JPS62180267A - Ultrasonic flaw detecting device - Google Patents

Ultrasonic flaw detecting device

Info

Publication number
JPS62180267A
JPS62180267A JP61023250A JP2325086A JPS62180267A JP S62180267 A JPS62180267 A JP S62180267A JP 61023250 A JP61023250 A JP 61023250A JP 2325086 A JP2325086 A JP 2325086A JP S62180267 A JPS62180267 A JP S62180267A
Authority
JP
Japan
Prior art keywords
frequency
wave number
circuit
signal
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61023250A
Other languages
Japanese (ja)
Other versions
JPH0343586B2 (en
Inventor
Kazuhiro Hajiki
枦木 和弘
Kenichi Oriki
大力 健市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61023250A priority Critical patent/JPS62180267A/en
Publication of JPS62180267A publication Critical patent/JPS62180267A/en
Publication of JPH0343586B2 publication Critical patent/JPH0343586B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To perform flaw detection with the best SN ratio by providing a frequency varying means, a wave number varying means, etc., checking a frequency suitable to a sample and performing transmission at the best frequency, and selecting a wave number. CONSTITUTION:A wave number varying circuit 8 outputs an operation time control signal CLTn for a frequency varying circuit 6 based on the output signal of a synchronizing circuit 1 corresponding to a set value set by a wave number setting means 9. The circuit 6 outputs a pulse CLTwmn corresponding to the set value of frequency setting 7 to a transmission part 2 within a time controlled with the output signal CLTn of the circuit 8. The transmission part 2 outputs a transmit signal corresponding to said signal to a probe 3. The probe 3 varies the transmission frequency and reception frequency on the basis of the transmit signal of the transmission part 2 and makes an ultrasonic wave incident on the sample. For the purpose, an echo which is displayed 5 is monitored for every set value set by the means 9 and 7 to know set values of the means 9 and 7 with the best SN ratio for the sample.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は超音波を用いて材料の内部を非破壊にて検査
する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for non-destructively inspecting the inside of a material using ultrasonic waves.

〔従来の技術〕[Conventional technology]

金属等の固体物中に存在する欠陥を見つける手段として
超音波を材料中に入射させて欠陥からの反射波(以下エ
コーという)をとらえCRT等の表示器へ表示すること
により欠陥の大きさや材料中の欠陥の位置を測定する為
の装置として超音波探傷装置がある。
As a means of finding defects in solid objects such as metals, ultrasonic waves are injected into the material, and the reflected waves from the defects (hereinafter referred to as echoes) are captured and displayed on a display such as a CRT to determine the size of the defect and the material. There is an ultrasonic flaw detector as a device for measuring the position of defects inside.

従来、この種の装置として第4図に示すような超音波探
傷装置が提案されている。図において(1)(・コ各回
路に必要な同期信号を出力する同期部、(2)は同期部
fi+からの出力信号をもとに送信信号を発生する送信
部、(3)は送信部(2)からの送信信号をもとに超音
波を発生し被検材に超音波を入射させるとともに被検材
からのエコーをとらえて電気信号に変換する探触子、(
4)は探触子(3)からの電気信号を増幅する受信部、
(5)は受信部(4)の出力信号を表示する表示器であ
る。
Conventionally, an ultrasonic flaw detection device as shown in FIG. 4 has been proposed as this type of device. In the figure, (1)(-) is a synchronization section that outputs the synchronization signal necessary for each circuit, (2) is a transmission section that generates a transmission signal based on the output signal from the synchronization section fi+, and (3) is a transmission section. (2) A probe that generates ultrasonic waves based on the transmitted signal and makes the ultrasonic waves incident on the test material, and captures echoes from the test material and converts them into electrical signals.
4) is a receiving unit that amplifies the electrical signal from the probe (3);
(5) is a display that displays the output signal of the receiving section (4).

従来の超音波探傷装置は上記のように構成されているの
で、固定された送信の周波数と送信波数で探触子(3)
に送信信号を送信部(2)より印加し、探傷するように
していた。
Conventional ultrasonic flaw detection equipment is configured as described above, so the probe (3) is
A transmission signal was applied from the transmitting section (2) to detect flaws.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の超音波探傷装置は上記のように固定された送信の
周波数と波数でのみ送信している為、探触子の保有して
いる周波数特注上の限定した任意の一点のみ使用してお
り、被検材に最適な送信周波数及び送信波数を送信する
事が出来ず、探触子に表示されている公称周波数のみを
情報として探触子を交換する等を実施し、被検材に最適
な周波数に近い公称周波数の探触子を選択していた。し
かし送信波数については選択出来る手段はなくある任意
の数波を発生する超音波探傷装置本体を変換しているが
、いずれも探触子の種類や装置の種類に限界があり実際
はオーステナイト系の被検材や1粒子の粗い材料等探傷
の場合に発生する粒子からの反射波(これを林状エコー
と呼ぶが9表示器上のS / Nを悪くしているうがS
 / Nを悪くしている。
Conventional ultrasonic flaw detection equipment only transmits at a fixed transmission frequency and wave number as mentioned above, so only one arbitrary point on the custom-made frequency of the probe is used. It was not possible to transmit the optimum transmission frequency and transmission wave number for the material to be tested, so it was necessary to replace the probe using only the nominal frequency displayed on the probe as information. A probe with a nominal frequency close to the frequency was selected. However, there is no way to select the number of transmitted waves, and the main body of the ultrasonic flaw detection device that generates an arbitrary number of waves is converted, but there are limits to the types of probes and devices, and in reality, the number of waves is austenitic. Reflected waves from particles that occur during inspection of materials or flaw detection of single-particle coarse materials (this is called a forest echo, but it is the echo that degrades the S/N on the display)
/ You're making N feel bad.

この発明はこのような問題点を解消する為になされたも
ので9周波数可変手段と波数可変手段を設は被検材に最
適な周波数を調べるとともに最適周波数にて送信し、か
つ波数を選択し最適なS/Nで探傷出来る超音波探傷装
置を得ることを目的とするものである。
This invention was made to solve these problems, and it has nine frequency variable means and wave number variable means to find the optimum frequency for the material being tested, transmit at the optimum frequency, and select the wave number. The purpose of this invention is to obtain an ultrasonic flaw detection device that can detect flaws with optimal S/N.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる超音波探傷装置は送信周波数を可変す
る周波数可変回路及び周波数設定手段と送信波数を可変
する波数可変回路及び波数設定手段とを設けたものであ
る。
The ultrasonic flaw detection apparatus according to the present invention is provided with a frequency variable circuit and frequency setting means for varying the transmission frequency, and a wave number variable circuit and wave number setting means for varying the number of transmitted waves.

〔作用〕[Effect]

この発明においては送信周波数と送信波数を可変し、被
検材に最適な送信を行うことにより林状エコー等が発生
し、探傷のS / Nを悪くしている要因を低減し、探
傷を容易に行える。
In this invention, by varying the transmission frequency and the number of transmission waves and performing transmission optimally for the material to be inspected, it is possible to reduce the factors that cause forest echoes, etc., which worsen the S/N of flaw detection, and to facilitate flaw detection. can be done.

〔実施例〕〔Example〕

第1図はこの発明による超音波探傷装置の一実施例を°
示す図である。第1図において(11〜(51ハ第4図
に示したものと同様である。(6)は同期回路(1)の
出力信号に同期して送信部(2)へのパルス幅を可変す
る周波数可変回路、(7)は周波数可変回路(6)への
制御信号を出力する周波数設定手段、(8Iは周波数可
変回路(6)の出力信号の波数を可変する波数可変回路
、(9)は波数可変回路(81への制御信号を出力する
波数設定手段である。
Figure 1 shows an embodiment of the ultrasonic flaw detection device according to the present invention.
FIG. In Fig. 1, (11 to (51) are similar to those shown in Fig. 4. (6) varies the pulse width to the transmitter (2) in synchronization with the output signal of the synchronous circuit (1). A variable frequency circuit (7) is a frequency setting means for outputting a control signal to the variable frequency circuit (6), (8I is a variable wave number circuit that varies the wave number of the output signal of the variable frequency circuit (6), (9) is It is a wave number setting means that outputs a control signal to the wave number variable circuit (81).

次に上記実施例の動作を第1図〜第3囚を参照しながら
説明する。同期回路(1)の出力信号をもとに波数可変
回路(8:は波数設定手段(9)で設定した設定(直に
対応して周波数可変回路(6)の動作時間制御信号CL
Tn (第3図に示すCLTn)を出力する。周波数可
変回路(6)は波数可変回路(81の出力信号0LTn
にて制御される時間内に周波数設定手段(7)で設定し
た設定値に対応したパルス(第3図に示す0L−T’i
Vmn)を送信部(2)へ出力する。送信部(2)は周
波数可変回路(6)の出力信号CLTWmn)に対応し
た送信信号を探触子(31へ出力する。この実施例では
第2図に示すように上記の動作をOLTWm(m = 
1.λ3.・・・)のm°°をある時間帯(波数可変回
路(8)の出力信号CLTnで制御される波数(n =
 1.2.3. ・・・)の″′nパが最大となる迄の
時間(第2図に示すnt))固定しておき波数可変回路
(8)の出力信号CLTnで制御される波数”n″を順
次増加し1周波数可変回路(6)の出力信号C! LT
Wmnを得る。また、波数可変回路+81の出力信号C
LTnで制御される波数”n −tを波数設定手段(9
)で設定し終ったならば波数設定手段(9)はn、=1
を設定する。同時に周波数設定手段(7)は周波数可変
回路(6)の出力信号CLTWIunのm=2を設定し
、第3図に示すCLTw 21を周波数可変回路(6)
が出力する。
Next, the operation of the above embodiment will be explained with reference to FIGS. 1 to 3. Based on the output signal of the synchronous circuit (1), the wave number variable circuit (8: is the setting set by the wave number setting means (9) (directly corresponding to the operating time control signal CL of the frequency variable circuit (6)
Tn (CLTn shown in FIG. 3) is output. The frequency variable circuit (6) is the output signal 0LTn of the wave number variable circuit (81).
The pulse (0L-T'i shown in FIG. 3) corresponding to the set value set by the frequency setting means (7) within the time controlled by
Vmn) is output to the transmitter (2). The transmitting section (2) outputs a transmitting signal corresponding to the output signal CLTWmn) of the frequency variable circuit (6) to the probe (31). In this embodiment, the above operation is performed as OLTWm(m =
1. λ3. ) of m°° in a certain time period (wave number controlled by the output signal CLTn of the variable wave number circuit (8) (n =
1.2.3. The time (nt shown in Fig. 2) until the ``'n parameter of ...) reaches its maximum is kept fixed, and the wave number ``n'' controlled by the output signal CLTn of the variable wave number circuit (8) is sequentially increased. Output signal C!LT of the variable frequency circuit (6)
Get Wmn. In addition, the output signal C of the variable wave number circuit +81
The wave number "n-t" controlled by LTn is set by the wave number setting means (9
), the wave number setting means (9) is set to n, = 1.
Set. At the same time, the frequency setting means (7) sets m=2 of the output signal CLTWIun of the frequency variable circuit (6), and connects the CLTw 21 shown in FIG. 3 to the frequency variable circuit (6).
outputs.

以上の動作を繰り返す事により、探触子(3)から被検
材へ入射される超音波は周波数と波数を可変さn、被検
材を伝播する。伝播された超音波シ:再び探触子(3)
で電気信号に変換され受信部(4)を介し表示器(5)
で表示するよう構成されているので表示器(5)上のエ
コーを監視することにより上記周波数可変回路(6)の
出力信号CLTwの被検材に対する最適条件(波数設定
手段(9)で設定した値“′n“と周波数設定手段(7
)で設定した値”m゛)が明確になるとともに被検材へ
の最適条件が選択出来る。次に波数可変回路(8)へ周
波数可変回路(6)の動作を第3図に示す実施例を参照
しながら説明する。第3図(a)において、波数可変回
路(8)はモノマルチバイブレータ(以下M / Mと
いう。〕αα、抵抗Ral〜Ran <、 Ral <
 Ra2 < −< Ran ) 、抵抗Ra1〜Ra
nを切換えるセレクタAQ31およびコンデンサCa 
カら構成される。また周波数可変回路(6)は抵抗RB
By repeating the above operations, the ultrasonic waves incident on the test material from the probe (3) vary the frequency and wave number and propagate through the test material. Propagated ultrasound: Probe again (3)
is converted into an electrical signal and sent to the display (5) via the receiver (4).
By monitoring the echo on the display (5), it is possible to determine the optimum conditions for the output signal CLTw of the frequency variable circuit (6) for the test material (set by the wave number setting means (9)). value "'n" and frequency setting means (7
) becomes clear, and the optimum conditions for the material to be tested can be selected.Next, the operation of the variable frequency circuit (6) is shown in Fig. 3. In FIG. 3(a), the variable wave number circuit (8) is a mono multivibrator (hereinafter referred to as M/M) αα, resistance Ral~Ran<, Ral<
Ra2<-<Ran), resistance Ra1~Ra
Selector AQ31 that switches n and capacitor Ca
It consists of mosquitoes. In addition, the frequency variable circuit (6) is connected to the resistor RB.
.

へRBn (RBI < RB2 < −< RBn 
) 、抵抗R]3+ −%−RBnを切換るセレクタB
l(イ)、抵抗RC1〜RCn(、R(! + < R
C2<・・< Rcn ) 、抵抗RC+ ”” RC
nを切換えるセレクタC09,コンデンサCB、  C
OおよびM/MB、 C1111,12から構成されて
いる。
to RBn (RBI < RB2 <-< RBn
), resistor R]3+ -%-RBn selector B
l(A), resistance RC1 to RCn(, R(! + < R
C2<...<Rcn), resistance RC+ "" RC
Selector C09 to switch n, capacitor CB, C
It is composed of O and M/MB, C1111,12.

M/MAalは波数設定手段(9)で設定された制御信
号に基づきセレクタA(131により選択さnるRa+
〜Ranの所定の抵抗とコンデン+jCaにより第3図
(b)に示す1aの時間幅を有する出力信号CLTnを
出力する。M1MCUr&XM/MAIJrJo出力信
号CLTnに同期し1周波数設定手段(7)で設定され
た制御信号に基づきセレクタC霞により選択されるRC
I〜RCnの所定の抵抗とコンデンサCcにより第3図
(b)に示すtwの時間幅を有する出力信号CLTWm
nを出力する。M/MB(lυはM/MCα2の一方の
出力信号CLTWmnに同期し周波数設定手段(7)で
設定された制御信号に基づきセレクタB(I41により
選択されるRBI〜RBnの所定の抵抗とコンデン−y
(EBにより第3図(1))に示すtwの時間幅を有す
る出力信号CLDWを上記のM / M C!αυの一
方の入力端子へ出力する。
M/MAal is selected by the selector A (131) based on the control signal set by the wave number setting means (9).
An output signal CLTn having a time width of 1a shown in FIG. 3(b) is outputted by a predetermined resistance of ~Ran and a capacitor +jCa. RC selected by the selector C Kasumi based on the control signal set by the 1 frequency setting means (7) in synchronization with the M1MCUr&XM/MAIJrJo output signal CLTn.
An output signal CLTWm having a time width of tw shown in FIG.
Output n. M/MB (lυ is synchronized with one output signal CLTWmn of M/MCα2, and is selected by selector B (I41) based on the control signal set by the frequency setting means (7). y
The output signal CLDW having a time width of tw shown in FIG. 3(1) due to EB is input to the above M/MC! Output to one input terminal of αυ.

以上のように波数可変回路(8)9周波数可変回路(6
)は構成さnているので送信周波数と送信波数を可変し
得る信号を送信部(2)へ出力出来る。
As mentioned above, variable wave number circuit (8), 9 variable frequency circuit (6
) is configured so that a signal whose transmission frequency and transmission wave number can be varied can be outputted to the transmitter (2).

送信部(2)は上記周波数可変回路(6)の出力信号C
LTWmn (、第2図に示すCI、TV 1.1. 
CLTW 1.2゜CLTWmn月こ基づき送信信号を
発生する。探触子(3)は上記送信部(2)の送信信号
に基づき送信波数n及び送信周波数mを可変し被検材へ
超音波を入射する為1表示器(51上に表示されるエコ
ーを上記波数設定手段(9)及び周波数設定手段(7)
で設定される設定値毎に監視することにより被検材に対
し最もS/Nの良い波数設定手段(9)及び周波数設定
手段(7)の設定値を知る事が出来るとともに設定する
事も出来る。
The transmitter (2) receives the output signal C of the frequency variable circuit (6).
LTWmn (, CI shown in FIG. 2, TV 1.1.
CLTW 1.2° A transmission signal is generated based on CLTWmn. The probe (3) changes the transmission wave number n and the transmission frequency m based on the transmission signal from the transmitting section (2), and displays the echo displayed on the 1 indicator (51) in order to inject the ultrasonic wave into the specimen. The above wave number setting means (9) and frequency setting means (7)
By monitoring each set value set in , it is possible to know and set the set values of the wave number setting means (9) and frequency setting means (7) with the best S/N for the material being tested. .

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば探触子や超音波探傷装置
本体を選択することなく被検材に最適な送信周波数と送
信波数を設定出来る。これにより被検材に対して最もS
/Nの良い周波数及び波数により探傷出来る他、探触子
近傍(近距離音場ンにおける位相 渉をも知る事が出来
るとともに周波数を可変させることによりさげる事も可
能になる等の特徴を有する。
As described above, according to the present invention, it is possible to set the optimum transmission frequency and transmission wave number for the material to be inspected without selecting the probe or the main body of the ultrasonic flaw detection apparatus. This allows the material to be tested to have the highest S.
In addition to being able to detect flaws with a good frequency and wave number of /N, it also has the characteristics of being able to detect phase interference in the vicinity of the probe (near-field sound field) and also being able to lower it by varying the frequency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による超音波探傷装置のブロック図、
第2図はこの発明の動作タイミング図。 第3図はこの発明による波数可変回路から周波数可変回
路の説明図、第4図は従来の超音波探傷器のブロック図
である。 図において(tBゴ同期部、(2)は送信部、(3)は
探触子、(4)は受信部、(51に表示器、(6)は周
波数可変回路、(7)は周波数設定手段、(8)は波数
可変回路、(9)は波数設定手段、αG−(12はモノ
マルチバイブレータ、α3−QSはセレクターである。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram of an ultrasonic flaw detection device according to the present invention.
FIG. 2 is an operation timing diagram of the present invention. FIG. 3 is an explanatory diagram of a variable wave number circuit to a variable frequency circuit according to the present invention, and FIG. 4 is a block diagram of a conventional ultrasonic flaw detector. In the figure, (tBgo synchronization section, (2) is the transmitting section, (3) is the probe, (4) is the receiving section, (51 is the display, (6) is the frequency variable circuit, (7) is the frequency setting (8) is a wave number variable circuit, (9) is a wave number setting means, αG-(12 is a mono multivibrator, and α3-QS is a selector. In the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 所定の繰り返り周波数を発生する同期部と、この同期部
からの出力信号にもとずき送信信号を発生する送信部と
、上記同期部の出力信号に同期して上記送信部の送信波
数を可変する波数可変回路と、上記波数可変回路へ波数
を設定する波数設定手段と、上記波数可変回路の出力信
号にもとづき上記送信部の送信周波数を可変する周波数
可変回路と、上記周波数可変回路へ周波数を設定する周
波数設定手段と、上記送信部から生ずる送信信号を超音
波信号に変換して被検材に超音波を入射させるとともに
上記被検材からの反射波を電気信号に変換する探触子と
、上記探触子からの電気信号を増巾する受信部と、上記
受信部の波形を表示する表示器とを備えたことを特徴と
する超音波探傷装置。
a synchronizing section that generates a predetermined repetition frequency; a transmitting section that generates a transmission signal based on the output signal from the synchronizing section; and a transmitting wave number of the transmitting section in synchronization with the output signal of the synchronizing section. a variable wave number circuit that varies a wave number; a wave number setting means that sets a wave number to the variable wave number circuit; a variable frequency circuit that varies the transmission frequency of the transmitter based on an output signal of the variable wave number circuit; a frequency setting means for setting a frequency, and a probe that converts a transmission signal generated from the transmitting section into an ultrasonic signal, causes the ultrasonic wave to be incident on the test material, and converts a reflected wave from the test material into an electrical signal. An ultrasonic flaw detection apparatus comprising: a receiving section that amplifies the electrical signal from the probe; and a display that displays the waveform of the receiving section.
JP61023250A 1986-02-05 1986-02-05 Ultrasonic flaw detecting device Granted JPS62180267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61023250A JPS62180267A (en) 1986-02-05 1986-02-05 Ultrasonic flaw detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61023250A JPS62180267A (en) 1986-02-05 1986-02-05 Ultrasonic flaw detecting device

Publications (2)

Publication Number Publication Date
JPS62180267A true JPS62180267A (en) 1987-08-07
JPH0343586B2 JPH0343586B2 (en) 1991-07-03

Family

ID=12105348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61023250A Granted JPS62180267A (en) 1986-02-05 1986-02-05 Ultrasonic flaw detecting device

Country Status (1)

Country Link
JP (1) JPS62180267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348275A (en) * 1990-11-14 1992-12-03 Nkk Corp Ultrasonic flaw detection
US5974891A (en) * 1996-07-22 1999-11-02 Matsushita Electric Industrial Co., Ltd. Ultrasonic wave diagnostic apparatus with beam convergence and clock signal selection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348275A (en) * 1990-11-14 1992-12-03 Nkk Corp Ultrasonic flaw detection
US5309765A (en) * 1990-11-14 1994-05-10 Nkk Corporation Method and apparatus for performing ultrasonic flaw detection by controlling peak frequency and frequency bandwidth
US5974891A (en) * 1996-07-22 1999-11-02 Matsushita Electric Industrial Co., Ltd. Ultrasonic wave diagnostic apparatus with beam convergence and clock signal selection

Also Published As

Publication number Publication date
JPH0343586B2 (en) 1991-07-03

Similar Documents

Publication Publication Date Title
JPS63171544A (en) Ultrasonic diagnostic apparatus
US3453871A (en) Method and apparatus for detecting flaws in materials
JP2011047763A (en) Ultrasonic diagnostic device
JPS62180267A (en) Ultrasonic flaw detecting device
JPS6321135B2 (en)
JP2740872B2 (en) Method of measuring compressive strength of concrete using ultrasonic waves
KR20050042542A (en) Nondestructive acoustic evaluation device and method by using nonlinear acoustic responses
JPS6014167A (en) Ultrasonic examination device
JPH04301762A (en) Piezoelectric-crystal element and its measuring device
JPS62287150A (en) Ultrasonic flaw detecting device
SU1126867A1 (en) Device for testing ultrasonic flaw detectors
JP2740871B2 (en) Method and apparatus for measuring shear wave velocity in ultrasonic test
JP2824488B2 (en) Method of measuring plate thickness of concrete structure by ultrasonic pulse reflection method
RU2581083C1 (en) Method of determining shape of scattering indicatrix of defect in ultrasound control and device therefor
JPH0328757A (en) High-damping probe
JP2739972B2 (en) Ultrasonic flaw detector
JPS60182936A (en) Examination apparatus by sonic wave
JPS63163271A (en) Ultrasonic measuring instrument
SU871058A1 (en) Device for measuring ultrasonic wave attenuation
SU1146599A1 (en) Method of determination of spheric and cylindrical flaw diameter
JPS5899748A (en) Ultrasonic test equipment
RU2130610C1 (en) Digital ultrasonic flaw detector avgur
JPS6140565A (en) Ae measuring apparatus
JPS62169050A (en) Ultrasonic flaw detector
SU1594414A1 (en) Ultrasonic flaw detector