JPS62177916A - Removing method for impurity gas - Google Patents

Removing method for impurity gas

Info

Publication number
JPS62177916A
JPS62177916A JP1943486A JP1943486A JPS62177916A JP S62177916 A JPS62177916 A JP S62177916A JP 1943486 A JP1943486 A JP 1943486A JP 1943486 A JP1943486 A JP 1943486A JP S62177916 A JPS62177916 A JP S62177916A
Authority
JP
Japan
Prior art keywords
gas
impurity
sih4
oxygen
capture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1943486A
Other languages
Japanese (ja)
Inventor
Yuko Hiura
樋浦 祐子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1943486A priority Critical patent/JPS62177916A/en
Publication of JPS62177916A publication Critical patent/JPS62177916A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the purity of a gas by activating at least one of the principal constituent molecules of the gas or a specific impurity through optical irradiation, inducing an optical inducing chemical reaction and removing the specific impurity. CONSTITUTION:A gate valve 10 is opened, a pump 11 is operated and the inside of a silica tube 5 is evacuated, and a high-frequency power supply 7 is applied to a coil 6 to generate plasma. On the other hand, beams are irradiated from a mercury lamp 3 through a synthetic quartz window 9, raw material gas SiH4 is sprayed against Si 4 for capture irradiated by beams, and an Si substrate 1 for epitaxial growth is supplied with the Si 4. Oxygen in SiH4 is reacted with SiH4 and captured as SiO2 on the Si 4 for capture at that time, thus removing impurity oxygen. Accordingly, SiH4 gas, purity thereof is improved, can be fed onto the Si substrate 1 for epitaxial growth.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガス中の不純物除去方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for removing impurities from gas.

(従来技術と発明が解決しようとする問題点)薄膜形成
装置、結晶成長装置等において原料ガスに含まれる不純
物が膜形成時に膜、あるいは結晶に取り込まれる。これ
を避ける方法として従来はガスの導入経路中の反応チャ
ンバ直前の位置での乾燥剤、又は脱酸素剤等の各種不純
物の除去剤から成るフィルタの使用等の手段がとられて
きた。
(Prior Art and Problems to be Solved by the Invention) In thin film forming apparatuses, crystal growth apparatuses, etc., impurities contained in source gases are incorporated into films or crystals during film formation. Conventionally, methods to avoid this have been taken such as using a filter made of a desiccant agent or an agent for removing various impurities such as an oxygen scavenger at a position immediately before the reaction chamber in the gas introduction path.

また原料ガス導入経路の壁面等から発生した不純物ガス
が原料ガスに混入し膜あるいは結晶に取り込まれること
を避ける方法としては、上記のフィルタの使用に加えて
、原料ガスの導入前に、導入経路及び反応チャンバを加
熱することによって壁面からの不純物ガスの発生を促が
しながら経路内を排気することによって、あらかじめ原
料ガス導入経路中の不純物ガスを取り除いておく方法が
とられていた。しかしこれらの方法のみで膜、あるいは
結晶への不純物の取込みをPPbオーダーにまで下げる
ことは極めて困難である。例えばSiのエピタキシャル
成長では650°C以下の低温成長の場合に不純物、特
に不純物酸素のエピタキシャル成長膜への取込みが顕著
となり不純物酸素の濃度は1018〜1020cm ”
程度に達する。不純物の取込みを軽減する対策としては
、前述のごとく原料ガスの供給経路中の反応チャンバ直
前の位置に脱酸素剤からなるフィルタを使用する手段が
講じられており、この脱酸素剤の効果で酸素濃度は5p
pb程度まて軽減されるが、この脱酸素剤自体が不純物
源となり酸素以外の不純物濃度が増加して、最終的に不
純物の濃度をppbp−オーダー下ことはできない。
In addition to using the above-mentioned filter, as a method to prevent impurity gases generated from the walls of the raw material gas introduction route from entering the raw material gas and being incorporated into the film or crystal, there is a method to prevent impurity gas generated from the walls of the raw material gas introduction route, etc. A method has been adopted in which impurity gases in the raw material gas introduction path are removed in advance by heating the reaction chamber to promote the generation of impurity gas from the wall surface and evacuating the path. However, it is extremely difficult to reduce the incorporation of impurities into the film or crystal to the order of PPb using only these methods. For example, in epitaxial growth of Si, when the growth is performed at a low temperature of 650°C or less, impurities, especially impurity oxygen, are significantly incorporated into the epitaxially grown film, and the concentration of impurity oxygen is 1018 to 1020 cm.
reach a certain degree. As mentioned above, one measure to reduce the intake of impurities is to use a filter made of an oxygen scavenger located just before the reaction chamber in the raw material gas supply path. Concentration is 5p
Although the oxygen scavenger itself becomes an impurity source, the concentration of impurities other than oxygen increases, and ultimately the impurity concentration cannot be reduced to ppbp-order.

本発明の目的はこのよううな従来の問題を解決した不純
物除去方法を得ることになる。
The object of the present invention is to provide an impurity removal method that solves these conventional problems.

(問題を解決するための手段) 本発明は上記の従来技術の問題点を解決するために、ガ
スの主要構成分子または前記ガスに含まれる特定の不純
物のうちどちらか一方又は両方を活性化する波長の光を
前記ガスに照射した後、前、(a)ノ 記ガスを使用する所定の場所に前記ガスを送り込むとい
う手段をとった。
(Means for Solving the Problems) In order to solve the problems of the prior art described above, the present invention activates either or both of the main constituent molecules of the gas and the specific impurities contained in the gas. After irradiating the gas with light of the same wavelength, the gas was sent to a predetermined location where the gas described in (a) is to be used.

さらに本発明ではガスの主要構成分子または前記ガスに
含まれる特定の不純物のうちどちr)か一方又は両方を
活性化する波長の光を前記ガスに照射し、前記波長の光
の照射を受けた、または受けている前記ガスを特定固体
物質に接触させた後、前記ガスを使用する所定の場所に
前記ガスを送り込むという手段をとった。
Furthermore, in the present invention, the gas is irradiated with light of a wavelength that activates either or both of the main constituent molecules of the gas or specific impurities contained in the gas, and the gas is irradiated with light of the wavelength. Alternatively, after bringing the gas being received into contact with a specific solid substance, the gas is sent to a predetermined location where the gas is to be used.

(作用) 本発明においては、ガスの主要構成分子とガスに含まれ
る特定の不純物分子が特定波長による光誘起化学反応で
、気化温度が薄膜成長室あるいは結晶成長室内の温度よ
り十分に高く、その蒸気圧がガス圧に対して無視できる
程度(lppb以F)の同相化合物を形成し得ることを
利用する。
(Function) In the present invention, the main constituent molecules of the gas and specific impurity molecules contained in the gas undergo a light-induced chemical reaction at a specific wavelength, and the vaporization temperature is sufficiently higher than the temperature inside the thin film growth chamber or crystal growth chamber. It takes advantage of the fact that an in-phase compound can be formed whose vapor pressure is negligible with respect to the gas pressure (lppb or more F).

ガスの主要構成分子に較べて十分に高い比重を有する同
相化合物は、重力方向以外のガス流には追随し得す、重
力方向に落下し、ガス流から分離\、 c4)、’) する。この結果ガス流中の不純物濃度は減少し高純度の
ガスが得られる。
An in-phase compound that has a sufficiently high specific gravity compared to the main constituent molecules of the gas can follow the gas flow in a direction other than the direction of gravity, falls in the direction of gravity, and is separated from the gas flow\,c4),'). As a result, the impurity concentration in the gas stream is reduced and a highly purified gas is obtained.

ガスの主要構成分子に較べて比重が十分に高くない同相
化合物は、ガス中に浮遊物質として存在することも起り
得るため重力方向への分離は困難であるが、この場合は
、同相化合物を捕獲してガス流から分離するための特定
の固体物質を使用する。この際は、ガス流を特定の固体
物質に接触させ、接触面でガスの主要構成分子とガスに
含まれる不純物分子との光誘起化学反応を生じさせて同
相化合物を形成させるか、又は、あらかじめ光照射され
、光誘起化学反応により生成した同相化合物を含んだガ
ス流をこの特定の固体物質に接触させることによって、
特定の同相化合物を、特定の固体物質の表面を含んだ内
部に物理的吸着によって捕獲することでガス流から分離
できる。
In-phase compounds whose specific gravity is not sufficiently high compared to the main constituent molecules of the gas may exist as suspended substances in the gas, making it difficult to separate them in the direction of gravity. The use of certain solid substances to separate them from the gas stream. In this case, the gas stream is brought into contact with a specific solid substance, and a photo-induced chemical reaction occurs between the main constituent molecules of the gas and the impurity molecules contained in the gas at the contact surface, or a same-phase compound is formed in advance. By contacting this particular solid material with a gas stream that is irradiated with light and contains in-phase compounds produced by a photo-induced chemical reaction,
Certain in-phase compounds can be separated from a gas stream by being trapped within, including at the surface of, certain solid materials by physical adsorption.

また、ガス中の不純物分子が主要構成分子とは反応しな
い場合、もしくは反応を起しても同相化合物を生成する
ことがない場合は、不純物分子と場合はガス流をこの固
体物質に接触させ、接触面に不純物分子を活性化する波
長の光を照射することによって固体物質とを不純物分子
との光誘起化学反応を生じさせる。この結果固体物質の
表面を含む内部に、固体物質と不純物分子との同相化合
物が形成されるため、不純物分子がガスからに分離され
る。なお、活性化状態の不純物分子の寿命が十分に長い
場合には必らずしも接触面で反応を生じさせる必要はな
く、あらかじめの光照射により活性化された不純物分子
を含むガス流を固体物質に接触させて不純物分子と固体
物質との反応を誘起することもできる。
In addition, if the impurity molecules in the gas do not react with the main constituent molecules, or if they do not generate the same phase compound even if they react, the gas stream is brought into contact with this solid substance, By irradiating the contact surface with light having a wavelength that activates the impurity molecules, a photo-induced chemical reaction between the solid substance and the impurity molecules is caused. As a result, an in-phase compound of the solid substance and impurity molecules is formed inside the solid substance including its surface, so that the impurity molecules are separated from the gas. Note that if the lifetime of the impurity molecules in the activated state is sufficiently long, it is not necessarily necessary to cause a reaction at the contact surface, and the gas flow containing the impurity molecules activated by prior light irradiation is It is also possible to induce a reaction between the impurity molecules and the solid substance by bringing them into contact with a substance.

(発明の実施例) 以下本発明をプラズマCVDによるシリコンのエピタキ
シャル成長に適用した実施例を図面を参照して詳細に説
明する。
(Embodiments of the Invention) Hereinafter, embodiments in which the present invention is applied to epitaxial growth of silicon by plasma CVD will be described in detail with reference to the drawings.

図はプラズマCVDによるシリコンのエピタキシャル成
長装置に本発明を適用した装置の模式図である。本発明
において使用した装置は、通常のプラズマCVDエピタ
キシャル装置に加え、原料ガスSiH4中、あるいは不
活性ガスN2中に不純物として含まれている02、又は
配管に付着して原料ガスに混入する02を活性化する光
源として水銀ランプ(1849人)を設けたことを特徴
とする。
The figure is a schematic diagram of an apparatus to which the present invention is applied to a silicon epitaxial growth apparatus by plasma CVD. In addition to a normal plasma CVD epitaxial apparatus, the apparatus used in the present invention can remove 02 contained as an impurity in the raw material gas SiH4 or inert gas N2, or 02 that adheres to piping and mixes with the raw material gas. It is characterized by the provision of a mercury lamp (1849 people) as a light source for activation.

さらに原料ガスにSiH4を用いる場合にはこの活性化
によりSiH4分子と反応して生成した5i02を捕獲
する物質として、又不活性ガスを用いる場合には、活性
化した02との反応物質として、それぞれSiを用いる
ことも特徴とする。
Furthermore, when SiH4 is used as the raw material gas, it is used as a substance that captures 5i02 generated by reacting with SiH4 molecules due to this activation, and when an inert gas is used, it is used as a substance that reacts with activated 02. Another feature is that Si is used.

本発明の実施手順は、最初にゲートパルプ10を開き、
ターボモレキュラーポンプ11を作動させることによっ
て1O−5Pa程度に石英管5の排気を行ない、続いて
石英管5に巻付けたコイル6の両端に高周波電源7によ
る高周波電力を印加することによってプラズマを発生さ
せた後、原料ガスSiH4を合成石英窓9を通して水銀
ランプ3からの光照射を受けた捕獲用Si4に吹き付け
させてから基板加熱用ヒータ2によって650°C以上
に加熱されたエピタキシャル成長用Si基板1に供給す
ることによってSiのエピタキシャル成長を行なった。
The implementation procedure of the present invention is to first open the gate pulp 10,
The quartz tube 5 is evacuated to about 10-5 Pa by operating the turbo molecular pump 11, and then plasma is generated by applying high frequency power from the high frequency power source 7 to both ends of the coil 6 wound around the quartz tube 5. After that, the Si substrate 1 for epitaxial growth is heated to 650° C. or higher by the heater 2 for heating the substrate after blowing the source gas SiH4 through the synthetic quartz window 9 onto the Si4 capture material that has been irradiated with light from the mercury lamp 3. Epitaxial growth of Si was carried out by supplying .

捕獲用Si4は捕獲部温度調節器8によって5i02を
十分に付着できる200°C〜300°Cの温度範囲に
調節した。
The temperature of Si4 for capture was adjusted by a capture portion temperature controller 8 to a temperature range of 200° C. to 300° C. that would allow sufficient adhesion of 5i02.

SiH4中の酸素をSiH4と反応させて捕獲用Si4
上に、5i02として捕獲し、不純物酸素が軽減され高
純度化したSiH4をエピタキシャル成長用Si基板1
上に供給することにより界面の酸素濃度が従来より2桁
以上低い1016cm−3のSiピタキシャル成長膜を
得ることができた。
Oxygen in SiH4 is reacted with SiH4 to capture Si4
On the top, SiH4 captured as 5i02 and highly purified with reduced impurity oxygen is deposited on a Si substrate 1 for epitaxial growth.
By supplying Si to the top, it was possible to obtain a Si pitaxially grown film with an oxygen concentration at the interface of 1016 cm-3, which is more than two orders of magnitude lower than that of the conventional method.

なお、この実施例では捕獲用Si4上でSiH4と酸素
とを反応させているが、必らずしも捕獲用物質上で反応
を生じさせる必要はない。あらかじめ、光照射により生
成した5i02を含むガス流を5i02粒子の大きさよ
り小さい穴をガス流に妨げない程度に数多くあけたSi
を、ガス流をさえぎる位置に設置することによって、5
i02粒子をガス流から分離することができる なお、この実施例でl、t’5i02を捕獲するために
Siを用いているが、必らずしも捕獲用の同相物質を用
いる必要はない。SiH4ガス供給用の配管の一部を石
英管としこの石英管を通して原料ガスにHgランプ光を
照射すれば生成した5i02のほとんどは管底に溜りS
iH4から分離される。但しこの方法を用いる場合には
、5i02の一部が分離されきれずにSiH4中に浮遊
することが起りうるので、5i02のSiH4からの分
離を促がすために、重力方向を逆方向にガスを導入させ
る等の工夫が必要である。
In this example, SiH4 and oxygen are reacted on the capture Si4, but the reaction does not necessarily need to occur on the capture material. In advance, a large number of holes smaller than the size of the 5i02 particles were made in Si to the extent that the gas flow containing 5i02 generated by light irradiation was not obstructed.
5 by installing it in a position that blocks the gas flow.
i02 particles can be separated from the gas stream Note that although Si is used to capture l,t'5i02 in this example, it is not necessary to use an in-phase material for capture. If part of the SiH4 gas supply piping is a quartz tube and the raw material gas is irradiated with Hg lamp light through this quartz tube, most of the generated 5i02 will accumulate at the bottom of the tube and S
Separated from iH4. However, when using this method, a part of 5i02 may not be completely separated and may float in SiH4, so in order to promote the separation of 5i02 from SiH4, the gas is moved in the opposite direction of gravity. It is necessary to take measures such as introducing

なお本発明は、必らずしもSiのエピタキシャル成長に
のみ適用されるものではない。原料ガスをTMAとすれ
ば不純物酸素を酸化アルミとして捕獲することにより酸
素コンタミネーションの少ない金属アルミニューム薄膜
を形成できる。
Note that the present invention is not necessarily applied only to the epitaxial growth of Si. If TMA is used as the raw material gas, a metallic aluminum thin film with less oxygen contamination can be formed by capturing impurity oxygen as aluminum oxide.

次に、本発明による方法のうち、不純物を特定の同相物
質との化合物として除去する方法を適用した実施例とし
て不活性ガスN2中に含まれる不純物02を軽減を行な
った例につき説明する。N2中の酸素はチッ化処理、ま
たは他の原料ガスのキャリアガスとして用いる場合に被
チッ化物質、あるいは膜に悪影響をもたらす。この実施
例においては捕獲用Si4に吹き付けたN2中の不純物
02を水銀ランプ3(1849人)の照射により活性化
して捕獲用Si4と反応させることによってN2中に含
まれる不純物02の軽減を行なった。
Next, an example in which the impurity 02 contained in the inert gas N2 is reduced will be described as an example in which the method of removing impurities as a compound with a specific in-phase substance among the methods according to the present invention is applied. Oxygen in N2 has an adverse effect on the material to be nitrided or on the film when used in a nitriding process or as a carrier gas for other raw material gases. In this example, impurity 02 contained in N2 was reduced by activating impurity 02 in N2 sprayed onto capture Si4 by irradiation with mercury lamp 3 (1849 people) and reacting with capture Si4. .

なお、この実施例では捕獲用Si4上で不純物酸素を水
銀ランプ3により活性化しているが、必らずしも捕獲用
Si4上で活性化する必要はない。あらかじめの光照射
により不純物酸素を活性化した後、これを含むN2を捕
獲用Si4に吹き付けることによってSiと不純物酸素
を反応させることによってN2中の不純物酸素を軽減す
ることも可能である。但しこの場合、水銀ランプ3照射
を行なう位置から捕獲用Si4までの距離をガス流が進
むのに要する時間は、活性化した酸素の励起状態の寿命
より短かくなくてはならない。
In this embodiment, the impurity oxygen is activated on the capture Si4 using the mercury lamp 3, but it is not necessarily necessary to activate it on the capture Si4. It is also possible to reduce the impurity oxygen in N2 by activating the impurity oxygen by light irradiation in advance and then spraying N2 containing this onto the capture Si4 to cause the Si to react with the impurity oxygen. However, in this case, the time required for the gas flow to travel the distance from the irradiation position of the mercury lamp 3 to the capture Si 4 must be shorter than the lifetime of the activated oxygen in its excited state.

又、本発明はCVDのみならず広汎に他の気相プロセス
技術への適用が可能であることはもちろんである。
Furthermore, it goes without saying that the present invention can be applied not only to CVD but also to a wide range of other gas phase process techniques.

又、本実施例においては一種類の不純物ガスのみを除去
する例を述べたが、本発明の趣旨に反しない範囲で複数
種類の不純物ガスにそれぞれ対応した波長の光を照射し
て複数種類の不純物ガスを有効に除去できることはいう
までもない。
Further, in this embodiment, an example was described in which only one type of impurity gas is removed, but multiple types of impurity gases can be removed by irradiating light with wavelengths corresponding to each type within the scope of the present invention. Needless to say, impurity gas can be effectively removed.

又、実施例ではガス中の不純物分子を活性化する場合の
みについて述べているが、本発明においてはガスの主要
構成分子を活性化することによってガス中不純物分子と
の化合物を生成し不純物分子を取り除くことも可能であ
る。さらに本発明においては不純物の捕獲用物質を活性
化することによって不純物分子との化合物を生成し不純
物分子を取り除くことも可能である。
In addition, although the examples describe only the case of activating impurity molecules in the gas, in the present invention, by activating the main constituent molecules of the gas, a compound with the impurity molecules in the gas is generated and the impurity molecules are activated. It is also possible to remove it. Furthermore, in the present invention, it is also possible to remove the impurity molecules by activating the impurity trapping substance to generate a compound with the impurity molecules.

(発明の効果) 以上説明したように本発明によればガスの主要構成分子
、もしくはこのガスに含まれる特定の不純物のどちらか
一方又は両方を特定波長の光照射により活性化して不純
物と主要構成分子との光誘起化学反応を誘起して同相化
合物として気相から特定不純物を分離して除去すること
により従来の不純物ガス除去方法では不可能であった程
度にまでガスの高純度化を図ることができる。又本発明
によれば、ガスに含まれる特定不純物を特定波長の光照
射により活性化して特定物質との光誘起化学反応を誘起
し特定物質との同相化合物として特定不純物を気相から
分離して除去することにより従来の不純物ガス除去方法
では不可能であった程度にまでガスの高純度化を図るこ
とができる。
(Effects of the Invention) As explained above, according to the present invention, either or both of the main constituent molecules of the gas or the specific impurities contained in this gas are activated by light irradiation of a specific wavelength, and the impurities and the main constituent molecules are activated. By inducing a photo-induced chemical reaction with molecules and separating and removing specific impurities from the gas phase as in-phase compounds, the gas can be purified to a degree that was not possible with conventional impurity gas removal methods. I can do it. Further, according to the present invention, specific impurities contained in the gas are activated by light irradiation with a specific wavelength to induce a photo-induced chemical reaction with the specific substance, and the specific impurities are separated from the gas phase as an in-phase compound with the specific substance. By removing impurity gases, it is possible to improve the purity of the gas to a degree that has not been possible with conventional impurity gas removal methods.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明を適用した実施例を示す模式図である。 1・・・エピタキシャル成長用Si基板2・・・基板加
熱用ヒータ 3・・・水銀ランプ 4・・・捕獲用Si 5・・・石英管 6・・・コイル 7・・・高周波電源 8・・・捕獲部温度調節器 9・・・合成石英窓 10・・・ゲートバルブ
The figure is a schematic diagram showing an embodiment to which the present invention is applied. 1... Si substrate for epitaxial growth 2... Heater for heating the substrate 3... Mercury lamp 4... Si for capturing 5... Quartz tube 6... Coil 7... High frequency power source 8... Capture section temperature regulator 9...Synthetic quartz window 10...Gate valve

Claims (2)

【特許請求の範囲】[Claims] (1)ガスの主要構成分子または前記ガスに含まれる特
定の不純物のうちどちらか一方又は両方を活性化する波
長の光を前記ガスに照射した後、前記ガスを使用する所
定の場所に前記ガスを送り込むことを特徴とした不純物
ガス除去方法。
(1) After irradiating the gas with light of a wavelength that activates either or both of the main constituent molecules of the gas or specific impurities contained in the gas, the gas is placed at a predetermined location where the gas will be used. An impurity gas removal method characterized by sending in.
(2)ガスの主要構成分子または前記ガスに含まれる特
定の不純物のうちどちらか一方又は両方を活性化する波
長の光を前記ガスに照射し、前記波長の光の照射を受け
た、または受けている前記ガスを特定固体物質に接触さ
せた後、前記ガスを使用する所定の場所に前記ガスを送
り込むことを特徴とした不純物ガス除去方法。
(2) The gas is irradiated with light of a wavelength that activates either or both of the main constituent molecules of the gas or specific impurities contained in the gas, and the gas is irradiated with or receives light of the wavelength. A method for removing impurity gas, comprising: bringing the gas into contact with a specific solid substance, and then sending the gas to a predetermined location where the gas is to be used.
JP1943486A 1986-01-30 1986-01-30 Removing method for impurity gas Pending JPS62177916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1943486A JPS62177916A (en) 1986-01-30 1986-01-30 Removing method for impurity gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1943486A JPS62177916A (en) 1986-01-30 1986-01-30 Removing method for impurity gas

Publications (1)

Publication Number Publication Date
JPS62177916A true JPS62177916A (en) 1987-08-04

Family

ID=11999179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1943486A Pending JPS62177916A (en) 1986-01-30 1986-01-30 Removing method for impurity gas

Country Status (1)

Country Link
JP (1) JPS62177916A (en)

Similar Documents

Publication Publication Date Title
JP4776054B2 (en) Thin film formation method by atomic layer growth
US20030097929A1 (en) Materials and method for the purification of hydride gases
US4936940A (en) Equipment for surface treatment
JPS5958819A (en) Formation of thin film
JPH0496226A (en) Manufacture of semiconductor device
JPH05259139A (en) Cleaning apparatus
JPS62177916A (en) Removing method for impurity gas
JP2004339187A (en) Method for purification and film-forming of perfluoro-compound
JPH06295870A (en) Chemical vapor deposition system
JPH04290219A (en) Method of forming polycrystalline silicon film
JPH0468387B2 (en)
JPS63317675A (en) Plasma vapor growth device
JPS61190943A (en) Cleaning of interior of reaction-treatment device, purification of gas-phase substance for treatment and reaction-treatment device
JPS63166215A (en) Semiconductor vapor growth system
JPH0294430A (en) Photo-assisted cvd apparatus
JPH04173976A (en) Thin film forming device
JPH02148726A (en) Dry etching
JPS639742B2 (en)
JP3708980B2 (en) How to remove moisture from gas
JPS6390138A (en) Method for cleaning semiconductor surface
JPH01103831A (en) Formation of semiconductor film
JPS62126638A (en) Preprocessing method for semiconductor substrate
JPS63282270A (en) Production of semiconductor device
JPS6245018A (en) Thin film forming device
JPH01223723A (en) Semiconductor manufacturing equipment