JPS61190943A - Cleaning of interior of reaction-treatment device, purification of gas-phase substance for treatment and reaction-treatment device - Google Patents

Cleaning of interior of reaction-treatment device, purification of gas-phase substance for treatment and reaction-treatment device

Info

Publication number
JPS61190943A
JPS61190943A JP3036785A JP3036785A JPS61190943A JP S61190943 A JPS61190943 A JP S61190943A JP 3036785 A JP3036785 A JP 3036785A JP 3036785 A JP3036785 A JP 3036785A JP S61190943 A JPS61190943 A JP S61190943A
Authority
JP
Japan
Prior art keywords
reaction
substance
gas phase
treatment
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3036785A
Other languages
Japanese (ja)
Other versions
JPH0722127B2 (en
Inventor
Shinichi Muramatsu
信一 村松
Shigeru Kokuuchi
滋 穀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60030367A priority Critical patent/JPH0722127B2/en
Publication of JPS61190943A publication Critical patent/JPS61190943A/en
Publication of JPH0722127B2 publication Critical patent/JPH0722127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable to form a thin film containing very little impurity by a method wherein the interior of a reaction-treating device is cleaned and raw gas for reaction and treatment is purified. CONSTITUTION:The following facts: the major constituent elements of a contaminant and an impurity existing in a reaction-treating device and raw gas for reaction and treatment are carbon (C), oxygen (O), fluorine (F), and nitrogen (N), and these elements can be made to bond with elements easy to oxidize, such as iron (Fe), silicon (Si), zinc (Zn), titanium (Ti), molybdenum (Mo) and tin (Sn): are utilized. The contaminant is decomposed and the C, O, F and N to be formed are made to bond with the above-memtioned elements easy to oxidize and are turned into solid-phase substances. By this way, the interior of the device can be cleansed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、反応・処理#:(を内の汚染物質を除去して
清浄化する方法ならびにこの方法を実施するための装置
を具備した反応・処理装置に係わシ、特に汚染物質を分
解し、その分解物を反応用気相物質と反応させて固相物
質にしてから除去することに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for removing and cleaning contaminants in a reaction/process #: The present invention relates to a processing device, and particularly relates to decomposing pollutants and reacting the decomposed products with a reaction gaseous substance to form a solid phase substance, which is then removed.

〔発明の背景〕[Background of the invention]

化学反応を用いた薄膜の製造や熱処理もしくは反応処理
等を行なう場合、薄膜中に所望外の不純物の量を可能な
限シ少なくしたい。しかし従来はこの所望外の不純物が
かなシ多く、製品の品質を低下させていた。たとえば第
1図に、モノシランのプラズマ分解法によりガラス基板
上にアモルファスシリコン薄膜を形成した時の膜中の不
純物量を示したが、同図かられかるように炭素(C)、
酸素(0)、窒素(N)という不純物が、膜中の奥深く
まで混入していることがわかる。このように所望外の不
純物が混入する原因は、(1)装置(反応・処理容器、
ガス流入系など)内の残留ガス、(2)装置内に吸着し
ているガス分子の脱着、(3)反応e処理用原料ガス中
に含まれる不純物質等が考えられる。また、装置が真空
排気系を有する場合には、真空排気系を構成するポンプ
等から逆拡散してくる真空オイルの液滴や蒸気が汚染物
となる。ポンプがターボ分子ポンプやイオンポンプなど
の高真空ポンプの場合には、当然汚染物は生じない。し
かし、半導体薄膜の化学反応による製造や処理等を行な
う場合の圧力は常圧から真空まで広範囲であるが、主と
して10〜103Paであバこの範囲の真空度を得るた
めの排気系は油拡散ポンプや油回転ポンプのような真空
オイルを用いたものが一般に使用される。したがって、
真空排気系による装置内の汚染は甚だしく、たとえば、
油回転ポンプ用真空オイルの中で、最も蒸気圧が低く、
耐熱性の優れたものでも、100Cにおいて300時間
放置すると、その間に約0.1チが蒸発する。
When manufacturing a thin film using chemical reactions, heat treatment, reaction treatment, etc., it is desirable to reduce the amount of undesired impurities in the thin film as much as possible. However, in the past, these undesired impurities were often present, degrading the quality of the product. For example, Figure 1 shows the amount of impurities in an amorphous silicon thin film formed on a glass substrate by plasma decomposition of monosilane.
It can be seen that impurities such as oxygen (0) and nitrogen (N) are mixed deep into the film. The causes of undesired impurities are: (1) equipment (reaction/processing vessels,
(2) desorption of gas molecules adsorbed in the apparatus, (3) impurities contained in the raw material gas for reaction e processing, etc. Furthermore, when the apparatus has a vacuum evacuation system, droplets and vapor of vacuum oil back-diffused from the pumps and the like constituting the evacuation system become contaminants. If the pump is a high vacuum pump such as a turbomolecular pump or an ion pump, no contaminants will naturally be generated. However, when manufacturing and processing semiconductor thin films by chemical reactions, the pressure ranges widely from normal pressure to vacuum, but the exhaust system to obtain a vacuum in this range is mainly 10 to 103 Pa. Types that use vacuum oil, such as rotary pumps and oil rotary pumps, are generally used. therefore,
The contamination inside the equipment caused by the vacuum evacuation system is severe; for example,
Among the vacuum oils for oil rotary pumps, it has the lowest vapor pressure.
Even if it has excellent heat resistance, if it is left at 100C for 300 hours, about 0.1 inch will evaporate during that time.

またこの真空オイル中には各種のガスが溶解しているこ
ともある。
Also, various gases may be dissolved in this vacuum oil.

(2)項の吸着ガス分子は、装置を高温にすれば脱着し
、これを排気すればある程度の除去ができることは知ら
れているが、装置全体を高温にすることは好ましいこと
ではない。
It is known that the adsorbed gas molecules mentioned in item (2) can be desorbed by heating the device to a high temperature, and can be removed to some extent by exhausting the gas, but it is not preferable to heat the entire device to a high temperature.

これらの対策として、特開昭57−118015号公報
にガス吸着剤を用いる方法が記載されているが実用的な
方法ではない。また、特開昭57−78131号公報に
は原料ガスを高温に加熱して基板に到達せしめる方法が
記載されているが、原料ガスを多量に消費するなど実用
性に乏しい。
As a countermeasure to these problems, a method using a gas adsorbent is described in JP-A-57-118015, but this is not a practical method. Further, Japanese Patent Application Laid-Open No. 57-78131 describes a method of heating source gas to a high temperature and making it reach the substrate, but this method consumes a large amount of source gas and is not practical.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、反応・処理装置内に存在した9発生し
たシして、所望外の不純物の原因となる汚染物を除去す
る装置内の清浄化方法および、反応・処理用の原料ガス
中の不純物を除去して純化する方法、およびこれらの方
法を適用した反応・処理装置を提供することにある。
The object of the present invention is to provide a method for cleaning an apparatus for removing contaminants that are generated in a reaction/processing apparatus and cause undesired impurities, and a method for cleaning the inside of a reaction/processing apparatus, and It is an object of the present invention to provide a method for purifying by removing impurities, and a reaction/processing apparatus to which these methods are applied.

〔発明の概要〕[Summary of the invention]

本発明者は、反応・処理装置内や反応・処理用原料ガス
中に存在する汚染物質や不純物質の主要な構成元素が炭
素(C)、酸素(0)、フッ素(F)および窒素(N)
であること、およびこれらの元素が、酸化しやすい元素
、たとえばd(F’e)、シリコン(Si)、亜鉛(Z
n)、チタ7 (Ti)、モリブテン(Mo) 、m(
8n)などと結合することに着目し、また、反応・処理
用原料ガスがこれらの元素で構成されたシ、含有したシ
していることに留意して、前記汚染物を分解して生成し
たC、O,?およびNを、前記の原料ガスを同様に分解
して生成した酸化しやすい元素と結合して固相物質化す
ることにより装置内を清浄にする方法を発明した。すな
わち、前記固相物質は気相、液相物質に較べて蒸気圧が
低く、装置内の雰囲気を清浄化する。また装置が真空排
気系を有する場合には微粉末である前記固相物質は、排
気流とともに装置外に排出される可能性もある。
The present inventor has discovered that the main constituent elements of contaminants and impurities present in the reaction/processing equipment and in the raw material gas for reaction/processing are carbon (C), oxygen (0), fluorine (F), and nitrogen (N). )
and that these elements are easily oxidized elements such as d (F'e), silicon (Si), zinc (Z
n), tita7 (Ti), molybdenum (Mo), m(
8n), etc., and also keeping in mind that the raw material gas for reaction and processing is composed of or contains these elements, the contaminants are decomposed and generated. C.O.? We have invented a method for cleaning the inside of an apparatus by combining N with easily oxidizable elements produced by similarly decomposing the above-mentioned raw material gas to form a solid phase substance. That is, the solid-phase substance has a lower vapor pressure than gas-phase and liquid-phase substances, and cleans the atmosphere within the apparatus. Furthermore, if the apparatus has a vacuum evacuation system, the solid phase material, which is a fine powder, may be discharged out of the apparatus along with the exhaust flow.

反応・処理用原料ガス中に含まれる汚染物も同様に固相
物質化され、純化される。
Contaminants contained in the raw material gas for reaction and processing are also converted into solid phase substances and purified.

このような反応装置を用いて製造される薄膜の代表的な
ものはSiO□S i3 N4 、アモルファスシリコ
ンなどであるが、これらを製造するための反応用原料ガ
スはモノ7ランかジシランなどの高次シラン、あるいは
塩化シランである。これらのシランは、加熱、光照射、
放電などで分解され、シリコン(8i)が生成される。
Typical thin films produced using such a reactor are SiO□S i3 N4, amorphous silicon, etc., but the raw material gas for the reaction to produce these is a high-temperature gas such as mono7rane or disilane. Hyposilane or chlorinated silane. These silanes can be heated, exposed to light,
It is decomposed by discharge etc. and silicon (8i) is produced.

一方、装置内の汚染物、特に真空オイルは、加熱、光照
射、放電などで分解すると、C,O,N。
On the other hand, when contaminants in the equipment, especially vacuum oil, are decomposed by heating, light irradiation, electric discharge, etc., they produce C, O, and N.

Fなどの元素が生成され、これらはSiと結合して、!
9 + 02 r S r C+ S Is N4など
の微少な固相物質になる。これらの固相物質の蒸気圧は
極めて小さく、装置内の雰囲気に影響しなくなる。
Elements such as F are produced, and these combine with Si,!
9 + 02 r S r C+ S Is It becomes a minute solid phase substance such as N4. The vapor pressure of these solid-phase substances is extremely small and does not affect the atmosphere within the apparatus.

また、シランの分解生成物がポリクリスタル状のシリコ
ンのクラスターになる場合には、真空オイルの霧状物ま
たは蒸気は、そのま\シリコンのクラスターに吸着され
、外部に排出されやすくなる。
Furthermore, when the decomposition product of silane becomes polycrystalline silicon clusters, the vacuum oil mist or vapor is directly adsorbed by the silicon clusters and is easily discharged to the outside.

以上の結果、本発明の方法または装置を用いて製造した
アモルファスシリコン、Si3N4などのシリコン系薄
膜中の不純物の量は大幅に減少した。
As a result, the amount of impurities in silicon-based thin films such as amorphous silicon and Si3N4 produced using the method or apparatus of the present invention was significantly reduced.

この発明は、試料の熱処理など処理にも適用でき、る。This invention can also be applied to treatments such as heat treatment of samples.

たとえば、水素処理や不活性ガス中での熱処理を行なう
場合、処理用ガスとシランを同時に流入してから、シラ
ンを分解すれば処理装置内の汚染物を微粉末化して装置
内の雰囲気を清浄化できる。
For example, when performing hydrogen treatment or heat treatment in an inert gas, processing gas and silane can be introduced at the same time, and then the silane can be decomposed to pulverize contaminants in the processing equipment and purify the atmosphere inside the equipment. can be converted into

なお、装置内の壁などに吸着している真空オイルその他
の汚染物は加熱によって壁などから脱着して分解されや
すくなることは云うまでもない。
It goes without saying that vacuum oil and other contaminants adsorbed on the walls of the apparatus are easily desorbed from the walls and decomposed by heating.

前述の、薄膜の形成や処理に用いられる原料ガスはでき
るだけ高純度のものが用いられるが、ガス流入系の配管
やパルプ等を経て基板に到達するまでにはガス流入系に
存在する汚染物でかなシ純度が低下する。本発明の技術
は、このように装置のガス流入系で汚染された原料ガス
を、基板に到達するまでに純化することにも適用できる
。たとえば、反応用原料ガスがモノ7ラン、ジシランな
どのシラン系の場合に、このガスを、基板に到達する前
に分解すれば、同時に分解された原料ガス中の汚染物の
分解物と反応して固相化するので、汚染物を原料ガス中
から除去することができる。
The raw material gas used for forming and processing the thin film mentioned above is of the highest possible purity, but by the time it passes through the piping and pulp of the gas inflow system and reaches the substrate, it is contaminated with contaminants that exist in the gas inflow system. Kana purity decreases. The technique of the present invention can also be applied to purifying source gas contaminated in the gas inflow system of the apparatus before it reaches the substrate. For example, if the raw material gas for reaction is a silane type such as mono-7rane or disilane, if this gas is decomposed before reaching the substrate, it will react with the decomposed products of contaminants in the decomposed raw material gas. Since the gas is converted into a solid phase, contaminants can be removed from the source gas.

以上、モノ7ランを例にして説明したが、ジシランなど
の高次シラン系ガスや四弗化珪素のようなシリコン化合
物、ゲルマンなどのゲルマニウム化合物のような気相物
質があシ、ガス以外でも、気化して流入することができ
る四塩化錫などの錫化合物、トリメチルアルミニウムな
どのアルミニウム化合物などがアシ、その池、ガリウム
、モリブデン、アンチモン、テルル、チタン、タングス
テン、亜鉛、タンタル、マグネシウム、リチウムなど酸
化あるいは反応しやすい元素のノ・ロゲン化物や有機金
属化合物を反応用または処理用ガスとする場合にも適用
でき、これらの混合物であってもよい。
The above explanation has been given using mono7ran as an example, but gas-phase substances such as higher-order silane gases such as disilane, silicon compounds such as silicon tetrafluoride, and germanium compounds such as germane can also be used. , tin compounds such as tin tetrachloride, aluminum compounds such as trimethylaluminum, which can be vaporized and flowed into reeds, gallium, molybdenum, antimony, tellurium, titanium, tungsten, zinc, tantalum, magnesium, lithium, etc. The present invention can also be applied to cases in which the reaction or processing gas is a halogenide or an organometallic compound of an element that is easily oxidized or reacts, and a mixture thereof may be used.

また、これらの原料ガスが汚染物や不純物質の分解や反
応の促進の触媒となるものである場合はより効果的であ
り、原料ガスに触媒となる物質を混入しても良い。
Further, it is more effective if these raw material gases serve as catalysts for decomposing pollutants and impurity substances and promoting reactions, and a substance serving as a catalyst may be mixed in the raw material gases.

汚染$IJを分解する方法は、加熱、光照射、放′1、
イオンビーム照射などか有効であるが、場合によっては
これらを併用するとより効果がある。放電を用いる場合
は、プラズマ構成、コロナ放電が特に有効であった。光
照射に用いる光源としては、直接分解を行なう水銀ラン
プ、紫外線ランプ、アルゴンレーザ、エキシマレーザ等
や、加熱分解を行なう炭酸ガスレーザ等が適用できた。
Methods for decomposing contaminated $IJ include heating, light irradiation, radiation'1,
Ion beam irradiation is effective, but in some cases it may be more effective to use these in combination. When using discharge, plasma configuration and corona discharge were particularly effective. As light sources used for light irradiation, mercury lamps, ultraviolet lamps, argon lasers, excimer lasers, etc. that perform direct decomposition, and carbon dioxide gas lasers that perform thermal decomposition, etc. can be used.

また、これらの分解機構や分解装置は反応・処理容器、
反応・処理用原料ガスの流入系内、真空排気系内のすべ
てもしくは一部に設置され、原料ガス流入系および真空
排気系内に設置する場合は、できるだけ反応・処理容器
の近くに設置した方が本発明の実施の効果がより大きい
ことは云うまでもないっ 〔発明の実施例〕 以下、本発明の詳細な説明する。
In addition, these decomposition mechanisms and decomposition devices include reaction/processing vessels,
Installed in all or part of the raw material gas inflow system or vacuum exhaust system for reaction/processing. If installed in the raw material gas inflow system or vacuum exhaust system, it should be installed as close to the reaction/processing vessel as possible. It goes without saying that the effects of implementing the present invention are greater. [Embodiments of the Invention] The present invention will be described in detail below.

実施例1 第2図を用いて説明する。Example 1 This will be explained using FIG.

第2図は、常圧CVD法によるシリコン気相成長装置で
、ガス流入系内に加熱分解用ヒータ10全具備している
。反応容器1内の基板9は誘導台13の上に置かれ、高
周波電源12によ)誘導加熱される。
FIG. 2 shows a silicon vapor phase growth apparatus using the atmospheric pressure CVD method, which is completely equipped with a thermal decomposition heater 10 in the gas inflow system. The substrate 9 in the reaction vessel 1 is placed on an induction stand 13 and is heated by induction (by a high frequency power source 12).

反応用ガス流入口8から四塩化シリコンと水素の混合気
化を流入し、高周波′成源14を作動して基板9上に結
晶膜を成長させ、その膜中の酸素濃度を測定した結果、
3X10”clrI−”でめった。また高周波゛成源1
4を作動しない場合の膜中の酸素浸度は5XlO”’m
−”であったので、本発明の効果が確認できた。
A vaporized mixture of silicon tetrachloride and hydrogen was flowed in from the reaction gas inlet 8, the high frequency source 14 was activated to grow a crystal film on the substrate 9, and the oxygen concentration in the film was measured.
3X10"clrI-" was successful. Also, high frequency source 1
The oxygen permeability in the membrane when 4 is not activated is 5XlO'''m
-'', the effect of the present invention was confirmed.

実lημ汐り2 第3図はプラズマCVD装置で、原料の反応用ガスとし
てモノシランを用いてアモルファスシリコン膜を製造す
るだめのものである。この装置は、高周波1jL極2を
有する反応容器1と真空排気系を溝底するターボ分子ポ
ンプ3、メカニカルブースターポンプ4およびロータリ
ーポンプ5、で構成されている。また真空切換えパルプ
6と圧力調整パルプ7を具備しており、モノ7ランなど
の反応ガス流入孔8から流入するよう罠なっている。さ
らに、本装置は真空装置内を汚染する物質および反応ガ
スを分解するために前段加熱ヒータ20、反応容器内加
熱ヒータ21および後段加熱ヒータ22を具備している
Fig. 3 shows a plasma CVD apparatus for producing an amorphous silicon film using monosilane as a raw material reaction gas. This apparatus is composed of a reaction vessel 1 having a high frequency 1jL pole 2, a turbo molecular pump 3, a mechanical booster pump 4, and a rotary pump 5, which bottom the vacuum evacuation system. It is also equipped with a vacuum switching pulp 6 and a pressure regulating pulp 7, and is configured as a trap so that a reaction gas such as a mono 7 run flows in through an inlet hole 8. Furthermore, this apparatus is equipped with a front-stage heater 20, a reaction vessel interior heater 21, and a rear-stage heater 22 in order to decompose substances and reaction gases that contaminate the inside of the vacuum apparatus.

次に本装置により、加熱ヒータ20,21゜22を用い
た場合と用いない場合にてアモルファスシリコン膜を形
成し、膜中の不純物量を比較した。
Next, amorphous silicon films were formed using this apparatus with and without the heaters 20, 21 and 22, and the amounts of impurities in the films were compared.

まず、膜形成のプロセスを説明する。基板9を反応炉1
に設置し、250Cに加熱した。またロータリーポンプ
5およびメカニカルブースターポンプ4を作動して反応
容器1の内部の圧力を10−’ paにし、つづいてタ
ーボ分子ポンプ3に切換えて30分間減圧を行なって圧
力をlXl0−”Paにした。次に再び真空系切換えパ
ルプ6を切換えてメカニカルブースターポンプとし、反
応ガスとしてモノシランを50SCCM流入し、圧力調
整パルプ7により反応容器2内の圧力を90Paにした
。この状態において高周波電極2に1(1’の高周彼或
力を40分間印加して基板9に膜厚1μmのアモルファ
スシリコン[(試料A)を形成した。
First, the process of film formation will be explained. The substrate 9 is placed in the reactor 1.
and heated to 250C. In addition, the rotary pump 5 and mechanical booster pump 4 were operated to bring the internal pressure of the reaction vessel 1 to 10-' Pa, and then the turbo molecular pump 3 was switched to reduce the pressure for 30 minutes to bring the pressure to lXl0-' Pa. Next, the vacuum system switching pulp 6 was switched again to become a mechanical booster pump, and 50 SCCM of monosilane was flowed in as a reaction gas, and the pressure inside the reaction vessel 2 was set to 90 Pa by the pressure adjusting pulp 7. In this state, the high frequency electrode 2 was A high-frequency force of 1' was applied for 40 minutes to form an amorphous silicon film (sample A) with a thickness of 1 μm on the substrate 9.

次に、上記方法において、ターボ分子ポンプ3を作動し
てから膜形成が完了するまでの間、加熱ヒ−p20,2
1および22を400 cK加熱してアモルファスシリ
コン膜(試料B)を形成した。
Next, in the above method, the heating heaters p20, 2
1 and 22 were heated to 400 cK to form an amorphous silicon film (sample B).

試vrAおよび試料Bに不純物として含まれる炭素、酸
素、窒素の量をIMA法により測定した。
The amounts of carbon, oxygen, and nitrogen contained as impurities in sample vrA and sample B were measured by the IMA method.

その結果を表1に示すが、試料Bの不純物量は試料人の
1/10以下になっていることがわかり、加熱ヒータ2
0,21および22を用いた効果が確認できた。
The results are shown in Table 1, and it was found that the amount of impurities in sample B was less than 1/10 of that of the sample.
The effects of using 0, 21 and 22 were confirmed.

表  1 単位二の−8 また、反応ガスとして四フッ化珪素を用いた場合も同様
の結果が得られた。
Table 1 Unit 2-8 Similar results were also obtained when silicon tetrafluoride was used as the reaction gas.

また、3個所の加熱ヒータ20,21および22のうち
、1個所もしくは2個所だけを作動しても本発明の効果
が得られることは云うまでもない。
Furthermore, it goes without saying that the effects of the present invention can be obtained even if only one or two of the three heaters 20, 21 and 22 are operated.

実施例3 第4図を用いて説明する。Example 3 This will be explained using FIG.

第4図に示したプラズマ(4D装置は、前段光照射機構
30.反応−処理容器内光照射機構31および後段光照
射機構32を具備している。
The plasma (4D apparatus) shown in FIG. 4 includes a front-stage light irradiation mechanism 30, a reaction-processing container interior light irradiation mechanism 31, and a rear-stage light irradiation mechanism 32.

本装置を、実施例1に示したと同様のプロセスで作動し
、光照射機構を作動して形成したアモルファスシリコン
膜(試料B)と作動しないで形成したアモルファスシリ
コンM(試料人)について膜中の不純物量を測定した結
果、表1と同様の結果が得られ、光照射の効果が確認さ
れた。
This device was operated in the same process as shown in Example 1, and the amorphous silicon film formed by operating the light irradiation mechanism (sample B) and the amorphous silicon M formed without operating the light irradiation mechanism (sample person) were detected. As a result of measuring the amount of impurities, results similar to those in Table 1 were obtained, confirming the effect of light irradiation.

実施列4 第5図を用いて説明する。Implementation row 4 This will be explained using FIG.

第5図に示したプラズマCVD装置は、前段放電機構4
0、反応・処理容器内放電機構41および浸設放電機構
42を具備している。
The plasma CVD apparatus shown in FIG.
0, a reaction/processing vessel internal discharge mechanism 41 and an immersed discharge mechanism 42 are provided.

本装置を、実施例1に示したと同様のプロセスで作動し
、放gt機構を作動して形成したアモルファスシリコン
PIX(試料B)と作動しないで形成したアモルファス
シリコン膜(試料人)について膜中の不純物量を測定し
たところ、表1と同様の結果が得られ、放電の効果が確
認できた。
This device was operated in the same process as shown in Example 1, and the amorphous silicon PIX (sample B) formed by operating the release gt mechanism and the amorphous silicon film (sample B) formed without operating the release mechanism were tested. When the amount of impurities was measured, the same results as in Table 1 were obtained, confirming the effect of discharge.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、反応・処理装置内を清浄化し、反応・
処理用原料ガスを純化することにより、極めて不純物の
少ない薄膜を提供できるので、従来にない特性の優れた
薄膜材料やそれを用いた高性能の素子や装置を実現し得
る効果がある。
According to the present invention, the inside of the reaction/processing device is cleaned, and the reaction/processing device is cleaned.
By purifying the raw material gas for processing, it is possible to provide a thin film with extremely low impurities, which has the effect of making it possible to realize thin film materials with unprecedented properties and high-performance devices and devices using them.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、アモルファスシリコン薄膜中に含まれる不純
物量の一例を示す図、第2図は、実施例1で用いた常圧
CVD法によるシリコン気相成長装置のブロック図、第
3図は、実施例2で用いたプラズマCVD装置のブロッ
ク図、第4図は、実施例3で用いたプラズマCVD装置
のブロック図、第5図は実施例4で用いたプラズマCV
D装置のブロック図である。 1・・・反応轡処理容器、2・・・高周波成極、3・・
・ターボ分子ポンプ、4・・・メカニカルブースターポ
ンプ、5・・・ロータリーポンプ、6・・・真空系切換
えパルプ、7・・・圧力調整パルプ、8・・・原料ガス
流入口、9・・・基板、10・・・原料ガス流入系内加
熱ヒータ、11・・・反応・処理容器内誘導加熱用コイ
ル、12・・・高周波電源(誘導加熱用)、13・・・
誘導台、14・・・高周波電源(プラズマCVD用)、
20・・・前段加熱ヒータ(原料ガス流入系内加熱用)
、21・・・反応・処理容器内加熱ヒータ、22・・・
後段加熱ヒータ(真空排気系内加熱用)、30・・・前
段光照射機構、31・・・反応・処理容器内光照射機構
、32・・・後段光照射機構、40・・・前段放電機構
、41・・・反Nr  図 ンV  Σ  (メXりンし) 茗 2 図 ■ 3 図
FIG. 1 is a diagram showing an example of the amount of impurities contained in an amorphous silicon thin film, FIG. 2 is a block diagram of the silicon vapor phase growth apparatus using the atmospheric pressure CVD method used in Example 1, and FIG. A block diagram of the plasma CVD apparatus used in Example 2, FIG. 4 is a block diagram of the plasma CVD apparatus used in Example 3, and FIG. 5 is a block diagram of the plasma CVD apparatus used in Example 4.
It is a block diagram of D device. 1... Reaction processing vessel, 2... High frequency polarization, 3...
・Turbo molecular pump, 4... Mechanical booster pump, 5... Rotary pump, 6... Vacuum system switching pulp, 7... Pressure adjustment pulp, 8... Raw material gas inlet, 9... Substrate, 10... Heater for heating the raw material gas inflow system, 11... Coil for induction heating in the reaction/processing container, 12... High frequency power source (for induction heating), 13...
Induction table, 14...high frequency power supply (for plasma CVD),
20...Pre-stage heater (for heating inside the raw material gas inflow system)
, 21... Reaction/processing container internal heater, 22...
Post-stage heater (for heating inside the vacuum evacuation system), 30... Pre-stage light irradiation mechanism, 31... Light irradiation mechanism in the reaction/processing container, 32... Post-stage light irradiation mechanism, 40... Pre-stage discharge mechanism , 41...Anti-Nr Figuren V Σ (MeXrinshi) Mei 2 Figure ■ 3 Figure

Claims (1)

【特許請求の範囲】 1、反応・処理装置内を汚染する物質(以下、汚染物と
記す)および/または該汚染物を分解して生成した元素
および/または分解物が、反応・処理用気相物質を分解
して生成した元素および/または分解物と反応して固相
化することを特徴とする反応・処理装置内の清浄化方法
。 2、反応・処理用気相物質を分解して生成した元素およ
び/または分解物が該反応・処理用気相物質中に含まれ
る所望外の不純物質および/または該不純物質を分解し
て生成した元素および/または分解物と反応して固相化
することを特徴とする反応・処理用気相物質の純化方法
。 3、少なくとも反応・処理容器および反応用気相物質流
入系を有する反応・処理装置において、該反応・処理容
器内および/または該反応用気相物質流入系内に存在す
る該反応・処理装置内を汚染する物質(以下、汚染物と
記す)および/または反応用気相物質を分解するための
分解機構を有することを特徴とする反応・処理装置。 4、上記汚染物および/または上記反応用気相物質の分
解を加熱により行なうことを特徴とする特許請求の範囲
第1項記載の反応・処理装置内の清浄化方法。 5、上記汚染物および/または上記反応用気相物質の分
解を光照射により行なうことを特徴とする特許請求の範
囲第1項記載の反応・処理装置内の清浄化方法。 6、上記汚染物および/または上記反応用気相物質の分
解を放電により行なうことを特徴とする特許請求の第1
項記載の反応・処理装置の清浄化方法。 7、上記反応用気相物質をシラン系物質とすることを特
徴とする特許請求の範囲第1から6項記載の反応・処理
装置の清浄化方法。 8、上記反応用気相物質をシラン系物質を含む物質とす
る特許請求の範囲第1から6項記載の反応・処理装置の
清浄化方法。 9、上記シラン系物質がモノシランおよび/またはジシ
ランおよび/またはトリシランであることを特徴とする
特許請求の範囲第7もしくは8項に記載の反応・処理装
置の清浄化方法。 10、上記反応・処理用気相物質の分解を加熱により行
なうことを特徴とする特許請求の範囲第2項記載の反応
・処理用気相物質の純化方法。 11、上記反応・処理用気相物質の分解を光照射により
行なうことを特徴とする特許請求の範囲第2項記載の反
応・処理用気相物質の純化方法。 12、上記反応・処理用気相物質の分解を放電により行
なうことを特徴とする特許請求の範囲第2項記載の反応
・処理用気相物質の純化方法。 13、上記反応・処理用気相物質をシラン系物質とする
ことを特徴とする特許請求の範囲第2項に記載の反応・
処理用気相物質の純化方法。 14、上記反応・処理用気相物質をシラン系物質を含む
物質とすることを特徴とする特許請求の範囲第2項に記
載の反応・処理用気相物質の純化方法。 15、上記反応・処理用気相物質をモノシランおよび/
またはジシランおよび/またはトリシランとする特許請
求の範囲第2項記載の反応・処理用気相物質の純化方法
。 16、上記反応・処理装置が真空排気系を有することを
特徴とする特許請求の第3項記載の反応・処理装置。 17、上記汚染物および/または反応・処理用気相物質
を分解する分解機構を有することを特徴とする特許請求
の範囲第3項記載の反応・処理装置。 18、上記分解機構が加熱装置であることを特徴とする
特許請求の範囲第17項記載の反応・処理装置。 19、上記分解機構が光照射装置であることを特徴とす
る特許請求の範囲第17項記載の反応・処理装置。 20、上記分解機構が放電装置であることを特徴とする
特許請求の範囲第17項記載の反応・処理装置。
[Claims] 1. Substances that contaminate the inside of the reaction/processing equipment (hereinafter referred to as contaminants) and/or elements and/or decomposition products produced by decomposing the pollutants are present in the reaction/processing gas. A method for cleaning the inside of a reaction/processing device, characterized by reacting with elements and/or decomposition products generated by decomposing a phase substance to form a solid phase. 2. Elements and/or decomposition products produced by decomposing a gas phase substance for reaction and treatment are generated by decomposing undesired impurities and/or impurities contained in the gas phase substance for reaction and treatment. 1. A method for purifying a gas phase substance for reaction and treatment, characterized by reacting with elements and/or decomposition products to form a solid phase. 3. In a reaction/processing device having at least a reaction/processing container and a reaction gas phase material inflow system, the inside of the reaction/processing device existing in the reaction/processing container and/or the reaction gas phase material inflow system 1. A reaction/processing device characterized by having a decomposition mechanism for decomposing substances that pollute (hereinafter referred to as contaminants) and/or gas-phase substances for reaction. 4. The method for cleaning the inside of a reaction/processing apparatus according to claim 1, wherein the decomposition of the contaminants and/or the gas phase substance for reaction is performed by heating. 5. The method for cleaning the inside of a reaction/processing apparatus according to claim 1, wherein the decomposition of the contaminants and/or the reaction gas phase substance is carried out by irradiation with light. 6. The first claim characterized in that the decomposition of the contaminant and/or the gas phase substance for reaction is carried out by electric discharge.
Method for cleaning reaction/processing equipment described in Section 1. 7. A method for cleaning a reaction/processing apparatus according to claims 1 to 6, characterized in that the gas phase substance for reaction is a silane-based substance. 8. A method for cleaning a reaction/processing apparatus according to claims 1 to 6, wherein the gas phase substance for reaction is a substance containing a silane-based substance. 9. The method for cleaning a reaction/processing apparatus according to claim 7 or 8, wherein the silane-based substance is monosilane and/or disilane and/or trisilane. 10. The method for purifying a gas phase substance for reaction and treatment according to claim 2, characterized in that the gas phase substance for reaction and treatment is decomposed by heating. 11. The method for purifying a gaseous substance for reaction and treatment according to claim 2, wherein the decomposition of the gaseous substance for reaction and treatment is carried out by irradiation with light. 12. The method for purifying a gaseous substance for reaction and treatment according to claim 2, wherein the decomposition of the gaseous substance for reaction and treatment is carried out by electric discharge. 13. The reaction and treatment according to claim 2, characterized in that the gas phase substance for reaction and treatment is a silane-based substance.
A method for purifying gas phase substances for processing. 14. The method for purifying a gas phase substance for reaction and treatment according to claim 2, characterized in that the gas phase substance for reaction and treatment is a substance containing a silane-based substance. 15. The above reaction/treatment gas phase substance is monosilane and/or
or disilane and/or trisilane, the method for purifying a gas phase substance for reaction and treatment according to claim 2. 16. The reaction/processing apparatus according to claim 3, wherein the reaction/processing apparatus has a vacuum evacuation system. 17. The reaction/processing apparatus according to claim 3, characterized by having a decomposition mechanism for decomposing the contaminants and/or the gas phase substance for reaction/processing. 18. The reaction/processing apparatus according to claim 17, wherein the decomposition mechanism is a heating device. 19. The reaction/processing device according to claim 17, wherein the decomposition mechanism is a light irradiation device. 20. The reaction/processing device according to claim 17, wherein the decomposition mechanism is a discharge device.
JP60030367A 1985-02-20 1985-02-20 Method for purifying reaction / treatment device and purification of gas phase substance for reaction / treatment, and reaction / treatment device Expired - Lifetime JPH0722127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60030367A JPH0722127B2 (en) 1985-02-20 1985-02-20 Method for purifying reaction / treatment device and purification of gas phase substance for reaction / treatment, and reaction / treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60030367A JPH0722127B2 (en) 1985-02-20 1985-02-20 Method for purifying reaction / treatment device and purification of gas phase substance for reaction / treatment, and reaction / treatment device

Publications (2)

Publication Number Publication Date
JPS61190943A true JPS61190943A (en) 1986-08-25
JPH0722127B2 JPH0722127B2 (en) 1995-03-08

Family

ID=12301892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60030367A Expired - Lifetime JPH0722127B2 (en) 1985-02-20 1985-02-20 Method for purifying reaction / treatment device and purification of gas phase substance for reaction / treatment, and reaction / treatment device

Country Status (1)

Country Link
JP (1) JPH0722127B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240728A (en) * 1985-08-15 1987-02-21 Tokuda Seisakusho Ltd Dry etching device
JPH03147317A (en) * 1989-10-23 1991-06-24 Internatl Business Mach Corp <Ibm> Method for suppressing contamination in plasma treatment
WO2024024804A1 (en) * 2022-07-28 2024-02-01 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889821A (en) * 1981-11-24 1983-05-28 Canon Inc Manufacturing device of deposited film
JPS58101421A (en) * 1981-12-11 1983-06-16 Canon Inc Manufacturing device of deposited film
JPS59148326A (en) * 1983-02-14 1984-08-25 Sumitomo Electric Ind Ltd Fabrication of thin film by cvd method
JPS59155123A (en) * 1982-12-22 1984-09-04 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Glow discharge depositing device
JPS59177922A (en) * 1983-03-14 1984-10-08 エナージー・コンバーション・デバイセス・インコーポレーテッド Process gas introducing and feeding system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889821A (en) * 1981-11-24 1983-05-28 Canon Inc Manufacturing device of deposited film
JPS58101421A (en) * 1981-12-11 1983-06-16 Canon Inc Manufacturing device of deposited film
JPS59155123A (en) * 1982-12-22 1984-09-04 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Glow discharge depositing device
JPS59148326A (en) * 1983-02-14 1984-08-25 Sumitomo Electric Ind Ltd Fabrication of thin film by cvd method
JPS59177922A (en) * 1983-03-14 1984-10-08 エナージー・コンバーション・デバイセス・インコーポレーテッド Process gas introducing and feeding system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240728A (en) * 1985-08-15 1987-02-21 Tokuda Seisakusho Ltd Dry etching device
JPH03147317A (en) * 1989-10-23 1991-06-24 Internatl Business Mach Corp <Ibm> Method for suppressing contamination in plasma treatment
WO2024024804A1 (en) * 2022-07-28 2024-02-01 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
JPH0722127B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US5288662A (en) Low ozone depleting organic chlorides for use during silicon oxidation and furnace tube cleaning
US6277767B1 (en) Method for cleaning semiconductor device
JPH054321B2 (en)
KR20070043792A (en) Removal of metal contaminants from ultra-high purity gases
JPH01500444A (en) Photochemical vapor deposition method with increased oxide layer growth rate
WO2009122240A1 (en) Method for the recycling and purification of an inorganic metallic precursor
JPS61190943A (en) Cleaning of interior of reaction-treatment device, purification of gas-phase substance for treatment and reaction-treatment device
JPH0657432A (en) Formation of tantalum oxide thin film
JPH09263944A (en) Film forming device
JP3116723B2 (en) Quartz glass material for microwave plasma equipment
JPH0253086B2 (en)
JPH01298003A (en) Method for generating ozone
JP2004249157A (en) Photocatalyst and its manufacturing method
JPH11124386A (en) Stabilization of trimethoxysilane
JPH0921785A (en) Impurity detection method
JP2997849B2 (en) Method for forming silicon oxide film
JPS63152120A (en) Thin film formation
JPH04290219A (en) Method of forming polycrystalline silicon film
JP4313144B2 (en) PZT film cleaning method
JPS62126638A (en) Preprocessing method for semiconductor substrate
JPS6366050B2 (en)
JPH06220069A (en) Purification of tantalum alkoxide, high-purity tantalum alkoxide and gas phase growth using the same material
JP2606063B2 (en) Method of forming gold film with organic gold complex
JPH06163480A (en) Surface treating method and surface treater
JPH04173976A (en) Thin film forming device