JP4313144B2 - PZT film cleaning method - Google Patents

PZT film cleaning method Download PDF

Info

Publication number
JP4313144B2
JP4313144B2 JP2003347801A JP2003347801A JP4313144B2 JP 4313144 B2 JP4313144 B2 JP 4313144B2 JP 2003347801 A JP2003347801 A JP 2003347801A JP 2003347801 A JP2003347801 A JP 2003347801A JP 4313144 B2 JP4313144 B2 JP 4313144B2
Authority
JP
Japan
Prior art keywords
pzt film
cleaning
pentanedione
reaction
hexafluoro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003347801A
Other languages
Japanese (ja)
Other versions
JP2005116716A (en
Inventor
健二 田仲
勇 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003347801A priority Critical patent/JP4313144B2/en
Publication of JP2005116716A publication Critical patent/JP2005116716A/en
Application granted granted Critical
Publication of JP4313144B2 publication Critical patent/JP4313144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、半導体分野における成膜装置等において、反応室内、治具等に堆積した不要なPb、Zr、及びTiを主成分とするPZT膜をクリーニング除去する方法に関する。   The present invention relates to a method for cleaning and removing unnecessary Pb, Zr, and Ti-based PZT films deposited in a reaction chamber, a jig, or the like in a film forming apparatus or the like in the semiconductor field.

薄膜、もしくは厚膜を製造する装置には装置内壁、冶具等に不必要な膜が堆積する。このため、反応室内の不必要な部分に堆積された膜の除去を行わなければならない。   In an apparatus for manufacturing a thin film or a thick film, unnecessary films are deposited on the inner wall of the apparatus, jigs and the like. For this reason, the film deposited on unnecessary portions in the reaction chamber must be removed.

現在、膜の除去方法として、ClF3やFのような分子内にフッ素原子を含むガスを利用した熱クリーニングがある(特許文献1)。この方法は、ClF3やFの反応性が高く、また、反応して得られる化合物の沸点が成膜のプロセス温度よりも低いことを利用したものである。 Currently, as a method for removing a film, there is thermal cleaning using a gas containing fluorine atoms in molecules such as ClF 3 and F 2 (Patent Document 1). This method utilizes the fact that the reactivity of ClF 3 and F 2 is high and the boiling point of the compound obtained by the reaction is lower than the film forming process temperature.

しかし、PZT膜中に含まれる金属元素であるZr、Pb、Tiと分子内にフッ素原子を含有したガスが反応して得られる化合物は、沸点が高く、ガス化させて除去することが困難である。そのため、生成したフッ素化合物が装置、配管内に堆積し、クリーニングには適さない。
特開平03−041199号公報
However, compounds obtained by the reaction of Zr, Pb, Ti, which are metal elements contained in the PZT film, and a gas containing fluorine atoms in the molecule have a high boiling point and are difficult to gasify and remove. is there. For this reason, the generated fluorine compound is deposited in the apparatus and piping, and is not suitable for cleaning.
Japanese Patent Laid-Open No. 03-041199

本発明者等は、鋭意検討の結果、特定の前処理を実施し、その後、β−ジケトンと反応させることにより高いクリーニング速度を得ながら、Pb、Zr、及びTiを主成分とするPZT膜をクリーニングする方法を見出し、本発明に至った。   As a result of intensive studies, the present inventors conducted a specific pretreatment, and then obtained a PZT film mainly composed of Pb, Zr, and Ti while obtaining a high cleaning rate by reacting with β-diketone. A method for cleaning was found and the present invention was achieved.

すなわち本発明は、Pb、Zr、及びTiを主成分とするPZT膜をクリーニング除去するに際し、分子内に塩素原子を含むガスを用いて200〜600℃で熱反応処理することによりPZT膜中に含まれるPb、Zr、及びTiを塩素化した後、PZT膜中に含まれるPb、Zr、及びTiとβ−ジケトンを反応させ、該反応生成物を0〜500℃の温度でクリーニング除去することを特徴とするPZT膜のクリーニング方法を提供するものである。 That is, the present invention, Pb, Zr, and upon Ti PZT film cleaning removed mainly comprising, on the PZT film by thermal reaction treatment at 200 to 600 ° C. using a gas containing chlorine atom in its molecule After chlorinating Pb, Zr and Ti contained, Pb, Zr and Ti contained in the PZT film are reacted with β-diketone, and the reaction product is removed by cleaning at a temperature of 0 to 500 ° C. A method for cleaning a PZT film is provided.

本発明において、対象となるPZT膜とは、PbZr1−xTiからなる組成の膜である。ただし、xは、0.3<x<0.7である。 In the present invention, the target PZT film is a film having a composition made of PbZr 1-x Ti x O 3 . However, x is 0.3 <x <0.7.

以下、本発明の内容を詳細に説明する。   Hereinafter, the contents of the present invention will be described in detail.

本発明において、クリーニングの順序としては、分子内に塩素原子を含むガスを用いて200〜600℃で最初に塩素化を行う。塩素化を行うことでPZT膜中に含まれるTi、Zr及びPbを塩素化することを目的としている。塩素化することにより、Ti、Zrは、TiCl、ZrClになり、該生成物は、ガス化させて反応器内から除去することができる。残ったPbは、PbCl2になり、配管中に堆積するものの、未処理の状態より錯体化しやすくなる。 In the present invention, as a cleaning order, chlorination is first performed at 200 to 600 ° C. using a gas containing chlorine atoms in the molecule. The purpose is to chlorinate Ti, Zr and Pb contained in the PZT film by chlorination. By chlorination, Ti and Zr become TiCl 4 and ZrCl 4 , and the product can be gasified and removed from the reactor. The remaining Pb becomes PbCl 2 and accumulates in the pipe, but becomes more complex than the untreated state.

本発明で用いるPZT膜の塩素化を行うガスとしては、分子内に塩素原子を含み、加熱によって塩素原子を放出するガスであれば特に問わないが、HCl、Cl等が挙げられる。特に、反応性の良好なHClが好ましい。HClは反応性が高く、HClに含まれるH原子は、PZT膜中に含まれるO原子と反応してHOを生成するため、反応が進行しやすいためである。 The gas for chlorinating the PZT film used in the present invention is not particularly limited as long as it contains chlorine atoms in the molecule and releases chlorine atoms by heating, and examples thereof include HCl and Cl 2 . In particular, HCl having good reactivity is preferable. This is because HCl is highly reactive, and H atoms contained in HCl react with O atoms contained in the PZT film to generate H 2 O, so that the reaction easily proceeds.

熱反応処理(塩素化処理)する条件としては、温度は200〜600℃の範囲が好ましい。0℃未満だと反応性が弱く、また800℃を超えると反応器内の腐食が問題となり好ましくない。また、反応によって生成するTiClとZrClの沸点、及び昇華点がそれぞれ、136℃、189℃であるため、200℃以上で塩素化処理することにより、生成したTiClとZrClを反応器内から同時に除去することができる。圧力については、1.33×10〜1.33×10Paが望ましい。流量については特に問わない。 The conditions of thermal reaction treatment (chlorination process), the temperature is preferably in the range of 200 to 600 ° C.. If it is less than 0 ° C., the reactivity is weak, and if it exceeds 800 ° C., corrosion in the reactor becomes a problem, which is not preferable. Further, since the boiling points and sublimation points of TiCl 4 and ZrCl 4 produced by the reaction are 136 ° C. and 189 ° C., respectively, the produced TiCl 4 and ZrCl 4 are converted into a reactor by chlorination at 200 ° C. or higher. It can be removed simultaneously from within. The pressure is preferably 1.33 × 10 2 to 1.33 × 10 4 Pa. The flow rate is not particularly limited.

次に、塩素化処理が終了すれば、PZT膜の反応処理(錯体化処理)を行う。本発明において用いるβ−ジケントンとしては、例えば2,4−ペンタンジオン、1,1,1−トリフルオロ−2,4−ペンタンジオン、1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオン、3−メチル−2,4−ペンタンジオン、3−イソプロピル−2,4−ペンタンジオン、2,2−ジメチル−3,5−ヘキサンジオン、1,1,1−トリフルオロ−5−メチル−2,4−ヘキサンジオン、1,1,1−トリトリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン、1,1,1,2,2,6,6,6−オクタフルオロ−3,5−ヘキサンジオン、2,2−ジメチル−3,5−ヘプタンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1,2,2−ペンタフルオロ−6−メチル−3,5−ヘプタンジオン、1,1,1,2,2−ペンタフルオロ−6,6−ジメチル−3,5−ヘプタンジエン、1,1,1,2,2,3,3−ヘプタフルオロ−4,6−ヘプタンジオン、1,1,1,5,5,6,6,7,7,7−デカフルオロ−2,4−ヘプタンジオン、1,1,1,2,2,6,6,7,7,7−デカフルオロ−3,4−ヘプタンジオン、7−メチル−2,4−オクタンジオン、1,1,1,2,2,3,3−ヘプタフルオロ−4,6−オクタンジオン、1,1,1,2,2,3,3−ヘプタフルオロ−7−メチル−4,6−オクタンジオン、1,1,1,2,2,3,3−ヘプタフルオロ−7,7−ジメチル−4,6−オクタンジオン、1,1,1,2,2,6,6,7,7,8,8,8−ドデカフルオロ−3,5−オクタンジオンなどが挙げられる。特に、1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオンが最も望ましい。1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオンは、PZT膜中に含まれるZr、Pbと反応性が高い上に形成される錯体の室温での蒸気圧が高く、クリーニングに適しているからである。   Next, when the chlorination treatment is completed, a reaction treatment (complexation treatment) of the PZT film is performed. Examples of β-diketone used in the present invention include 2,4-pentanedione, 1,1,1-trifluoro-2,4-pentanedione, 1,1,1,5,5,5-hexafluoro-2. , 4-pentanedione, 3-methyl-2,4-pentanedione, 3-isopropyl-2,4-pentanedione, 2,2-dimethyl-3,5-hexanedione, 1,1,1-trifluoro- 5-methyl-2,4-hexanedione, 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione, 1,1,1,2,2,6,6,6-octa Fluoro-3,5-hexanedione, 2,2-dimethyl-3,5-heptanedione, 2,2,6,6-tetramethyl-3,5-heptanedione, 1,1,1,2,2- Pentafluoro-6-methyl-3,5- Butanedione, 1,1,1,2,2-pentafluoro-6,6-dimethyl-3,5-heptanediene, 1,1,1,2,2,3,3-heptafluoro-4,6-heptane Dione, 1,1,1,5,5,6,6,7,7,7-decafluoro-2,4-heptanedione, 1,1,1,2,2,6,6,7,7, 7-decafluoro-3,4-heptanedione, 7-methyl-2,4-octanedione, 1,1,1,2,2,3,3-heptafluoro-4,6-octanedione, 1,1 1,1,2,2,3,3-heptafluoro-7-methyl-4,6-octanedione, 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4, 6-octanedione, 1,1,1,2,2,6,6,7,7,8,8,8-dodecafluoro-3,5-octane Examples include dione. In particular, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione is most desirable. 1,1,1,5,5,5-hexafluoro-2,4-pentanedione is highly reactive with Zr and Pb contained in the PZT film and has a vapor pressure at room temperature of the complex formed. This is because it is expensive and suitable for cleaning.

錯体化処理する条件としては、温度は、0〜500℃の範囲が好ましい。温度が、0℃未満だと錯体化に用いる化合物の蒸気圧が低く、また温度が、500℃を超えると錯体の熱分解が起こるため好ましくない。圧力については、1.33×10〜1.03×10Paが望ましい。低すぎると単位体積当りに供給される化合物の量が少なくなり、高いクリーニング速度が得られない。 As conditions for the complexing treatment, the temperature is preferably in the range of 0 to 500 ° C. If the temperature is less than 0 ° C., the vapor pressure of the compound used for complexation is low, and if the temperature exceeds 500 ° C., thermal decomposition of the complex occurs. The pressure is preferably 1.33 × 10 2 to 1.03 × 10 5 Pa. If it is too low, the amount of the compound supplied per unit volume is small, and a high cleaning rate cannot be obtained.

本発明の方法により、PZT膜の成膜装置等において、反応室内、治具等に堆積した不要物のクリーニングを、高いクリーニング速度を得ながら行うことができる。   According to the method of the present invention, in a PZT film forming apparatus or the like, it is possible to clean unnecessary substances deposited in a reaction chamber, a jig or the like while obtaining a high cleaning speed.

以下、実施例により本発明を詳細に説明するが、かかる実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, it is not limited to this Example.

実施例1
図1は、本発明で用いたクリーニング装置の概略系統図である。Siの上にPZT膜(PbZr0.52Ti0.48)を300nm成膜したウェハーを50mm×25mmの大きさにカットし、石英管5内の中央部に置いた。
Example 1
FIG. 1 is a schematic system diagram of a cleaning device used in the present invention. A wafer in which a PZT film (PbZr 0.52 Ti 0.48 O 3 ) of 300 nm was formed on Si was cut into a size of 50 mm × 25 mm and placed in the center of the quartz tube 5.

HCl(ガス)1を、温度300℃、圧力1.33×104Paで、マスフローコントローラー2を介して流量100sccmで30分間流し、反応後の試料表面をエネルギー分散型蛍光X線分析(Energy Dispersive X-ray Fluorescence Spectrometer : EDX)を用いて分析した。 HCl (gas) 1 is flowed at a temperature of 300 ° C. and a pressure of 1.33 × 10 4 Pa through the mass flow controller 2 at a flow rate of 100 sccm for 30 minutes, and the sample surface after the reaction is subjected to energy dispersive X-ray fluorescence analysis (Energy Dispersive X-ray analysis). X-ray Fluorescence Spectrometer (EDX) was used for analysis.

つぎに、上記と同様の操作で作成した試料を取り出し、試料上に1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオンを10cc滴下した。乾燥後、200℃に加熱されたホットプレート上で5分間加熱処理を施した。エネルギー分散型蛍光X線分析(EDX)を用いて反応後の試料表面を同様に分析した。   Next, a sample prepared by the same operation as described above was taken out, and 10 cc of 1,1,1,5,5,5-hexafluoro-2,4-pentanedione was dropped onto the sample. After drying, heat treatment was performed for 5 minutes on a hot plate heated to 200 ° C. The sample surface after the reaction was similarly analyzed using energy dispersive X-ray fluorescence analysis (EDX).

以上の操作で得られた結果を未処理の試料の分析結果と併せて表1に示す。HClで処理した試料の表面は、未処理の試料と比較してClの比率が高くなっており、塩素化が進行していることがわかる。さらに、1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオンで処理を施した後の試料の組成は未処理の試料の組成に近い値となっている。これは、塩素化された層が、1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオンと錯体を形成し、加熱処理により錯体が揮発したものと考えられる。   The results obtained by the above operation are shown in Table 1 together with the analysis results of the untreated sample. The surface of the sample treated with HCl has a higher Cl ratio than the untreated sample, indicating that chlorination has progressed. Furthermore, the composition of the sample after being treated with 1,1,1,5,5,5-hexafluoro-2,4-pentanedione is close to the composition of the untreated sample. This is considered that the chlorinated layer formed a complex with 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, and the complex was volatilized by the heat treatment.

以上の結果より、塩素化処理と1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオン処理を繰り返すことにより、PZT膜をクリーニングできることが示された。   From the above results, it was shown that the PZT film can be cleaned by repeating the chlorination treatment and the 1,1,1,5,5,5-hexafluoro-2,4-pentanedione treatment.

実施例2
実施例1で用いたSiの上にPZT膜を300nm成膜したウェハーと500nm成膜したウェハーを蛍光X線分析を用いて分析した。得られたX線の強度から、Ti、Zr、及びPbの各成分についての検量線を作成した。
Example 2
A wafer in which a PZT film was formed to 300 nm on Si used in Example 1 and a wafer in which a 500 nm film was formed were analyzed using fluorescent X-ray analysis. From the obtained X-ray intensity, a calibration curve for each of Ti, Zr and Pb components was prepared.

HCl(ガス)を温度300℃、及び500℃において圧力1.33×104Pa、流量100sccmの条件下で10分間処理し、反応後の試料表面を蛍光X線分析を用いて分析した。検量線から、各組成の除去速度を求めた。その結果を表2に示すが、PZT膜をHClによって塩素化でき、ウェハー上から除去できることがわかった。しかし、塩素化により生じたPbCl2は、配管中に堆積するため、引き続きβ−ジケトンによる錯体化を行わねばならない。 HCl (gas) was treated at a temperature of 300 ° C. and 500 ° C. under conditions of a pressure of 1.33 × 10 4 Pa and a flow rate of 100 sccm for 10 minutes, and the sample surface after the reaction was analyzed using fluorescent X-ray analysis. The removal rate of each composition was determined from the calibration curve. The results are shown in Table 2. It was found that the PZT film can be chlorinated with HCl and removed from the wafer. However, since PbCl 2 produced by chlorination accumulates in the pipe, it must be subsequently complexed with β-diketone.

実施例3
PbClと1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオンとの反応性をTG分析を用いて調べた。Nを50sccmの流量で1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオンが200mL入った容器にバブリングさせ、バブリング後のガスをPbClを20.55mg仕込んだ熱重量分析装置に導入した。反応管の温度を10℃/minで昇温度させ、1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオンとPbClの反応性を調べた。
Example 3
PbCl 2 and 1,1,1,5,5,5 reactivity with hexafluoro-2,4-pentanedione was investigated using TG analysis. N 2 was bubbled into a container containing 200 mL of 1,1,1,5,5,5-hexafluoro-2,4-pentanedione at a flow rate of 50 sccm, and 20.55 mg of PbCl 2 was charged as the gas after bubbling. It was introduced into a thermogravimetric analyzer. The temperature of the reaction tube was raised at 10 ° C./min, and the reactivity of 1,1,1,5,5,5-hexafluoro-2,4-pentanedione and PbCl 2 was examined.

結果を図2に示す。PbClが錯体化されて除去され、重量が減少している。すなわち、PbClは1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオンによってクリーニングできることがわかった。 The results are shown in FIG. PbCl 2 is complexed and removed, reducing weight. That is, it was found that PbCl 2 can be cleaned with 1,1,1,5,5,5-hexafluoro-2,4-pentanedione.

本発明で用いたプラズマクリーニング装置の概略系統図である。It is a schematic system diagram of the plasma cleaning apparatus used in the present invention. PbClと1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオンとの反応による熱重量分析値を表す。PbCl represents 2 and 1,1,1,5,5,5 thermogravimetric analysis value by reaction with hexafluoro-2,4-pentanedione.

符号の説明Explanation of symbols

1:HClボンベ
2:マスフローコントローラー
3:Nボンベ
4:PTFE容器
5:石英管
6:電気炉
7:圧力調整弁
8:ドライポンプ
9:除害装置
1: HCl cylinder 2: Mass flow controller 3: N 2 cylinder 4: PTFE container 5: Quartz tube 6: Electric furnace 7: Pressure regulating valve 8: Dry pump 9: Detoxifying device

Claims (1)

Pb、Zr、及びTiを主成分とするPZT膜をクリーニング除去するに際し、分子内に塩素原子を含むガスを用いて200〜600℃で熱反応処理することによりPZT膜中に含まれるPb、Zr、及びTiを塩素化した後、PZT膜中に含まれるPb、Zr、及びTiとβ−ジケトンを反応させ、該反応生成物を0〜500℃の温度でクリーニング除去することを特徴とするPZT膜のクリーニング方法。 When cleaning and removing the PZT film mainly composed of Pb, Zr, and Ti, Pb, Zr contained in the PZT film is subjected to a thermal reaction treatment at 200 to 600 ° C. using a gas containing chlorine atoms in the molecule. , And Ti are chlorinated, then PbT, Zr, and Ti contained in the PZT film are reacted with β-diketone, and the reaction product is removed by cleaning at a temperature of 0 to 500 ° C. How to clean the membrane.
JP2003347801A 2003-10-07 2003-10-07 PZT film cleaning method Expired - Fee Related JP4313144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347801A JP4313144B2 (en) 2003-10-07 2003-10-07 PZT film cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347801A JP4313144B2 (en) 2003-10-07 2003-10-07 PZT film cleaning method

Publications (2)

Publication Number Publication Date
JP2005116716A JP2005116716A (en) 2005-04-28
JP4313144B2 true JP4313144B2 (en) 2009-08-12

Family

ID=34540203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347801A Expired - Fee Related JP4313144B2 (en) 2003-10-07 2003-10-07 PZT film cleaning method

Country Status (1)

Country Link
JP (1) JP4313144B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201213594A (en) * 2010-08-16 2012-04-01 Air Liquide Etching of oxide materials

Also Published As

Publication number Publication date
JP2005116716A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP7196291B2 (en) Method for depositing tungsten or molybdenum films
JP4852527B2 (en) Low zirconium hafnium halide composition
TW544722B (en) Abatement of effluent from chemical vapor depositon processes using ligand exchange resistant metal-organic precursor solutions
JP4425194B2 (en) Deposition method
Clancey et al. Volatile etch species produced during thermal Al2O3 atomic layer etching
TW201100582A (en) Atomic layer deposition processes
JP6463339B2 (en) MOCVD layer growth method with subsequent multi-step cleaning steps
US6770254B2 (en) Purification of group IVb metal halides
JP2007177320A (en) METHOD OF WASHING THIN FILM DEPOSITION UNIT FOR DEPOSITING Al-CONTAINING METAL FILM AND Al-CONTAINING METAL NITRIDE FILM
WO2020010458A1 (en) Process and apparatus for purifying bnnt
WO2017203775A1 (en) Raw material for forming thin film and method for producing thin film
JP4313144B2 (en) PZT film cleaning method
WO2021085210A1 (en) Novel compound, thin film-forming material that contains said compound, and thin film manufacturing method
JP4519280B2 (en) Apparatus and method for dry cleaning a process chamber
KR20150048914A (en) Method for washing semiconductor manufacturing apparatus component, apparatus for washing semiconductor manufacturing apparatus component, and vapor phase growth apparatus
JP2017088916A (en) Film deposition apparatus using silicon raw material
TW201035339A (en) Process for removing residual water molecules in process for producing metallic thin film, and purge solvent
JP2019044264A (en) Processing method of tungsten oxide, and manufacturing method for tungsten hexafluoride
TW202335068A (en) Isotropic thermal atomic layer etch of zirconium and hafnium oxides
WO2020203636A1 (en) Etching material for atomic layer etching
JPWO2019039103A1 (en) Tungsten compound, raw material for forming thin film, and method for producing thin film
JP4745137B2 (en) Thin film forming raw material, thin film manufacturing method, and hafnium compound
JP2006316317A (en) Method for producing aluminum thin film, aluminum thin film and raw material for forming thin film
JP2020136602A (en) Etching method
JP6954776B2 (en) Raw material for thin film formation and manufacturing method of thin film

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees