JPS63152120A - Thin film formation - Google Patents

Thin film formation

Info

Publication number
JPS63152120A
JPS63152120A JP30078686A JP30078686A JPS63152120A JP S63152120 A JPS63152120 A JP S63152120A JP 30078686 A JP30078686 A JP 30078686A JP 30078686 A JP30078686 A JP 30078686A JP S63152120 A JPS63152120 A JP S63152120A
Authority
JP
Japan
Prior art keywords
substrate
deposited
gas
electron beam
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30078686A
Other languages
Japanese (ja)
Other versions
JPH0658889B2 (en
Inventor
Shinji Matsui
真二 松井
Katsumi Mori
克巳 森
Yukinori Ochiai
幸徳 落合
Yoshikatsu Kojima
小島 義克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61300786A priority Critical patent/JPH0658889B2/en
Publication of JPS63152120A publication Critical patent/JPS63152120A/en
Publication of JPH0658889B2 publication Critical patent/JPH0658889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To simplify the process of manufacture of the title film by performing the refinement of raw material and the deposition of film at the same time by a method wherein the gas containing the material to be deposited as a constituent element is formed into a radical using a microwave discharge and the like, the gas is allowed to flow on the substrate to be deposited, and a deposition material is deposited by projecting an electron beam on the substrate. CONSTITUTION:A thin film forming device is composed of an electron beam irradiating system 208, a sample 203, a microwave discharging chamber 202 and a gas material chamber 201, and the silane containing silicon as a constituent element is used as atomospheric gas. SiH4 is introduced into the gas material chamber 201, and the Ge substrate 205 with which Si will be deposited is set on a sample stand 204. Also, the irradiation system 208 and the sample chamber 203 are evacuated to the prescribed degree, SiH4 gas is introduced into the electric discharge chamber 202 from the material chamber 201, the gas is brought into the state of radical, and it is allowed to flow on the substrate 205. An electron beam 210 is made to irradiate on the substrate 205, and Si and H2 are separated out on the substrate 205. The Si is deposited at a desired part on the surface of the substrate 205.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、基板上に薄膜を形成する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of forming a thin film on a substrate.

(従来の技術) 従来、基板上にパターンを形成する場合、第3図および
第4図で示されている工程が行なわれている。第3図(
1)、(2)、(3)、(4)、(5)では、基板31
上にパターン形成材料32を蒸着やスパッタ法により形
成する((1)図)。さらにレジスト33を塗布しく(
2)図)、次に光露光や電子ビーム露光によりレジスト
33のパターニングをする((3)図)。そして、レジ
ストパターン33をマスクとしてケミカルエツチングま
たは、ドライエツチングによりパターン形成材料32ヘ
パターントランスフアーを行なう((4)図)。そして
、レジスト33を剥離する((5)図)。第4図(1)
、(2>、(3)、(4)ではリフトオフ法を用いる場
合の工程を示している。
(Prior Art) Conventionally, when forming a pattern on a substrate, the steps shown in FIGS. 3 and 4 are performed. Figure 3 (
1), (2), (3), (4), and (5), the substrate 31
A pattern forming material 32 is formed thereon by vapor deposition or sputtering (Figure (1)). Furthermore, apply resist 33 (
(2) Figure) Next, the resist 33 is patterned by light exposure or electron beam exposure (Figure (3)). Then, pattern transfer to the pattern forming material 32 is performed by chemical etching or dry etching using the resist pattern 33 as a mask (FIG. (4)). Then, the resist 33 is peeled off (Figure (5)). Figure 4 (1)
, (2>, (3), and (4)) show steps when using the lift-off method.

基板41上にレジスト42を塗布しく(1)図)、次に
光露光や電子ビーム露光によりレジスト42のパターニ
ングをする((2)図)。次にパターン材料43を蒸着
しく(3)図)、レジスト42を剥離することにより、
基板41上にパターン材料43をパターニング成できる
((4)図)。
A resist 42 is applied onto the substrate 41 (Fig. (1)), and then the resist 42 is patterned by light exposure or electron beam exposure (Fig. (2)). Next, a pattern material 43 is deposited (Figure 3) and the resist 42 is peeled off.
A pattern material 43 can be patterned on the substrate 41 (Figure (4)).

(発明が解決しようとする問題点) この従来の方法では基板上にバタン材料を形成するのに
工程がきわめて長いという欠点を有していた。
(Problems to be Solved by the Invention) This conventional method has the disadvantage that the process for forming the batten material on the substrate is extremely long.

本発明の目的は、レジスト等のマスクを必要とせず、高
積度、高純度の薄膜を形成することのできる、電子ビー
ムを用いた薄膜形成方法を提供することである。
An object of the present invention is to provide a thin film forming method using an electron beam that can form a thin film with a high density and high purity without requiring a mask such as a resist.

(問題点を解決するための手段) 本発明によれば、少なくとも堆積させるべき材料を構成
元素として含んだガスを放電によりラジカル化し、被堆
積基板上に流し、基板の所望の部分に電子ビームを照射
して前記材料を基板上に堆積させることを特徴とする薄
膜形成方法が得られる。
(Means for Solving the Problems) According to the present invention, a gas containing at least the material to be deposited as a constituent element is converted into radicals by electric discharge, is flowed onto the substrate to be deposited, and an electron beam is applied to a desired portion of the substrate. A method for forming a thin film is obtained, characterized in that the material is deposited on a substrate by irradiation.

(作用) 次に、本発明の原理について第1図を用いて説明する。(effect) Next, the principle of the present invention will be explained using FIG.

デポジションさせるべき材料を含んだラジカル化したガ
ス分子13の雰囲気中に被デポジション基板11を設置
すると、ラジカル化したガス分子13が被デポジション
基板11の表面上に吸着する。
When the deposition target substrate 11 is placed in an atmosphere of radicalized gas molecules 13 containing the material to be deposited, the radicalized gas molecules 13 are adsorbed onto the surface of the deposition target substrate 11.

12がその吸着ガス分子を示している。ガス分子13の
吸着率はラジカル化することにより大幅に増大する。電
子ビーム16を基板11上に照射すると、照射された部
分の吸着分子12が電子ビーム16のエネルギーにより
吸着分子12に含まれるデポジション材料14と揮発性
材料15に分解し、デポジション材料14は基板表面に
析出する。
12 indicates the adsorbed gas molecules. The adsorption rate of gas molecules 13 is significantly increased by radicalization. When the electron beam 16 is irradiated onto the substrate 11, the adsorbed molecules 12 in the irradiated portion are decomposed into deposition material 14 and volatile material 15 contained in the adsorbed molecules 12 due to the energy of the electron beam 16, and the deposition material 14 is Precipitates on the substrate surface.

一方、揮発性材料15は排出される。以上の様な原理に
より被デポジション基板11表面上電子ビーム照射によ
り、直接、雰囲気ガス中に含まれるデポジション材を析
出させパターニングする。
Meanwhile, volatile material 15 is discharged. Based on the principle described above, the deposition material contained in the atmospheric gas is directly deposited and patterned by electron beam irradiation onto the surface of the deposition target substrate 11.

(実施例) 以下、本発明の実施例について図面を参照して説明する
。第2図は本実施例では用いる装置の構成図である。本
装置は電子ビーム照射系208、試料室203、マイク
ロ波放電室202、ガス材料室201とから構成されて
いる。本実施例においては、シリコン(Si)を構成元
素として含むシラン(SiH4)を雰囲気ガスとして用
い、集束された電子ビーム照射によりGe基板上にSi
をデポジションさせた。5iH4402を雰囲気ガス材
料収納室201に入れ、SiをデポジションさせるGe
基板205を試料台204にセットする。電子ビーム照
射系208と試料室203を1O−5Torr程度以上
の高真空に排気する。SiH4をガス材料室201から
マイクロ液放電室202へ導入し、マイクロ波放電室内
でラジカル化し、そのラジカルを試料室203へ導入す
る。電子ビーム210をGe基板205の所望の部分に
照射することによりGe基板205表面上に吸着された
SiH4を分解する。Ge基板205は加熱せず室温の
ままでよい。その分解の結果、SiとN2に分かれる。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 2 is a block diagram of the apparatus used in this embodiment. This apparatus is composed of an electron beam irradiation system 208, a sample chamber 203, a microwave discharge chamber 202, and a gas material chamber 201. In this example, silane (SiH4) containing silicon (Si) as a constituent element is used as an atmospheric gas, and Si is deposited on the Ge substrate by focused electron beam irradiation.
was deposited. 5iH4402 is placed in the atmospheric gas material storage chamber 201, and Ge is deposited to deposit Si.
The substrate 205 is set on the sample stage 204. The electron beam irradiation system 208 and the sample chamber 203 are evacuated to a high vacuum of approximately 10-5 Torr or higher. SiH4 is introduced from the gas material chamber 201 into the micro-liquid discharge chamber 202, converted into radicals in the microwave discharge chamber, and the radicals are introduced into the sample chamber 203. By irradiating a desired portion of the Ge substrate 205 with an electron beam 210, SiH4 adsorbed on the surface of the Ge substrate 205 is decomposed. The Ge substrate 205 may be left at room temperature without being heated. As a result of its decomposition, it separates into Si and N2.

SiはGe基板205上に析出する。一方H2は揮発性
ガスであるので排出される。この様にして、SiがGe
基板205表面の所望の部分にデポジションされる。
Si is deposited on the Ge substrate 205. On the other hand, H2 is a volatile gas and is therefore exhausted. In this way, Si becomes Ge
It is deposited onto a desired portion of the surface of the substrate 205.

本実施例では、デポジション材料としてSiを含むSi
H4を雰囲気ガスとして用いたが、5iH2C12゜5
iH3C1,Si2H6を用いても良いし、構成元素と
してMoを含むMO(C6H6)2、構成元素としてA
tを含むAl(CH3)3、構成元素としてCrを含む
Cr(C6H6)2等の有機金属化合物に対しても同様
の効果を示す。
In this example, Si containing Si is used as the deposition material.
Although H4 was used as the atmospheric gas, 5iH2C12°5
iH3C1, Si2H6 may be used, MO(C6H6)2 containing Mo as a constituent element, A as a constituent element.
A similar effect is shown for organometallic compounds such as Al(CH3)3 containing t and Cr(C6H6)2 containing Cr as a constituent element.

MO(C6H6)2を用いるとMoが堆積され、AI(
CHa)aを用いるとAIが堆積される。
When MO(C6H6)2 is used, Mo is deposited and AI(
With CHa)a, AI is deposited.

その他にも原料としてWCl6.WCl5.WBr5等
を用いればWが堆積できる。またMoCl5.MoBr
3等を用いれば、Moを堆積できる。同様にしてTaC
l5.TaBr3等でTa、TiI4等でTi、ZrI
4等でZrが堆積できる。以上述べたAI、Mo、W、
Ti等はIC,LSIにおいて配線、ゲート電極等に用
いることができる。
In addition, WCl6. WCl5. W can be deposited by using WBr5 or the like. Also MoCl5. MoBr
3 or the like, Mo can be deposited. Similarly, TaC
l5. TaBr3 etc. for Ta, TiI4 etc. for Ti, ZrI
Zr can be deposited at magnitude 4. The above-mentioned AI, Mo, W,
Ti and the like can be used for wiring, gate electrodes, etc. in ICs and LSIs.

また本発明の方法で堆積できる薄膜材料は何も半導体や
金属に限るわではない。例えば原料としてBCl3やB
Br3を用いればBppoct3を用いればPを堆積で
き、また基板中にこのBやPをドープできる。
Furthermore, the thin film materials that can be deposited by the method of the present invention are not limited to semiconductors or metals. For example, BCl3 and B as raw materials
If Br3 is used, P can be deposited if Bppoct3 is used, and B or P can be doped into the substrate.

更に基板上での流量比や圧力を調整すればBやPがドー
プされたSi膜を基板上に形成できる。また前記のよう
にBやPを堆積あるいはドープできるから、SiやGa
As等の半導体基板表面にpn接合を形成することがで
きる。
Further, by adjusting the flow rate ratio and pressure on the substrate, a Si film doped with B or P can be formed on the substrate. Also, as mentioned above, since B and P can be deposited or doped, Si and Ga can be deposited or doped.
A pn junction can be formed on the surface of a semiconductor substrate such as As.

またTiCl4ガスと、N2ガスを同時に基板表面上に
流して電子ビームを照射することによってTiNを堆積
できる。TiI4.N2.Ti[N(C2H5)2]4
でもTiNを形成できる。またSi(OC2H5)4を
用いればSiO2゜Ta(OC2H5)5を用いればT
a2O5が形成できる。また前記BCl3.BBr3と
前記金属形成材料とを同時に用いるとポライド膜を形成
できる。
Furthermore, TiN can be deposited by simultaneously flowing TiCl4 gas and N2 gas onto the substrate surface and irradiating it with an electron beam. TiI4. N2. Ti[N(C2H5)2]4
However, TiN can be formed. Also, if Si(OC2H5)4 is used, SiO2° If Ta(OC2H5)5 is used, T
a2O5 can be formed. In addition, the BCl3. A poride film can be formed by using BBr3 and the metal forming material at the same time.

また前記実施例ではマイクロ波放電を用いたが、直流放
゛電やRF放電も用いることができる。なお弄命のr豆
いラジカルを用いるときには放電室を試料室内に設置す
る等の手段で放電部分と基板を接近させるとよい。
Furthermore, although microwave discharge was used in the above embodiments, direct current discharge or RF discharge may also be used. In addition, when using dangerous radicals, it is preferable to bring the discharge portion and the substrate close to each other by placing the discharge chamber inside the sample chamber or the like.

(発明の効果) 本発明は、以上説明した様に、堆積させるべき材料を構
成元素として含んだガスをマイクロ波放電等によりラジ
カル化し、被堆積基板上に流し、基板上に電子ビームを
照射することより、デポジション材料を析出させること
ができ、従来の方法に比べて工程がきわめて簡単である
(Effects of the Invention) As explained above, the present invention radicalizes a gas containing the material to be deposited as a constituent element by microwave discharge or the like, flows it onto a substrate to be deposited, and irradiates the substrate with an electron beam. In particular, the deposition material can be precipitated, and the process is extremely simple compared to conventional methods.

なお、前記実施例では集束された電子ビームを用いたが
、集束されていない電子ビームを用いても良い。
Note that although a focused electron beam was used in the above embodiment, an unfocused electron beam may also be used.

以上の説明では、本発明を、微細な薄膜パターンを形成
する方法、あるいは単に薄膜を形成する方法として述べ
たが、本発明は原料から基板上へいきなり高純度に精製
された膜を堆積する方法としてとらえてもよい。即ち本
発明によれば、それほど高純度でない原料からでも高純
度な膜を堆積できる。つまり原料の精製と膜の堆積とが
同時に進行するわけである。
In the above explanation, the present invention has been described as a method of forming a fine thin film pattern or simply a method of forming a thin film, but the present invention is a method of suddenly depositing a highly purified film from a raw material onto a substrate. It may be taken as That is, according to the present invention, a highly pure film can be deposited even from raw materials that are not very pure. In other words, the purification of the raw material and the deposition of the film proceed simultaneously.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理と作用を説明する模式図である。 第2図は本発明の実施例で用いる装置の溝成図である。 第3図(1)、(2)、(3)、(4)、(5)および
第4図(1)、(2)。 (3)、(4)は基板上にパターンを形成する従来の方
法を説明するための図で、主要工程における基板の断面
を順次示した模式的断面図である。 図において 11.31,41,205・・・基板、12・・・吸着
ガス分子、33.42・・・レジスト、13・・・ラジ
カル化したガス分子、1410.デポジション材料、1
5・・・揮発性材料、16,210・・・電子ビーム、
201・・・ガス材料室、202・・・マイクロ波放電
室。 第1図 電子ビーム 被デポジション基板 第3図 第4図
FIG. 1 is a schematic diagram illustrating the principle and operation of the present invention. FIG. 2 is a groove diagram of a device used in an embodiment of the present invention. Figure 3 (1), (2), (3), (4), (5) and Figure 4 (1), (2). (3) and (4) are diagrams for explaining a conventional method of forming a pattern on a substrate, and are schematic sectional views sequentially showing cross sections of the substrate in main steps. In the figure, 11.31, 41, 205...substrate, 12...adsorbed gas molecules, 33.42...resist, 13...radicalized gas molecules, 1410. Deposition material, 1
5... Volatile material, 16,210... Electron beam,
201... Gas material chamber, 202... Microwave discharge chamber. Figure 1 Electron beam deposition substrate Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  少なくとも堆積させるべき材料を構成元素として含ん
だガスを放電によりラジカル化し、被堆積基板上に流し
、基板の所望の部分に電子ビームを照射して前記材料を
基板上に堆積させることを特徴とする薄膜形成方法。
The method is characterized in that a gas containing at least the material to be deposited as a constituent element is radicalized by electric discharge, is flowed onto the substrate to be deposited, and a desired portion of the substrate is irradiated with an electron beam to deposit the material on the substrate. Thin film formation method.
JP61300786A 1986-12-16 1986-12-16 Thin film formation method Expired - Lifetime JPH0658889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61300786A JPH0658889B2 (en) 1986-12-16 1986-12-16 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61300786A JPH0658889B2 (en) 1986-12-16 1986-12-16 Thin film formation method

Publications (2)

Publication Number Publication Date
JPS63152120A true JPS63152120A (en) 1988-06-24
JPH0658889B2 JPH0658889B2 (en) 1994-08-03

Family

ID=17889077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61300786A Expired - Lifetime JPH0658889B2 (en) 1986-12-16 1986-12-16 Thin film formation method

Country Status (1)

Country Link
JP (1) JPH0658889B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107464A (en) * 1989-08-31 1991-05-07 American Teleph & Telegr Co <Att> Method and device for accumulating dielectric film
JPH04116172A (en) * 1990-08-31 1992-04-16 Energy Conversion Devices Inc Method of directly building up active species on distantly placed substrate
US5147823A (en) * 1988-09-20 1992-09-15 Sony Corporation Method for forming an ultrafine metal pattern using an electron beam
US7258901B1 (en) * 2000-09-08 2007-08-21 Fei Company Directed growth of nanotubes on a catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167316A (en) * 1984-02-09 1985-08-30 Fujitsu Ltd Formation of film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167316A (en) * 1984-02-09 1985-08-30 Fujitsu Ltd Formation of film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147823A (en) * 1988-09-20 1992-09-15 Sony Corporation Method for forming an ultrafine metal pattern using an electron beam
JPH03107464A (en) * 1989-08-31 1991-05-07 American Teleph & Telegr Co <Att> Method and device for accumulating dielectric film
JPH04116172A (en) * 1990-08-31 1992-04-16 Energy Conversion Devices Inc Method of directly building up active species on distantly placed substrate
US7258901B1 (en) * 2000-09-08 2007-08-21 Fei Company Directed growth of nanotubes on a catalyst

Also Published As

Publication number Publication date
JPH0658889B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
JPH02217469A (en) Formation of thin film and forming device
JPS61127121A (en) Formation of thin film
JPH02281627A (en) Manufacture of semiconductor device
JPS63152120A (en) Thin film formation
JPH04233734A (en) Fluorization silicon nitride adhesion method
JPS60117712A (en) Forming method of thin film
US5770467A (en) Method for forming electrode on diamond for electronic devices
JPS63317676A (en) Production of thin metallic compound film having non-grained structure
JPS6046372A (en) Thin film forming method
JPH0654756B2 (en) Thin film formation method
JPS6355929A (en) Manufacture of semiconductor thin film
JPH04111362A (en) Thin-film transistor and its manufacture
JPS63317675A (en) Plasma vapor growth device
JPH0291939A (en) Formation of insulating film
JP3009072B2 (en) Semiconductor surface etching method
JP2985294B2 (en) Wiring formation method
JP2654456B2 (en) Manufacturing method of high quality IGFET
JPH0559991B2 (en)
JP2765569B2 (en) Method for manufacturing semiconductor device
JP2770822B2 (en) Method for manufacturing semiconductor device
JPH0373528A (en) Manufacture of electrode wiring of semiconductor integrated circuit device
JPH0689455B2 (en) Thin film formation method
JPH04287314A (en) Hydrogenated amorphous silicon laminated body and its manufacture
JPS6293380A (en) Formation of thin silicide film
JPS60189926A (en) Method and device for forming vapor phase thin film