JPH02148726A - Dry etching - Google Patents

Dry etching

Info

Publication number
JPH02148726A
JPH02148726A JP30054488A JP30054488A JPH02148726A JP H02148726 A JPH02148726 A JP H02148726A JP 30054488 A JP30054488 A JP 30054488A JP 30054488 A JP30054488 A JP 30054488A JP H02148726 A JPH02148726 A JP H02148726A
Authority
JP
Japan
Prior art keywords
etching
silicon oxide
oxide film
source
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30054488A
Other languages
Japanese (ja)
Inventor
Natsuyo Chiba
千葉 なつよ
Shigeru Takahashi
茂 高橋
Michio Ogami
大上 三千男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30054488A priority Critical patent/JPH02148726A/en
Publication of JPH02148726A publication Critical patent/JPH02148726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To facilitate etching free from deposition of thin film by a method wherein, when etching is finished, gas supply is discontinued and then the etched object is heated. CONSTITUTION:A light beam with a wavelength of 157-400nm is applied to mixture of a fluorine source and a hydrogen source and the mixture is brought into contact with a silicon oxide film to subject the silicon oxide film to dry etching. When etching is finished, gas supply is discontinued and, while an etching chamber is evacuated, the silicon oxide film is heated by a light source such as a heater and a light source of a mercury lamp, an excimer laser and a Xe-He lamp. With this process, residual reactive gas and residual reaction products are easy to leave the silicon oxide surface and discharged through an exhaust system, so that excellent etching process in which a thin film is not deposited even if the hydrogen source content is higher than 4 pts.vol. can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコン酸化膜のエツチング方法に係り、特
に基板前処理に好適な低ダメージ光励起ドライエツチン
グ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of etching a silicon oxide film, and particularly to a low-damage photoexcited dry etching method suitable for substrate pretreatment.

〔従来の技術〕[Conventional technology]

従来のシリコン酸化膜の光励起エツチング法は、特開昭
61−53732号に記載のように、波長157〜40
0nmの光線をフッ素源又はこれと水素源との混合物に
照射して、これにシリコン酸化膜を晒すとなっていた。
The conventional photo-excited etching method for silicon oxide film uses wavelengths of 157 to 40, as described in Japanese Patent Application Laid-Open No. 61-53732.
The fluorine source or a mixture of the fluorine source and the hydrogen source was irradiated with a 0 nm light beam to expose the silicon oxide film.

水素源はエツチング速度を増大させる効果を有するが、
水素源の含有量が4容量%を越えるとシリコン酸化膜表
面に薄膜の堆積が観測される。
Although the hydrogen source has the effect of increasing the etching rate,
When the content of the hydrogen source exceeds 4% by volume, a thin film is observed to be deposited on the surface of the silicon oxide film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は水素源の含有量4容量%以上で、薄膜堆
積の点について配慮がされておらず、清浄なエツチング
面が得られないという問題があった。
In the above-mentioned conventional technology, the content of the hydrogen source was 4% by volume or more, no consideration was given to thin film deposition, and there was a problem that a clean etched surface could not be obtained.

本発明の目的は、水素源の含有量4容量%以上でも、薄
膜の堆積のないエツチングを行うことにある。
An object of the present invention is to perform etching without depositing a thin film even when the content of the hydrogen source is 4% by volume or more.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、エツチング終了時に反応ガスの供給を中止
し、シリコン酸化膜を加熱することにより、達成される
The above object is achieved by stopping the supply of reaction gas at the end of etching and heating the silicon oxide film.

〔作用〕[Effect]

反応ガスの供給の中止により、反応生成物は発生されな
くなり、加熱することにより、残留反応ガス・残留反応
生成物がシリコン酸化膜表面から脱離し易くなり、エツ
チング終了時ひき続き系を排気することにより、残留反
応ガス、残留反応生成物が系外へ除かれるようになるの
で、シリコン酸化膜上に薄膜が堆積することがない。
By discontinuing the supply of the reaction gas, no reaction products are generated, and by heating, the residual reaction gas and residual reaction products are easily desorbed from the silicon oxide film surface, and the system must be continuously evacuated when etching is completed. As a result, residual reaction gas and residual reaction products are removed from the system, so that no thin film is deposited on the silicon oxide film.

〔実施例〕〔Example〕

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本実施例方法に用いたドライエツチング装置を
示す概略構成図である。SUS製チャンバ16中には被
エツチング材13を搭載する試料サセプタ14、反応ガ
ス供給系15を有し、上部に光透過用合成石英窓12及
び光源である低圧水銀ランプ11を具備している。又、
チャンバ下方より、バタフライバルブ19を介し、ター
ボ分子ポンプ17とロータリーポンプ18にて、チャン
バ内を排気する構成である。別の光源としてエキシマレ
ーザ20をチャンバ16の脇に有し、光線は合成石英窓
21を通して被エツチング材13上に導びかれる。
FIG. 1 is a schematic diagram showing a dry etching apparatus used in the method of this embodiment. The chamber 16 made of SUS has a sample susceptor 14 on which a material to be etched 13 is mounted, a reaction gas supply system 15, and is equipped with a synthetic quartz window 12 for light transmission and a low-pressure mercury lamp 11 as a light source at the top. or,
The chamber is configured to be evacuated from below by a turbo molecular pump 17 and a rotary pump 18 via a butterfly valve 19. Another light source is an excimer laser 20 beside the chamber 16, the light beam of which is directed onto the material 13 to be etched through a synthetic quartz window 21.

実施例1 シリコンを熱酸化して得たシリコン酸化膜を被エツチン
グ材13として試料サセプタ14に載せ、ターボ分子ポ
ンプ17とロータリポンプ18によりチャンバ16内を
I X 10−’Torrまで排気した。
Example 1 A silicon oxide film obtained by thermally oxidizing silicon was placed on a sample susceptor 14 as the material to be etched 13, and the inside of the chamber 16 was evacuated to I.times.10-'Torr using a turbo molecular pump 17 and a rotary pump 18.

バタフライバルブ20を閉じ、反応ガス供給系19より
反応ガスとして三フッ化窒素を供給し、チャンバ内を9
QTorrに保った。ここに反応ガス供給系15より水
素ガスを加え、チャンバ16内を100Torrとした
。チャンバ16内が水素1゜%、三フッ化窒素90%と
なるように供給ガス系15のガス流量を調整し、チャン
バ16内100Torrを保つように排気量をバタフラ
イバルブ19より調節しながら、Arにエキシマレーザ
20の光を801(zで40分合成石英窓21より被エ
ツチング材13に照射した。
The butterfly valve 20 is closed, nitrogen trifluoride is supplied as a reaction gas from the reaction gas supply system 19, and the inside of the chamber is
I kept it at QTorr. Hydrogen gas was added here from the reaction gas supply system 15 to set the inside of the chamber 16 to 100 Torr. The gas flow rate of the supply gas system 15 was adjusted so that the inside of the chamber 16 contained 1% hydrogen and 90% nitrogen trifluoride, and the exhaust amount was adjusted using the butterfly valve 19 so as to maintain the inside of the chamber 16 at 100 Torr. Then, the material to be etched 13 was irradiated with light from an excimer laser 20 at 801 (z) for 40 minutes through the synthetic quartz window 21.

エツチング終了後、チャンバ16より、エツチング材1
3を取り出した所、シリコン酸化膜表面に細かい水滴の
様な跡ができた。これは、反応生成物S i Fa が
、反応生成物HFと空気中の水分が混じったものに溶解
し、付着したものと考えられる。
After etching is completed, the etching material 1 is removed from the chamber 16.
When I took out No. 3, there were traces that looked like fine water droplets on the surface of the silicon oxide film. This is considered to be because the reaction product S i Fa was dissolved in a mixture of the reaction product HF and the moisture in the air and adhered thereto.

そこでエツチング終了時、反応ガスの供給を中止し、チ
ャンバ内を排気した後、排気しながらIRクランプータ
により150℃、15分のシリコン酸化膜の加熱を行っ
た所、表面の被膜の堆積は見られず、エツチング速度は
30nm/hであった。
At the end of etching, the supply of reaction gas was stopped, the chamber was evacuated, and the silicon oxide film was heated at 150°C for 15 minutes using an IR clamp while the chamber was being evacuated. No film deposition was observed on the surface. First, the etching rate was 30 nm/h.

本実施例によれば、エツチング終了時の反応ガス供給の
中止、ヒータ加熱には、シリコン酸化膜上の薄膜の堆積
を阻止する効果がある。
According to this embodiment, stopping the supply of reaction gas and heating the heater at the end of etching have the effect of preventing the deposition of a thin film on the silicon oxide film.

実施例2 実施例1と同様の実験であるが反応ガス中の水素含有量
を4%とし、光源を装置上部低圧水銀ランプ11として
、エツチング時間60分の実験を行った。エツチング終
了後、チャンバより取り出した所、被エツチング材13
であるシリコン酸化膜上に白い膜が観測された。この膜
は、希フッ酸に溶解した為、反応生成物Si Fa と
NOx 。
Example 2 An experiment similar to Example 1 was conducted, except that the hydrogen content in the reaction gas was 4%, the low pressure mercury lamp 11 at the top of the apparatus was used as the light source, and the etching time was 60 minutes. After etching is completed, the material to be etched 13 is removed from the chamber.
A white film was observed on the silicon oxide film. Since this film was dissolved in dilute hydrofluoric acid, the reaction products were Si Fa and NOx.

NzOが混在したシリコン酸化膜系の膜であろうと考え
られる。
It is thought that it is a silicon oxide film containing NzO.

そこで、エツチング終了時に反応ガスの供給を中止し、
排気しながら低圧水銀ランプ11の照射を続け、ランプ
によるシリコン酸化膜の加熱を行った所、被膜の堆積は
見られず、この時のエツチング速度は50nm/hであ
った。
Therefore, the supply of reaction gas was stopped at the end of etching, and
When the silicon oxide film was heated by continuing irradiation with the low-pressure mercury lamp 11 while exhausting the air, no film deposition was observed, and the etching rate at this time was 50 nm/h.

本実施例によれば、エツチング終了時の反応ガス供給の
中止、低圧水銀ランプによる加熱には、シリコン酸化膜
上の薄膜の堆積を阻止する効果がある。
According to this embodiment, stopping the supply of reaction gas and heating with a low-pressure mercury lamp at the end of etching have the effect of preventing the deposition of a thin film on the silicon oxide film.

実施例3 実施例2と同様の実験条件であるが、反応ガス中の水素
含有量を10%とした場合も、反応ガス供給中止、ラン
プ加熱の処理により、シリコン酸化膜上の薄膜の堆積が
防止できた。この時エツチング速度は80nm/hであ
った。
Example 3 Although the experimental conditions were the same as in Example 2, but the hydrogen content in the reaction gas was 10%, the deposition of a thin film on the silicon oxide film was prevented by stopping the reaction gas supply and lamp heating. It could have been prevented. At this time, the etching rate was 80 nm/h.

本実施例によれば、低圧水銀ランプ加熱により反応ガス
中の水素含有量10%においても、シリIコン酸化膜上
に被膜の堆積なくエツチングが可能であり、これにより
水素含有量4%の場合に比し、1.7倍のエツチング速
度となった。
According to this example, even when the hydrogen content in the reaction gas is 10% by heating with a low-pressure mercury lamp, etching is possible without depositing a film on the silicon I oxide film. The etching speed was 1.7 times that of the previous one.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、エツチング後にシリコン酸化膜上に被
膜を堆積しない為、清浄なエツチング面を有するドライ
エツチング技術が提供できる。加えて、水素濃度の薄膜
堆積のしきい値が失くなるので、反応ガス中の水素濃度
増加が可能となり。
According to the present invention, since no film is deposited on the silicon oxide film after etching, it is possible to provide a dry etching technique with a clean etching surface. In addition, since the hydrogen concentration threshold for thin film deposition is lost, it becomes possible to increase the hydrogen concentration in the reactant gas.

エツチング速度向上の効果がある。It has the effect of improving etching speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いたドライエツチング装置
を示す概略構成図である。
FIG. 1 is a schematic diagram showing a dry etching apparatus used in an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、波長157〜400nmの光線をフッ素源と水素源
との混合物に照射して、これをシリコン酸化膜に接触さ
せるシリコン酸化膜のエッチング方法においてエッチン
グ終了時にガス供給を中止し、シリコン酸化膜を加熱す
ることを特徴とするドライエッチング方法。 2、加熱方法が熱源によることを特徴とする特許請求の
範囲第1項記載のエッチング方法。 3、加熱方法が低圧水銀ランプ、エキシマレーザXe−
Hgランプの光源によることを特徴とする特許請求の範
囲第1項記載のエッチング方法。
[Claims] 1. In a silicon oxide film etching method in which a mixture of a fluorine source and a hydrogen source is irradiated with a light beam with a wavelength of 157 to 400 nm and brought into contact with a silicon oxide film, the gas supply is stopped at the end of etching. A dry etching method characterized by heating the silicon oxide film. 2. The etching method according to claim 1, wherein the heating method uses a heat source. 3. Heating method is low pressure mercury lamp, excimer laser Xe-
2. The etching method according to claim 1, wherein the etching method uses an Hg lamp as a light source.
JP30054488A 1988-11-30 1988-11-30 Dry etching Pending JPH02148726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30054488A JPH02148726A (en) 1988-11-30 1988-11-30 Dry etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30054488A JPH02148726A (en) 1988-11-30 1988-11-30 Dry etching

Publications (1)

Publication Number Publication Date
JPH02148726A true JPH02148726A (en) 1990-06-07

Family

ID=17886106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30054488A Pending JPH02148726A (en) 1988-11-30 1988-11-30 Dry etching

Country Status (1)

Country Link
JP (1) JPH02148726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926188B2 (en) * 2006-02-22 2012-05-09 アウディー アーゲー How to machine a press tool using marking paint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926188B2 (en) * 2006-02-22 2012-05-09 アウディー アーゲー How to machine a press tool using marking paint

Similar Documents

Publication Publication Date Title
EP0235256B1 (en) Gaseous process and apparatus for removing films from substrates
US5709754A (en) Method and apparatus for removing photoresist using UV and ozone/oxygen mixture
EP0104658B1 (en) Process for forming thin film
US5234540A (en) Process for etching oxide films in a sealed photochemical reactor
JPS61127121A (en) Formation of thin film
EP0677870A2 (en) Controlled etching of oxides via gas phase reactions
JP2004128281A (en) Substrate treatment method and apparatus thereof
JPH02148726A (en) Dry etching
JPH03147322A (en) Manufacture of semiconductor device
JP2640828B2 (en) Method for removing native oxide film on semiconductor substrate surface
JP2606318B2 (en) Method of forming insulating film
JPH03204932A (en) Removal of coating film on silicon layer and selective removal of silicon natural oxide film
JP2634051B2 (en) Thin film growth method
JPS59129774A (en) Selective formation of nitrided film
JPS6390138A (en) Method for cleaning semiconductor surface
JPS622622A (en) Surface treatment method
JPH01223733A (en) Etching of titanium carbide film and titanium nitride film
JPS62166527A (en) Formation of silicon oxide film
JPS60211847A (en) Forming method of insulating film
JPS61119028A (en) Photo-chemical vapor deposition equipment
JPH03291930A (en) Method and device for etching iii-v compound semiconductor substrate
JPS6360532A (en) Dry etching method
JPH03268428A (en) Method and device for surface treatment of semiconductor substrate
JPS6193830A (en) Optical gaseous phase growing method
JPH04294539A (en) Method for forming insulation film