JPS62180068A - Device for heating and evaporating electron beam - Google Patents

Device for heating and evaporating electron beam

Info

Publication number
JPS62180068A
JPS62180068A JP2151786A JP2151786A JPS62180068A JP S62180068 A JPS62180068 A JP S62180068A JP 2151786 A JP2151786 A JP 2151786A JP 2151786 A JP2151786 A JP 2151786A JP S62180068 A JPS62180068 A JP S62180068A
Authority
JP
Japan
Prior art keywords
electron beam
crucible
spot
melting
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2151786A
Other languages
Japanese (ja)
Inventor
Shinobu Nakajima
忍 中島
Setsuo Endo
遠藤 節雄
Shuichi Okabe
修一 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2151786A priority Critical patent/JPS62180068A/en
Publication of JPS62180068A publication Critical patent/JPS62180068A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need for material replenishment during operation by the use of a large-capacity crucible and to prevent bumping by the melting away of the compd. film on a melting surface by providing a means for rotating the crucible and deflecting an electron beam and uniformly heating the electron beam. CONSTITUTION:A coil 31 is excited by an excitation power source 32 to generate magnetic lines of force between arms 30a and 30b and to exert the force toward the right side of the figure by Fleming's left-hand rule to the electron beam 11. The output voltage of the power source 3 is increased and decreased according to a pre scribed period to periodically fluctuate the magnitude of the force that the electron beam 11 receives so that the irradiation spot SP of the beam 11 on a material to be heated and evaporated (evaporating source) 4 is moved back and forth in a route lconnecting the rotating center part and peripheral edge of the melting surface of the evaporating source 4. On the other hand, the crucible 20 is rotated by a motor 22 and a gear box 21 to rotate the melting surface. The spot SP eventually moves over the entire surface of the melting surface, thereby uniformly heating the surface. The compd. film is immediately heated to melt and is thereby annihilated by the movement of the spot SP even if the compd. is generated.

Description

【発明の詳細な説明】 「産業上の利用分野」 コノ発明は、例えば真空蒸着装置やイオンブレーティン
グ装置の加熱源として用いて好適な電子ビーム加熱・蒸
発装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an electron beam heating/evaporation device suitable for use as a heating source for, for example, a vacuum evaporation device or an ion blating device.

「従来の技術」 真空蒸発装置やイオンブレーティング装置においては、
蒸発源を加熱するための電子ビーム加熱・蒸発装置が具
備されている。
"Conventional technology" In vacuum evaporation equipment and ion blating equipment,
An electron beam heating and evaporation device is provided to heat the evaporation source.

ここで−例として、イオンブレーティング装置に用いら
れている従来の電子ビーム加熱・蒸発装置について説明
する。第3図は一般的なイオンブレーティング装置の構
成を示す概略構成図であり、図において、1は気密槽、
2は基板、3は基板2を支持する基板ホルダである。基
板2と対向する位置には、蒸発源(被加熱・発熱物)4
を保持するルツボ5が設けられ、このルツボ5の下方に
は電子ビーム加熱・蒸発装置6が設けられている。この
電子ヒーム加熱・蒸発装置6は、熱電子を放出するフィ
ラメント7、放出された熱電子を加速するためのアノー
ド8、フィラメント用電源(交流電源)9およびアノー
ド用電源(直流高電圧電源)10等からなっている。こ
の場合、アノード8は図示のように接地されているが、
電源IOによりフィラメント7に対しては正電位となっ
ているから、フィラメント7から熱電子が放出されると
、この熱電子はアノード8によって加速放出されて電子
ビーム+1となる。そして、電子ヒームItは図示仕ぬ
磁場によって曲げられて蒸発源4上に照射され、これに
より、蒸発源・1が加熱蒸発される。この蒸発源4」二
の電子ヒームのスポット径は、一般に小さく設定されて
おり、また、スポットの位置は、第4図(イ)、(ロ)
に示すSPようにルツボ5の中心にくるように設定され
ている。このように、スポット径を小さくするのは、以
下の理由による。すなわち、電子ヒーム加熱・蒸発装置
においては、電子を静電界によって加速して+4料表面
にぶつけ、これにによって電子の運動エネルギーを熱エ
ネルギーに変換するため、電子ヒームが当たる蒸発源上
のスポット径を小さくし、パワー密度を上げて加熱する
方が有利だからである。また、スポットをルツボ5の中
心に位置させているのは、熱効率の関係である。この際
、上述のようにスポット径を小さくすると、熱収支の関
係によリルツボ5の容量を余り大きくすることはできず
、この結果、ルツボ5は比較的小さな容量に設定されて
いる。
Here, as an example, a conventional electron beam heating/evaporation device used in an ion blating device will be described. FIG. 3 is a schematic configuration diagram showing the configuration of a general ion brating device, and in the figure, 1 is an airtight tank;
2 is a substrate; 3 is a substrate holder that supports the substrate 2; At a position facing the substrate 2, there is an evaporation source (heated/generating substance) 4.
A crucible 5 for holding a is provided, and an electron beam heating/evaporation device 6 is provided below the crucible 5. This electron beam heating/evaporation device 6 includes a filament 7 for emitting thermoelectrons, an anode 8 for accelerating the emitted thermoelectrons, a filament power source (AC power source) 9, and an anode power source (DC high voltage power source) 10. It consists of etc. In this case, the anode 8 is grounded as shown, but
Since the filament 7 is at a positive potential due to the power supply IO, when thermoelectrons are emitted from the filament 7, these thermoelectrons are accelerated and emitted by the anode 8 and become an electron beam +1. Then, the electron beam It is bent by a magnetic field (not shown) and irradiated onto the evaporation source 4, whereby the evaporation source 1 is heated and evaporated. The spot diameter of the electron beam of this evaporation source 4'' is generally set small, and the spot position is as shown in Fig. 4 (a) and (b).
It is set to be located at the center of the crucible 5 as shown in SP. The reason for reducing the spot diameter in this way is as follows. In other words, in an electron beam heating/evaporation device, electrons are accelerated by an electrostatic field and collide with the surface of the +4 material, thereby converting the kinetic energy of the electrons into thermal energy. This is because it is more advantageous to reduce the power density and increase the power density for heating. Further, the reason why the spot is located at the center of the crucible 5 is due to thermal efficiency. At this time, if the spot diameter is made small as described above, the capacity of the crucible 5 cannot be increased too much due to heat balance, and as a result, the capacity of the crucible 5 is set to be relatively small.

まfこ、第3図において、15はイオン化7ti +u
、16はイオン化′X1i極用電源(正電位)、I7は
堰板ホルダ用電源(負電位)、I8は反応性ガス用導入
管であり、19は排気管である。
In Figure 3, 15 is ionization 7ti +u
, 16 is a power source for the ionization 'X1i electrode (positive potential), I7 is a power source for the weir plate holder (negative potential), I8 is an inlet pipe for reactive gas, and 19 is an exhaust pipe.

「発明が解決しようとする問題点」 ところで、上述した従来の装置においては、以下に述べ
る欠点があった。
"Problems to be Solved by the Invention" By the way, the above-mentioned conventional device had the following drawbacks.

■熱収支の関係から小形のルツボを使用しているため、
1度に加熱・蒸発させ得る材料の虫か少なく、大量の材
料を加熱・蒸発させるには操業途中で材料補給を行わな
ければならない。
■Because we use a small crucible due to heat balance,
There are only a few materials that can be heated and evaporated at one time, and in order to heat and evaporate a large amount of material, materials must be replenished during operation.

■電子ビームの照射位置が固定されているため、その周
囲に化合物かでき、異常放電が発生し易く安定した加熱
・蒸発を行うことが円錐となる。
■Since the irradiation position of the electron beam is fixed, a compound is formed around it, and abnormal discharge is likely to occur, making it difficult to achieve stable heating and evaporation.

■操業途中で材料補給を行うと、異常放電の原因になっ
たり、蒸発速度の不安定化につながる。
■Replenishing materials during operation may cause abnormal discharge or destabilize the evaporation rate.

■熔融面上が化合物の皮膜により覆われるため、溶融面
が低下すると、内部の気泡の膨張に起因する突発的な沸
騰が生じ、異常放電の原因となる。
■Since the melting surface is covered with a film of the compound, when the melting surface lowers, sudden boiling occurs due to the expansion of internal bubbles, causing abnormal discharge.

また、電子ビームが照射されている部分の液面が他の部
分より速く低下するので、上記沸騰が生じ易い。
Furthermore, since the liquid level in the portion irradiated with the electron beam drops faster than in other portions, the above-mentioned boiling is likely to occur.

この発明は、上述した事情に鑑みてなされたもので、ビ
ームスポット周囲の化合物の発生を防ぐとともに、材料
補給を行う必要がなく、かつ、突発的な沸騰等ら防止す
ることができる電子ビーム加熱・蒸発装置を提供するこ
とを目的としている。
This invention was made in view of the above-mentioned circumstances, and is capable of electron beam heating that prevents the generation of compounds around the beam spot, eliminates the need to replenish materials, and prevents sudden boiling.・The purpose is to provide evaporation equipment.

「問題点を解決するための手段」 この発明は、上記問題点を解決するために、フィラメン
トから放出される熱電子を加速してルツボ内の被加熱・
蒸発物に照射する電子ヒーム加熱・蒸発装置において、
前記ルツボを回転させるルツボ回転機構と、前記被加熱
・蒸発物の溶融面における前記電子ビームの照射スポッ
トが回転中心部と周縁とを結ぶ経路において往復動する
ように前記電子ビームを偏向させる電子ヒーム偏向手段
とを具備している。
"Means for Solving the Problems" In order to solve the above problems, the present invention accelerates thermoelectrons emitted from filaments to
In electronic heat heating and evaporation equipment that irradiates evaporated matter,
a crucible rotation mechanism that rotates the crucible; and an electron beam that deflects the electron beam so that the irradiation spot of the electron beam on the melting surface of the heated/evaporated material reciprocates on a path connecting the center of rotation and the periphery. and deflection means.

「作用 J ルツボが回転するとと乙に、電子ビームのスポットが回
転中止部と周縁とを結ぶ経路において往復動するから、
溶融面か均一に加熱される。したがって、蒸発も溶融面
全面からムラなく行なわれる。
``Effect J When the crucible rotates, the spot of the electron beam reciprocates along the path connecting the rotation stopping part and the periphery.
The melting surface is heated evenly. Therefore, evaporation is performed evenly from the entire molten surface.

「実施例」 以下、図面を参照してこの発明の実施例について説明す
る。
"Embodiments" Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の一実施例の構成を示す概略措成図で
あり、前述した第3図に示す各部と対応する部分には同
一の符号を付しその説明を省略する。
FIG. 1 is a schematic diagram showing the structure of an embodiment of the present invention, and parts corresponding to those shown in FIG.

図において、20はルツボであり、下品が垂直軸を介し
てギアボックス21に連結され、このギアボックス21
にモータ22の駆動力が伝徨されるようになっている。
In the figure, 20 is a crucible, the crucible is connected to a gearbox 21 via a vertical shaft, and this gearbox 21
The driving force of the motor 22 is transmitted to.

したがって、モータ22が回転すると、ルツボ20が図
面右らしくは左に回転する。この場合、ルツボ20の回
転速度は比較的低速に設定されており、また、ルツボ2
0の下部は管路24を介して大排出される冷却水によっ
て水冷されるようになっている。次に、30は水平方向
に延びる腕30a、30bを有するコ字状のコア部(4
であり、腕30a、30bが電子ヒーム11をはさんで
対向している。31はコア30に巻回されているコイル
であり、励磁電源32に接続されている。励磁電源32
はその出力電圧を所定の周期に従って増減させる直流電
源回路である。
Therefore, when the motor 22 rotates, the crucible 20 rotates to the left rather than to the right in the drawing. In this case, the rotation speed of the crucible 20 is set to a relatively low speed, and the crucible 20 is set at a relatively low speed.
The lower part of 0 is water-cooled by cooling water discharged through a pipe 24. Next, 30 is a U-shaped core portion (4) having arms 30a, 30b extending in the horizontal direction.
The arms 30a and 30b face each other with the electronic beam 11 in between. A coil 31 is wound around the core 30 and is connected to an excitation power source 32. Excitation power supply 32
is a DC power supply circuit that increases or decreases its output voltage according to a predetermined cycle.

この場合、コア30、コイル31および励磁電源32で
電子ビーム偏向装置が構成されている。
In this case, the core 30, coil 31, and excitation power source 32 constitute an electron beam deflection device.

次に、上記構成によるこの実施例の動作について説明す
る。
Next, the operation of this embodiment with the above configuration will be explained.

ます、コイル3Iが励磁されると、腕30a、30b間
には図示のような磁力線が発生し、電子ビームIIはフ
レミングの左手の法則により図面右方に力を受ける。そ
して、励磁電源32の出力電圧が所定周期にしたがって
増減すると、電子ビーム11が受ける力の大きさが周期
的に変動し、この結果、蒸発源4上における電子ビーム
11のスポットSPは、第2図に示すように蒸発源4の
溶融而の回転中心部分と周縁とを結ぶ経路Qを往復動す
る。
First, when the coil 3I is excited, magnetic lines of force as shown are generated between the arms 30a and 30b, and the electron beam II receives a force to the right in the drawing due to Fleming's left hand rule. When the output voltage of the excitation power source 32 increases or decreases according to a predetermined period, the magnitude of the force applied to the electron beam 11 changes periodically, and as a result, the spot SP of the electron beam 11 on the evaporation source 4 is As shown in the figure, the evaporation source 4 reciprocates along a path Q that connects the center of rotation of the molten material and the peripheral edge.

一方、溶融面はルツボ20の回転にしたがって回転する
から、」二連のようにスポットSPか経路Qを往復動す
ると、結果的にスポットS I)は溶融面全面をくまな
く移動することとなる。したがって、溶融面全面が均一
に110熱される。また、化合物か発生したとしてら、
スポットSPがf多動オろので、化合物(皮膜)は直ち
に加熱溶融されて消滅する。
On the other hand, since the melting surface rotates according to the rotation of the crucible 20, if the spot SP moves back and forth along the path Q in a double series, the spot S I) will move all over the entire surface of the melting surface. . Therefore, the entire melting surface is uniformly heated. Also, if a compound were to occur,
Since the spot SP is f-hyperactive, the compound (film) is immediately heated and melted and disappears.

なお、この実施例においては、スポットSPが溶融面の
回転中心0に最も近付いた場合でし、第2図に示すよう
に回転中心0からはやや偏心しており、また、周縁に最
も近付いた場合でも周縁には1妾しないよう1こなって
いる。これは、スポットSPの周囲は熱伝導により加熱
されるので、この加熱効果を考慮し、スポットSPの移
動ストロークに無駄のないようにするためである。
In this example, the spot SP is the closest to the rotation center 0 of the molten surface, is slightly eccentric from the rotation center 0 as shown in Fig. 2, and the spot SP is the closest to the periphery. However, he does his best to avoid having concubines on the periphery. This is because the area around the spot SP is heated by thermal conduction, so this heating effect is taken into account and the movement stroke of the spot SP is not wasted.

また、上記実施例はルツボ5を常時回転するようにした
が、溶融而の均一加熱に影響がない範囲で断続的に回転
させてもよい。
Further, in the above embodiment, the crucible 5 is constantly rotated, but it may be rotated intermittently as long as uniform heating of the molten metal is not affected.

さらに、上記実施例においては、電子ビームl!を磁界
によって偏向させたが、電界によって電界ヒーム1!を
偏向させてもよく、また、励磁電源32としては、所定
周波数の電流を出力する交流電源を用いてもよい。要は
、スポットSPが経路Q上を往復動するように、スポッ
トSPの初期位置および偏向範囲を設定すればよい。
Furthermore, in the above embodiment, the electron beam l! was deflected by a magnetic field, but due to the electric field, the electric field beam 1! Alternatively, as the excitation power source 32, an AC power source that outputs a current at a predetermined frequency may be used. In short, the initial position and deflection range of the spot SP may be set so that the spot SP reciprocates on the path Q.

「発明の効果J 以上説明したように、この発明によれば、フィラメント
から放出される熱電子を加速してルツボ内の被加熱・蒸
発物に照射する電子ビーム加熱・蒸発装置において、前
記ルツボを回転さ仕るルツボ回転機構と、前記被加熱・
蒸発物の溶融面における前記1子ヒームの照射スポット
が回転中心部と周縁とを結ぶ経路において往復動するよ
うにl′iq記電子ヒームを偏向させる電子ヒーム偏向
手段とを具備したので、以下に述べる効果を得ることが
できる。
"Effect of the Invention J As explained above, according to the present invention, in the electron beam heating/evaporation apparatus that accelerates thermionic electrons emitted from a filament and irradiates the heated/evaporated material in the crucible, the crucible is heated. The crucible rotation mechanism that rotates the
Since the electronic beam deflecting means is provided for deflecting the l'iq electron beams so that the irradiation spot of the single beam on the melting surface of the evaporated material reciprocates on a path connecting the rotation center and the periphery, the following will be described. The effects described can be obtained.

■ルツボ内の熔融面を均一に加熱することができるため
、化合物の皮膜を溶かして除去することかでき、これに
より、異常放電を防+h シて安定した加熱を行い、長
時間に渡る蒸発を行うことかてきる。
■Since the molten surface inside the crucible can be heated uniformly, the film of the compound can be melted and removed. This prevents abnormal discharge, provides stable heating, and prevents evaporation over a long period of time. I have something to do.

■熔融面の均一加熱が可能なので大径のルツボを用いる
ことができ、ルツボ容量を大きくして一度に大臣の材料
を加熱・蒸発さけることができる。
■Since uniform heating of the melting surface is possible, a large-diameter crucible can be used, and the capacity of the crucible can be increased to heat and evaporate a large amount of material at once.

したがって、操業途中で材料の補給を行う必要がなく、
材料補給に起因する異常放電を防止することができ、か
つ、操業の連続性が図れる。
Therefore, there is no need to replenish materials during operation.
Abnormal discharge caused by material replenishment can be prevented and continuity of operation can be ensured.

■熔融面上の化合物皮膜が均一に除去されるので、溶融
而が低下してら突発的な沸騰が発生しない。
■Since the compound film on the molten surface is removed uniformly, sudden boiling does not occur when the molten surface decreases.

■熔融面がムラなく加熱されるので、蒸発連間の均一化
が図れる。
■Since the melting surface is heated evenly, the evaporation period can be made uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の構成を示す概略構成図、
第2図は電子ビームIIの照射スポットSPの移動状態
を示ずためのルツボの平面図、第3図は従来の電子ビー
ム加熱・蒸発装置の構成を示す概略構成図、第4図(イ
)、(ロ)は各々従来の電子ビーム加熱・蒸発装置にお
けるビームスポット位置を示ずためのルツボの断面図お
よび平面図である。 21・・・ギアボックス(ルツボ回転数構)、22・・
・・・・モータ(ルツボ回転磯構)、30・・・・・コ
ア、31・・・・・・コイル、32・・ 励磁7vL源
(以上30.31゜32は電子ヒーム偏向手段)。 第1図
FIG. 1 is a schematic configuration diagram showing the configuration of an embodiment of the present invention;
Figure 2 is a plan view of the crucible to show the moving state of the irradiation spot SP of the electron beam II, Figure 3 is a schematic configuration diagram showing the configuration of a conventional electron beam heating/evaporation device, and Figure 4 (A). , (b) are a cross-sectional view and a plan view of a crucible in a conventional electron beam heating/evaporation device, respectively, showing the beam spot position. 21... Gear box (crucible rotation speed structure), 22...
... Motor (crucible rotating rock structure), 30 ... Core, 31 ... Coil, 32 ... Excitation 7vL source (30.31°32 above is electron beam deflection means). Figure 1

Claims (1)

【特許請求の範囲】[Claims] フィラメントから放出される熱電子を加速してルツボ内
の被加熱・蒸発物に照射する電子ビーム加熱・蒸発装置
において、前記ルツボを回転させるルツボ回転機構と、
前記被加熱・蒸発物の溶融面における前記電子ビームの
照射スポットが回転中心部と周縁とを結ぶ経路において
往復動するように前記電子ビームを偏向させる電子ビー
ム偏向手段とを具備することを特徴とする電子ビーム加
熱・蒸発装置。
In an electron beam heating/evaporation device that accelerates thermoelectrons emitted from a filament and irradiates a heated/evaporated substance in a crucible, a crucible rotation mechanism that rotates the crucible;
It is characterized by comprising an electron beam deflecting means for deflecting the electron beam so that the irradiation spot of the electron beam on the molten surface of the heated/evaporated material reciprocates in a path connecting the center of rotation and the periphery. Electron beam heating and evaporation equipment.
JP2151786A 1986-02-03 1986-02-03 Device for heating and evaporating electron beam Pending JPS62180068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2151786A JPS62180068A (en) 1986-02-03 1986-02-03 Device for heating and evaporating electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2151786A JPS62180068A (en) 1986-02-03 1986-02-03 Device for heating and evaporating electron beam

Publications (1)

Publication Number Publication Date
JPS62180068A true JPS62180068A (en) 1987-08-07

Family

ID=12057157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2151786A Pending JPS62180068A (en) 1986-02-03 1986-02-03 Device for heating and evaporating electron beam

Country Status (1)

Country Link
JP (1) JPS62180068A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007008674B4 (en) * 2006-02-20 2010-03-25 Von Ardenne Anlagentechnik Gmbh Method and device for long-term stable coating of flat substrates
DE102009005513A1 (en) 2009-01-20 2010-07-22 Von Ardenne Anlagentechnik Gmbh Method for long-term stable coating of substrate, comprises moving the substrate through a coating chamber and then coating in which evaporation materials arranged in a crucible are evaporated by electron beam
JP2012140711A (en) * 2005-12-28 2012-07-26 Hamamatsu Photonics Kk Rotary target type electron beam assisted irradiation laser abrasion film formation apparatus, and rotary target type electron beam irradiation film formation apparatus
DE102011080810A1 (en) 2011-08-11 2013-02-14 Von Ardenne Anlagentechnik Gmbh Long term stable coating of substrates, comprises evaporating an evaporating material arranged in a crucible, using an electron beam, and depositing on the substrate in a coating window
EP2597174A1 (en) * 2011-11-23 2013-05-29 United Technologies Corporation Vapor deposition of ceramic coatings

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140711A (en) * 2005-12-28 2012-07-26 Hamamatsu Photonics Kk Rotary target type electron beam assisted irradiation laser abrasion film formation apparatus, and rotary target type electron beam irradiation film formation apparatus
DE102007008674B4 (en) * 2006-02-20 2010-03-25 Von Ardenne Anlagentechnik Gmbh Method and device for long-term stable coating of flat substrates
DE102009005513A1 (en) 2009-01-20 2010-07-22 Von Ardenne Anlagentechnik Gmbh Method for long-term stable coating of substrate, comprises moving the substrate through a coating chamber and then coating in which evaporation materials arranged in a crucible are evaporated by electron beam
DE102011080810A1 (en) 2011-08-11 2013-02-14 Von Ardenne Anlagentechnik Gmbh Long term stable coating of substrates, comprises evaporating an evaporating material arranged in a crucible, using an electron beam, and depositing on the substrate in a coating window
DE102011080810B4 (en) * 2011-08-11 2015-09-17 Von Ardenne Gmbh Process for the long-term stable coating of substrates
EP2597174A1 (en) * 2011-11-23 2013-05-29 United Technologies Corporation Vapor deposition of ceramic coatings

Similar Documents

Publication Publication Date Title
JPS62180068A (en) Device for heating and evaporating electron beam
JP2899310B2 (en) Evaporation source assembly with crucible
JP4397979B2 (en) Self-supporting rotating rod supply source
JPH0770741A (en) Evaporation source
JP3458585B2 (en) Thin film formation method
JPS58161774A (en) Sputtering method
JP5006737B2 (en) Rotating anti-cathode X-ray generator and X-ray generation method
JPH0548299B2 (en)
JP3318595B2 (en) Laser ion plating equipment
JPS59190357A (en) Supersaturated electron type ion plating method
JPH0586474B2 (en)
JPH059483B2 (en)
JPH01255663A (en) Method and device for vacuum deposition
JP2005187864A (en) Film deposition apparatus and film deposition method
JP2733629B2 (en) Ion generation method and ion generation device
JPS62149864A (en) Method for irradiating electron beam
JPH089776B2 (en) Ion plating method and apparatus
JPH09263933A (en) Mechanism of crucible part in vapor deposition device
JP3078602B2 (en) HCD type ion plating equipment
JPH0680249U (en) Negative ion generation mechanism
JPH02122813A (en) Device for generating metallic vapor
JPH0293064A (en) Ion plating apparatus
JPS6242480Y2 (en)
JPH03240948A (en) Generation of metal vapor
JPH03226569A (en) Ion plating device