリスルホン系ポリマーの場合、膜をN−メチル−
2−ピロリドンで完全に溶解した後、得られたポリマー
溶液に水を添加して膜形成ポリマーを完全に沈殿させ
る。さらに該ポリマー溶液を静置した後、上澄み液中の
PVP量を液体クロマトグラフィーで定量することによ
り水に可溶であるPVPを定量することができる。
The amount of PVP soluble in water can be determined by the following method. For example, when the film-forming polymer is a polysulfone-based polymer, the film is N-methyl-
After completely dissolving with 2-pyrrolidone, water is added to the obtained polymer solution to completely precipitate the film-forming polymer. After allowing the polymer solution to stand still, the amount of PVP in the supernatant can be quantified by liquid chromatography to quantify the PVP soluble in water.

【0036】[0036]

【実施例】以下にこの発明の実施例を示すが、本発明
は、これに限定されるものではない。各測定方法は、下
記のとおりである。なお、測定サンプルとして使用した
中空糸状膜は、すべて乾燥状態のものを用いた。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. Each measuring method is as follows. The hollow fiber membranes used as measurement samples were all in a dry state.

【0037】(透水量の測定)両端を接着剤で固定した
有効長180mmの糸束(内表面積換算で110±10
cmになるように膜本数を揃えたミニモジュール)の
内表面から外表面に透過させ、その量をmL(ミリリッ
トル)/(m・hr・mmHg)で表した。ただし、
有効膜面積は内表面換算した。
(Measurement of Water Permeability) A yarn bundle having an effective length of 180 mm with both ends fixed by an adhesive (110 ± 10 in terms of internal surface area)
It was permeated from the inner surface to the outer surface of a mini module (having a uniform number of membranes so as to be cm 2 ), and the amount was expressed in mL (milliliter) / (m 2 · hr · mmHg). However,
The effective film area was converted to the inner surface.

【0038】(破断強度の測定)膜強度は、(株)島津
製作所製のオートグラフAGS−5Dを使用し、サンプ
ル長さ20mm、引張りスピード300mm/分で測定
した。
(Measurement of breaking strength) The film strength was measured by using Autograph AGS-5D manufactured by Shimadzu Corporation at a sample length of 20 mm and a pulling speed of 300 mm / min.

【0039】(牛血漿評価)両端を接着剤で固定した有
効長180mmの糸束(ミニモジュール)の一方の中空
部(内表面側)に牛血漿を0.5mL/分にて供給し、
さらに他方の中空部から0.1mL/分で液を抜き出す
条件でワンパスにてクロスフロー濾過を180分間行っ
た。糸束の膜面積は、0.5mL/分の牛血漿供給量に
対して線速が1cm/分になるように膜本数を調整し
た。180分間濾過した全濾液を均一に攪拌した溶液と
濾過前血漿中の各タンパク質の濃度を求めることにより
膜性能を評価した。また、透過率は下記の(4)で表さ
れる値である。 透過率(%)=(濾液中の濃度)/(元液中の濃度)×100 (4)
(Evaluation of bovine plasma) Bovine plasma was supplied at 0.5 mL / min into one hollow portion (inner surface side) of a yarn bundle (mini module) having an effective length of 180 mm with both ends fixed with an adhesive,
Further, cross-flow filtration was performed for 180 minutes by one pass under the condition that the liquid was extracted from the other hollow portion at 0.1 mL / min. Regarding the membrane area of the yarn bundle, the number of membranes was adjusted so that the linear velocity was 1 cm / min with respect to the bovine plasma supply amount of 0.5 mL / min. The membrane performance was evaluated by determining the concentration of each protein in the solution obtained by uniformly stirring the entire filtrate filtered for 180 minutes and in the plasma before filtration. Further, the transmittance is a value represented by (4) below. Transmittance (%) = (concentration in filtrate) / (concentration in original solution) × 100 (4)

【0040】(総タンパク質量の測定)総タンパク質量
(濃度)は、0.1mLの液(血漿(元液)又は膜から
の濾液)に対して総タンパク発色試薬(和光純薬(株)
製)5mLを混合して30分間放置後、540nmの波
長にて分光光度計により測定した。
(Measurement of Total Protein Amount) The total protein amount (concentration) is the total protein coloring reagent (Wako Pure Chemical Industries, Ltd.) for 0.1 mL of liquid (plasma (original liquid) or filtrate from the membrane).
(Manufactured by K.K.) and mixed with each other for 30 minutes and then measured with a spectrophotometer at a wavelength of 540 nm.

【0041】(イムノグロブリン濃度の測定)血漿(元
液)又は膜からの濾液中のイムノグロブリンの濃度は、
Behring Nephelometer−Anal
yzer BM(デイド ベーリング(株)社製)を用
いて測定した。
(Determination of Immunoglobulin Concentration) The concentration of immunoglobulin in the plasma (original solution) or the filtrate from the membrane is
Behring Nepherometer-Anal
It measured using yzer BM (made by Dade Behring Co., Ltd.).

【0042】(膜表面の開孔率の測定)開口率は、膜の
外表面の電子顕微鏡写真を画像解析して数値化すること
により求めた。本発明でいう開口率とは、取り組んだ画
像の面積に対する開孔部孔面積の総和の百分率と定義さ
れ、下記の式(5)で与えられる。なお、10ピクセル
以下はノイズとみなして計数から除外した。 開孔率(%)=(開孔部の孔面積の総和/取り込んだ画像の面積)×100 (5)
(Measurement of Porosity of Membrane Surface) The aperture ratio was determined by numerically analyzing the electron micrograph of the outer surface of the membrane by image analysis. The aperture ratio referred to in the present invention is defined as a percentage of the total area of the open hole portions with respect to the area of the image that is worked on, and is given by the following formula (5). Note that 10 pixels or less were regarded as noise and were excluded from the counting. Open area ratio (%) = (sum of open area of open area / area of captured image) × 100 (5)

【0043】(膜表面の平均孔径の測定)膜の表面に開
口した孔の形状や大きさ等は、電子顕微鏡を用いて観
察、測定した。また、内表面及び外表面に開口した孔の
平均孔径とは、下記の式(6)で示される値である。 =[{(D )+……+(D )}/{D +……+D }]1/2(6) ここでは平均孔径、Dはi個目の孔の実測径、D
はn個目の孔の実測径である。ただし、D、Dの実
測径は、孔が円形に近い場合は、その直径で表し、孔が
円形でない場合には,その孔と同一面積の円の直径で表
す。
(Measurement of Mean Pore Diameter on Membrane Surface) The shape and size of the pores opened on the surface of the membrane were observed and measured using an electron microscope. Further, the average pore diameter D of the holes opened on the inner surface and the outer surface is a value represented by the following formula (6). D = [{(D i 2 ) 2 + ... + (D n 2 ) 2 } / {D i 2 + ... + D n 2 }] 1/2 (6) where D is the average pore diameter and D i is The measured diameter of the i-th hole, D n
Is the measured diameter of the n-th hole. However, the measured diameters of D i and D n are represented by the diameter of the hole when the hole is close to a circle, and by the diameter of a circle having the same area as the hole when the hole is not circular.

【0044】[0044]

【実施例1】(製膜及び残溶剤の除去)ポリスルホン
(Amoco Engineering Polyme
rs社製P−1700)20.0重量%、ポリビニルピ
ロリドン(BASF社製 K90、重量平均分子量1,
200,000)6.0重量%を、N−メチル−2−ピ
ロリドン74.0重量%に溶解して均一な溶液とした。
ここで、製膜原液中のポリスルホンに対するポリビニル
ピロリドンの混和比率は30.0重量%であった。この
製膜原液を60℃に保ち、N−メチル−2−ピロリドン
46重量%と水54重量%の混合溶液からなる内部液
(水の含有量が54重量%)とともに、紡口(2重環状
ノズル 0.1mm−0.2mm−0.3mm、ノズル
温度60℃、ノズル部での製膜原液の温度60℃)から
吐出させ、0.96mのエアギャップを通過させて95
±1℃の水からなる凝固浴へ浸漬した。この時、紡口か
ら凝固浴までを円筒状の筒で囲み、外気が入らないよう
に密閉した。紡速は、80m/分に固定した。ここで、
紡速に対するエアギャップの比率は、0.012m/
(m/分)であった。巻き取った糸束を切断後、糸束の
切断面上方から80℃の熱水シャワーを2時間かけて洗
浄することにより膜中の残溶剤を除去した。この膜をさ
らに87℃の熱風で7時間乾燥することにより含水量が
1%未満の乾燥膜を得た。さらに、2.5Mradのγ
線を照射することにより膜中のPVPの一部を不溶化し
た。
[Example 1] (Film formation and removal of residual solvent) Polysulfone (Amoco Engineering Polymer)
rs P-1700) 20.0 wt%, polyvinylpyrrolidone (BASF K90, weight average molecular weight 1,
6.0% by weight of 200,000) was dissolved in 74.0% by weight of N-methyl-2-pyrrolidone to obtain a uniform solution.
Here, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 30.0% by weight. This film-forming stock solution was kept at 60 ° C., and the spinneret (double ring) was formed along with an internal solution (water content was 54% by weight) consisting of a mixed solution of 46% by weight of N-methyl-2-pyrrolidone and 54% by weight of water. Nozzle 0.1 mm-0.2 mm-0.3 mm, nozzle temperature 60 ° C., temperature of the stock solution for film formation at the nozzle part 60 ° C.), and the mixture was passed through an air gap of 0.96 m to reach 95
It was immersed in a coagulation bath consisting of water at ± 1 ° C. At this time, the spinneret and the coagulation bath were surrounded by a cylindrical tube and sealed so that outside air did not enter. The spinning speed was fixed at 80 m / min. here,
The ratio of air gap to spinning speed is 0.012m /
(M / min). After cutting the wound yarn bundle, the residual solvent in the film was removed by washing from above the cut surface of the yarn bundle with a hot water shower at 80 ° C. for 2 hours. The film was further dried with hot air at 87 ° C. for 7 hours to obtain a dry film having a water content of less than 1%. Furthermore, 2.5 Mrad γ
A part of PVP in the film was insolubilized by irradiation with a ray.

【0045】得られた膜を電子顕微鏡にて観察したとこ
ろ、膜の外表面から内表面に向かって孔径が連続的に小
さくなるスポンジ構造であることが明らかとなった。そ
の他の膜構造及び膜性能等を表1に示す。膜の破断強度
は50kgf/cm以上と高い強度を示し、牛血漿を
内圧濾過した時の総タンパク質の透過率が50%以上で
あった。さらに、牛血漿の内圧濾過においても急激な目
詰まりがなく長時間安定した濾液量を維持した。
Observation of the obtained film with an electron microscope revealed that the film had a sponge structure in which the pore diameter continuously decreased from the outer surface to the inner surface of the film. Table 1 shows other film structures and film performances. The rupture strength of the membrane was as high as 50 kgf / cm 2 or more, and the total protein permeability was 50% or more when bovine plasma was subjected to internal pressure filtration. Further, even in the internal pressure filtration of bovine plasma, a stable amount of filtrate was maintained for a long time without sudden clogging.

【0046】[0046]

【実施例2】N−メチル−2−ピロリドン54重量%と
水46重量%の混合溶液からなる内部液(水の含有量が
46重量%)を用いた以外は、実施例1と同様な操作を
行った。得られた膜を電子顕微鏡にて観察したところ、
膜の外表面から内表面に向かって孔径が連続的に小さく
なるスポンジ構造であることが明らかとなった。その他
の膜構造及び膜性能等を表1に示す。膜の破断強度は5
0kgf/cm以上と高い強度を示し、牛血漿を内圧
濾過した時の総タンパク質の透過率が50%以上であっ
た。さらに、牛血漿の内圧濾過においても急激な目詰ま
りがなく長時間安定した濾液量を維持した。
Example 2 The same operation as in Example 1 except that an internal liquid (water content of 46% by weight) consisting of a mixed solution of 54% by weight of N-methyl-2-pyrrolidone and 46% by weight of water was used. I went. When the obtained film was observed with an electron microscope,
It was revealed that the sponge structure has a pore size that continuously decreases from the outer surface to the inner surface of the membrane. Table 1 shows other film structures and film performances. The breaking strength of the film is 5
The strength was as high as 0 kgf / cm 2 or more, and the total protein permeability was 50% or more when bovine plasma was subjected to internal pressure filtration. Further, even in the internal pressure filtration of bovine plasma, a stable amount of filtrate was maintained for a long time without sudden clogging.

【0047】[0047]

【実施例3】N−メチル−2−ピロリドン58重量%と
水42重量%の混合溶液からなる内部液(水の含有量が
42重量%)を用いた以外は、実施例1と同様な操作を
行った。得られた膜を電子顕微鏡にて観察したところ、
膜の外表面から内表面に向かって孔径が連続的に小さく
なるスポンジ構造であることが明らかとなった。その他
の膜構造及び膜性能等を表1に示す。膜の破断強度は5
0kgf/cm以上と高い強度を示し、牛血漿を内圧
濾過した時の総タンパク質の透過率が50%以上であっ
た。さらに、牛血漿の内圧濾過においても急激な目詰ま
りがなく長時間安定した濾液量を維持した。
[Example 3] The same operation as in Example 1 except that an internal solution (content of water was 42% by weight) consisting of a mixed solution of 58% by weight of N-methyl-2-pyrrolidone and 42% by weight of water was used. I went. When the obtained film was observed with an electron microscope,
It was revealed that the sponge structure has a pore size that continuously decreases from the outer surface to the inner surface of the membrane. Table 1 shows other film structures and film performances. The breaking strength of the film is 5
The strength was as high as 0 kgf / cm 2 or more, and the total protein permeability was 50% or more when bovine plasma was subjected to internal pressure filtration. Further, even in the internal pressure filtration of bovine plasma, a stable amount of filtrate was maintained for a long time without sudden clogging.

【0048】[0048]

【実施例4】製膜原液中のポリビニルピロリドンを1
0.0重量%、N−メチル−2−ピロリドンを70.0
重量%とした以外は、実施例1と同様な操作を行った。
この時の製膜原液中のポリスルホンに対するポリビニル
ピロリドンの混和比率は50.0重量%であった。得ら
れた膜を電子顕微鏡にて観察したところ、膜の外表面か
ら内表面に向かって孔径が連続的に小さくなるスポンジ
構造であることが明らかとなった。その他の膜構造及び
膜性能等を表1に示す。膜の破断強度は50kgf/c
以上と高い強度を示し、牛血漿を内圧濾過した時の
総タンパク質の透過率が50%以上であった。さらに、
牛血漿の内圧濾過においても急激な目詰まりがなく長時
間安定した濾液量を維持した。
[Example 4] 1 polyvinylpyrrolidone in the film-forming stock solution
0.0 wt%, N-methyl-2-pyrrolidone 70.0
The same operation as in Example 1 was performed except that the content was changed to wt%.
At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 50.0% by weight. When the obtained film was observed by an electron microscope, it was revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface. Table 1 shows other film structures and film performances. The breaking strength of the film is 50kgf / c
It showed a high strength of m 2 or more, and the total protein permeability was 50% or more when bovine plasma was subjected to internal pressure filtration. further,
Even in the internal pressure filtration of bovine plasma, a stable amount of filtrate was maintained for a long time without sudden clogging.

【0049】[0049]

【実施例5】製膜原液中のポリビニルピロリドンを8.
0重量%、N−メチル−2−ピロリドンを70.0重量
%とした以外は、実施例1と同様な操作を行った。この
時の製膜原液中のポリスルホンに対するポリビニルピロ
リドンの混和比率は50.0重量%であった。得られた
膜を電子顕微鏡にて観察したところ、膜の外表面から内
表面に向かって孔径が連続的に小さくなるスポンジ構造
であることが明らかとなった。その他の膜構造及び膜性
能等を表1に示す。膜の破断強度は50kgf/cm
以上と高い強度を示し、牛血漿を内圧濾過した時の総タ
ンパク質の透過率が50%以上であった。さらに、牛血
漿の内圧濾過においても急激な目詰まりがなく長時間安
定した濾液量を維持した。
[Example 5] The polyvinylpyrrolidone in the stock solution for film formation was changed to 8.
The same operation as in Example 1 was performed except that 0% by weight and 70.0% by weight of N-methyl-2-pyrrolidone were used. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 50.0% by weight. When the obtained film was observed by an electron microscope, it was revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface. Table 1 shows other film structures and film performances. The breaking strength of the film is 50 kgf / cm 2
The strength was high as described above, and the total protein permeability was 50% or more when bovine plasma was subjected to internal pressure filtration. Further, even in the internal pressure filtration of bovine plasma, a stable amount of filtrate was maintained for a long time without sudden clogging.

【0050】[0050]

【比較例1】N−メチル−2−ピロリドン43重量%と
水57重量%の混合溶液からなる内部液(水の含有量が
57重量%)を用いた以外は、実施例1と同様な操作を
行った。得られた膜を電子顕微鏡にて観察したところ、
膜の外表面から内表面に向かって孔径が連続的に小さく
なるスポンジ構造であることが明らかとなった。その他
の膜構造及び膜性能等を表2に示す。牛血漿を内圧濾過
した時の総タンパク質の透過率は50%未満であった。
[Comparative Example 1] The same operation as in Example 1 except that an internal solution (water content of 57% by weight) consisting of a mixed solution of 43% by weight of N-methyl-2-pyrrolidone and 57% by weight of water was used. I went. When the obtained film was observed with an electron microscope,
It was revealed that the sponge structure has a pore size that continuously decreases from the outer surface to the inner surface of the membrane. Table 2 shows other film structures and film performances. The permeation rate of total protein was less than 50% when bovine plasma was subjected to internal pressure filtration.

【0051】[0051]

【比較例2】N−メチル−2−ピロリドン62重量%と
水38重量%の混合溶液からなる内部液(水の含有量が
38重量%)を用いた以外は、実施例1と同様な操作を
行ったが、糸切れが多発し紡糸できなかった。
[Comparative Example 2] The same operation as in Example 1 except that an internal solution (containing 38% by weight of water) consisting of a mixed solution of 62% by weight of N-methyl-2-pyrrolidone and 38% by weight of water was used. However, the yarn was frequently broken and the spinning could not be performed.

【0052】[0052]

【比較例3】製膜原液中のポリビニルピロリドンを5.
0重量%、N−メチル−2−ピロリドンを75.0重量
%とした以外は、実施例1と同様な操作を行った。この
時の製膜原液中のポリスルホンに対するポリビニルピロ
リドンの混和比率は25.0重量%であった。得られた
膜を電子顕微鏡にて観察したところ、膜の外表面から内
表面に向かって孔径が連続的に小さくなるスポンジ構造
であることが明らかとなった。その他の膜構造及び膜性
能等を表2に示す。牛血漿を内圧濾過した時の総タンパ
ク質の透過率は50%未満であった。
[Comparative Example 3] The polyvinylpyrrolidone in the stock solution for film formation was compared with 5.
The same operation as in Example 1 was performed except that 0% by weight and 75.0% by weight of N-methyl-2-pyrrolidone were used. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 25.0% by weight. When the obtained film was observed by an electron microscope, it was revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface. Table 2 shows other film structures and film performances. The permeation rate of total protein was less than 50% when bovine plasma was subjected to internal pressure filtration.

【0053】[0053]

【比較例4】実施例1で使用したポリスルホン20重量
%、ポリビニルピロリドンを13重量%、およびN−メ
チル−2−ピロリドンを67重量%を溶解しようとした
均一な溶液にすることができなかった。
COMPARATIVE EXAMPLE 4 20% by weight of the polysulfone used in Example 1, 13% by weight of polyvinylpyrrolidone, and 67% by weight of N-methyl-2-pyrrolidone were not dissolved to form a uniform solution. .

【0054】[0054]

【比較例5】製膜原液の温度を45℃、ノズル温度を4
5℃(ノズル部での製膜原液の温度45℃)にした以外
は、実施例2と同様な操作を行ったが、糸切れが多発し
紡糸できなかった。
[Comparative Example 5] The temperature of the film forming solution was 45 ° C and the nozzle temperature was 4
The same operation as in Example 2 was carried out except that the temperature was 5 ° C. (the temperature of the stock solution for film formation at the nozzle portion was 45 ° C.), but yarn breakage occurred frequently and spinning was not possible.

【0055】[0055]

【比較例6】溶剤をN−メチル−2−ピロリドンから
N,N−ジメチルアセトアミドにした以外は実施例1と
同様な操作を行った。得られた膜を電子顕微鏡にて観察
したところ、膜の外表面から内表面に向かって孔径が連
続的に小さくなるスポンジ構造であることが明らかとな
った。その他の膜構造及び膜性能等を表2に示す。牛血
漿を内圧濾過した時の総タンパク質の透過率は50%未
満であった。
Comparative Example 6 The same operation as in Example 1 was carried out except that the solvent was changed from N-methyl-2-pyrrolidone to N, N-dimethylacetamide. When the obtained film was observed by an electron microscope, it was revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface. Table 2 shows other film structures and film performances. The permeation rate of total protein was less than 50% when bovine plasma was subjected to internal pressure filtration.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【発明の効果】本発明の製造方法から得られた膜は、内
圧濾過における血漿浄化において目詰まりが少ない膜で
あって、高強度で、しかも透水性能および分画性能にも
優れた血漿浄化膜であることから医薬用途、医療用途、
及び一般工業用途に用いることができる。
EFFECT OF THE INVENTION The membrane obtained by the production method of the present invention is a membrane having less clogging in plasma purification in internal pressure filtration, having high strength, and having excellent water permeability and fractionation performance. Therefore, the medical use, medical use,
And can be used for general industrial applications.

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 製膜原液と内部液を2重環状ノズルから
吐出させた後、エアギャップを通過させて凝固浴で凝固
させる方法によって、膜の外表面から内表面に向かって
孔径が連続的に小さくなるスポンジ構造からなり、膜の
破断強度が50kgf/cm 以上で、且つ牛血漿を内
圧濾過した時の総タンパク質の透過率が50%以上、イ
ムノグロブリンの透過率が90%以下である中空糸状血
漿浄化膜を製造する方法であって、 a)製膜原液が、膜形成ポリマー、該ポリマーの溶剤、
及び親水性ポリマーからなり、膜形成ポリマーに対する
親水性ポリマーの比率が30〜60重量%、 b)内部液が水と少なくとも1種類以上の溶剤からな
り、水の含有量が40〜55重量%、 c)ノズル部での製膜原液の温度が50℃以上、 d)凝固浴温度が90℃を越え100℃以下、且つ e)紡速に対するエアギャップの比率が0.01〜0.
1m/(m/分)であることを特徴とする中空糸状血漿
浄化膜の製造方法。
After ejecting 1. A film-forming dope and the internal solution from a double annular nozzle, coagulating the solid bath coagulation by passing an air gap
From the outer surface to the inner surface of the membrane
It consists of a sponge structure with a continuously decreasing pore size,
Break strength is 50 kgf / cm 2 or more and bovine plasma
Permeability of total protein after pressure filtration is 50% or more,
Hollow filamentous blood with a munoglobulin permeability of 90% or less
A method for producing a serum purification membrane, comprising: a) a membrane-forming stock solution comprising a film-forming polymer, a solvent for the polymer,
And a hydrophilic polymer, the ratio of the hydrophilic polymer to the film-forming polymer is 30 to 60% by weight, b) the internal liquid is water and at least one kind of solvent, and the water content is 40 to 55% by weight, c) the temperature of the stock solution at the nozzle portion is 50 ° C. or higher, d) the coagulation bath temperature exceeds 90 ° C. and 100 ° C. or lower , and e) the ratio of the air gap to the spinning speed is 0.01 to 0.
It is 1 m / (m / min), The manufacturing method of the hollow fiber-shaped plasma purification membrane characterized by the above-mentioned.
【請求項2】 さらに放射線照射することを特徴とする
請求項1に記載の中空糸状血漿浄化膜の製造方法。
2. The method for producing a hollow fiber plasma purification membrane according to claim 1, further comprising irradiation with radiation.
【請求項3】 膜の内径に対する膜厚の比率が0.15
〜0.4であることを特徴とする請求項1又は2に記載
の中空糸状血漿浄化膜の製造方法。
3. The ratio of the film thickness to the inner diameter of the film is 0.15.
It is -0.4, The manufacturing method of the hollow-fiber-shaped plasma purification membrane of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 膜の外径が400μm以下であることを
特徴とする請求項1〜3のいずれかに記載の中空糸状血
漿浄化膜の製造方法。
4. The method for producing a hollow fiber plasma purification membrane according to claim 1, wherein the outer diameter of the membrane is 400 μm or less.
【請求項5】 膜形成ポリマーがポリスルホン系ポリマ
ーであることを特徴とする請求項1〜4のいずれかに記
載の中空糸状血漿浄化膜の製造方法。
5. The method for producing a hollow fiber plasma purification membrane according to claim 1, wherein the membrane-forming polymer is a polysulfone-based polymer.
【請求項6】 親水性ポリマーが重量平均分子量90
0,000以上のポリビニルピロリドンであることを特
徴とする請求項1〜5のいずれかに記載の中空糸状血漿
浄化膜の製造方法。
6. The hydrophilic polymer has a weight average molecular weight of 90.
It is polyvinylpyrrolidone of 10,000 or more, The manufacturing method of the hollow fiber plasma purification membrane in any one of Claims 1-5 characterized by the above-mentioned.
【請求項7】 膜形成ポリマーの溶剤がN−メチル−2
−ピロリドンであることを特徴とする請求項1〜6のい
ずれかに記載の中空糸状血漿浄化膜の製造方法。
7. The solvent for the film-forming polymer is N-methyl-2.
-Pyrrolidone, The method for producing a hollow fiber plasma purification membrane according to any one of claims 1 to 6, wherein
【請求項8】紡速が60m/分以上であることを特徴と
する請求項1〜7のいずれかに記載の中空糸状血漿浄化
膜の製造方法。
8. The method for producing a hollow fiber plasma purification membrane according to claim 1, wherein the spinning speed is 60 m / min or more.
JP2002267267A 2002-09-12 2002-09-12 Method for producing plasma purification membrane Expired - Lifetime JP3431623B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002267267A JP3431623B1 (en) 2002-09-12 2002-09-12 Method for producing plasma purification membrane
AT03795429T ATE511868T1 (en) 2002-09-12 2003-09-12 PLASMA CLEANING MEMBRANE AND PLASMA CLEANING SYSTEM
CA2498244A CA2498244C (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system
AU2003261571A AU2003261571A1 (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system
EP03795429A EP1547628B1 (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system
MXPA05002747A MXPA05002747A (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system.
US10/527,802 US7563376B2 (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system
CNB038234785A CN100503020C (en) 2002-09-12 2003-09-12 Plasma purifying membrane and plasma purifying system
PCT/JP2003/011715 WO2004024216A1 (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267267A JP3431623B1 (en) 2002-09-12 2002-09-12 Method for producing plasma purification membrane

Publications (2)

Publication Number Publication Date
JP3431623B1 true JP3431623B1 (en) 2003-07-28
JP2004098026A JP2004098026A (en) 2004-04-02

Family

ID=27655688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267267A Expired - Lifetime JP3431623B1 (en) 2002-09-12 2002-09-12 Method for producing plasma purification membrane

Country Status (1)

Country Link
JP (1) JP3431623B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114733369A (en) * 2022-05-09 2022-07-12 苏州君康医疗科技有限公司 Plasma separation membrane and production method of plasma component separation membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5705445B2 (en) * 2010-03-26 2015-04-22 旭化成ケミカルズ株式会社 Method for producing purified collagen hydrolyzate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114733369A (en) * 2022-05-09 2022-07-12 苏州君康医疗科技有限公司 Plasma separation membrane and production method of plasma component separation membrane

Also Published As

Publication number Publication date
JP2004098026A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
US5958989A (en) Highly asymmetric ultrafiltration membranes
JP4172819B2 (en) Hollow fiber membrane
JP3232117B2 (en) Polysulfone porous hollow fiber
CN100457242C (en) Dialysis membrane having improved average molecular distance
JP5433921B2 (en) Polymer porous hollow fiber membrane
EP0121911A2 (en) Hollow fiber filter medium and process for preparing the same
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
JP3431622B1 (en) High-performance plasma purification membrane
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
JP3431623B1 (en) Method for producing plasma purification membrane
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
JP2899352B2 (en) Porous hollow fiber membrane
JP3594946B2 (en) High performance microfiltration membrane
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP3281363B1 (en) Blood purification membrane
JP4190445B2 (en) Hollow fiber plasma component separator with low protein adsorption
JPH07289866A (en) Polysulfone-based selective permeable membrane
JP4076144B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JPH10243999A (en) Polysulfone-base blood dialysis membrane
JP4455019B2 (en) Hollow fiber membrane for medical dialysis and production method thereof
JPH11244675A (en) Production of membrane
JP2899348B2 (en) Porous hollow fiber

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3431623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term