WO2024024804A1 - Substrate processing method and substrate processing apparatus - Google Patents

Substrate processing method and substrate processing apparatus Download PDF

Info

Publication number
WO2024024804A1
WO2024024804A1 PCT/JP2023/027268 JP2023027268W WO2024024804A1 WO 2024024804 A1 WO2024024804 A1 WO 2024024804A1 JP 2023027268 W JP2023027268 W JP 2023027268W WO 2024024804 A1 WO2024024804 A1 WO 2024024804A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
processing container
vacuum
line
pressure
Prior art date
Application number
PCT/JP2023/027268
Other languages
French (fr)
Japanese (ja)
Inventor
雅之 小川
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024024804A1 publication Critical patent/WO2024024804A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a substrate processing method and a substrate processing apparatus.
  • liquid processing such as chemical cleaning or wet etching is performed.
  • a drying method using a processing fluid in a supercritical state has been used to remove liquid adhering to the surface of a substrate in such liquid processing.
  • the present disclosure provides a technique that can improve the cleanliness of a substrate after the drying process in a drying process of the substrate using a processing fluid in a supercritical state.
  • a substrate processing apparatus includes a processing container capable of accommodating a substrate, and a processing fluid supply supplying a processing fluid in a supercritical state to the processing container in order to perform supercritical drying processing on the substrate.
  • a fluid discharge section configured to discharge fluid from the processing container, the fluid discharge section having a discharge channel connected to the processing container, and an exhaust mechanism provided in the discharge channel; a control unit that controls the processing fluid supply unit and the fluid discharge unit, the control unit sealing the processing container and controlling the temperature inside the processing container when no substrate is accommodated in the processing container.
  • a state is established in which no fluid flows in, and in this state, the exhaust mechanism of the fluid discharge section is operated to evacuate the processing container, and the pressure inside the processing container is brought to a predetermined vacuum cleaning pressure.
  • a vacuum cleaning process is performed in which the contaminants in the processing container are vaporized and discharged from the processing container.
  • the cleanliness of the substrate after the drying process can be improved.
  • FIG. 1 is a diagram of a piping system of a supercritical drying apparatus according to an embodiment of the present disclosure.
  • 1 is a schematic cross-sectional view showing an example of the configuration of a substrate processing system incorporating a supercritical drying device.
  • FIG. 2 is a diagram for explaining an example of a procedure of a vacuum cleaning process executed in a substrate processing system incorporating a plurality of supercritical drying devices.
  • FIG. 2 is a main piping system diagram showing a configuration example in which a vacuum line is directly connected to a processing container.
  • a supercritical processing apparatus 1 according to an embodiment of the present disclosure will be described with reference to the accompanying drawings.
  • This supercritical processing apparatus can be used to perform a supercritical drying process in which a substrate having a liquid (for example, IPA) attached to its surface is dried using a processing fluid in a supercritical state.
  • a liquid for example, IPA
  • the supercritical processing apparatus 1 includes a supercritical processing unit 10 in which supercritical drying processing is performed.
  • the supercritical processing unit 10 includes a processing container 12 and a substrate holding tray 14 (hereinafter simply referred to as "tray 14") that holds a substrate within the processing container 12.
  • the tray 14 includes a lid 16 that closes an opening provided in a side wall of the processing container 12, and a horizontally extending substrate support plate (substrate holder) 18 (hereinafter simply referred to as a substrate holder) connected to the lid 16. (referred to as "plate 18").
  • a substrate W is placed horizontally on the plate 18 with the front surface (device forming surface) facing upward.
  • the tray 14 can be moved in the horizontal direction between a processing position (closed position) and a substrate transfer position (open position) by a tray movement mechanism (not shown).
  • a processing position the plate 18 is located within the internal space of the processing container 12, and the lid 16 closes the opening in the side wall of the processing container 12 (the state shown in FIG. 1).
  • the substrate transfer position the plate 18 extends outside the processing container 12, and the substrate W can be transferred between the plate 18 and a substrate transfer arm (not shown).
  • the moving direction of the tray 14 is, for example, the left-right direction in FIG.
  • the internal space of the processing container 12 is divided by the plate 18 into an upper space 12A above the plate 18 where the substrate W exists during processing and a lower space 12B below the plate 18. be done.
  • the upper space 12A and the lower space 12B are not completely separated.
  • a gap is formed between the peripheral edge of the tray 14 in the processing position and the inner wall surface of the processing container 12, which serves as a communication path that communicates the upper space 12A and the lower space 12B.
  • a through hole may be provided in the plate 18 to communicate the upper space 12A and the lower space 12B.
  • the tray 14 may be configured as a substrate mounting table (substrate holder) immovably fixed within processing container 12.
  • a substrate transfer arm enters the container body, and the substrate is transferred between the substrate mounting table and the substrate transfer arm.
  • the processing container 12 has a first chamber for receiving pressurized processing fluid, in this embodiment, carbon dioxide in a supercritical state (hereinafter also referred to as "CO2" for convenience). It has a fluid supply section 21 and a second fluid supply section 22.
  • the first fluid supply section 21 is provided below the plate 18 of the tray 14 in the processing position.
  • the first fluid supply section 21 supplies CO2 into the lower space 12B toward the lower surface of the plate 18.
  • the first fluid supply section 21 can be configured by a through hole formed in the bottom wall of the processing container 12.
  • the first fluid supply section 21 may be a nozzle body attached to the bottom wall of the processing container 12.
  • the second fluid supply section 22 is provided to be located on the side of the substrate W placed on the plate 18 of the tray 14 in the processing position.
  • the second fluid supply section 22 can be provided, for example, on one side wall (first side wall) of the processing container 12 or in the vicinity thereof.
  • the second fluid supply section 22 supplies CO2 into the upper space 12A toward a region slightly above the substrate W.
  • the second fluid supply section 22 can be configured with a plurality of discharge ports arranged in a horizontal direction (for example, in a direction perpendicular to the plane of the paper in FIG. 1). More specifically, the second fluid supply section 22 can be formed, for example, as a header made of a horizontally extending pipe-like member with a plurality of holes. The second fluid supply section 22 may be configured to be able to flow CO2 almost evenly over the entire diameter of the substrate W and along the upper surface (surface) of the substrate W. preferable.
  • the processing container 12 further includes a fluid discharge section 24 that discharges the processing fluid from the internal space of the processing container 12.
  • the fluid discharge section 24, like the second fluid supply section 22, can be formed as a header made of a horizontally extending pipe-like member with a plurality of holes.
  • the fluid discharge part 24 can be provided, for example, on a side wall (second side wall) opposite to the first side wall of the processing container 12 where the second fluid supply part 22 is provided, or in the vicinity thereof.
  • the fluid discharge section 24 is located at such a position that the CO2 supplied into the processing container 12 from the second fluid supply section 22 is discharged from the fluid discharge section 24 after passing through the area above the substrate W on the plate 18. If so, it can be placed at any position. That is, for example, the fluid discharge section 24 may be provided at the bottom of the processing container 12 near the second side wall. In this case, the CO2 flows through the area above the substrate W in the upper space 12A, and then passes through the communication path provided at the peripheral edge of the plate 18 (or through the through hole formed in the plate 18). After flowing into the lower space 12B, it is discharged from the fluid discharge section 24.
  • the member indicated by a circled T is a temperature sensor
  • the member indicated by a circled P is a pressure sensor.
  • the member designated with the symbol OLF is an orifice (fixed throttle), which lowers the pressure of CO2 flowing in the pipe on the downstream side to a desired value.
  • the member indicated by SV surrounded by a square is a safety valve (relief valve), which prevents components of the supercritical processing apparatus such as piping or processing vessel 12 from being damaged due to unexpected excessive pressure.
  • the member labeled with F is a filter, which removes pollutants such as particles contained in CO2.
  • the member labeled CV is a check valve.
  • the member indicated by FV in a circle is a flow meter.
  • the member indicated by H surrounded by a square is a heater for controlling the temperature of CO2.
  • a member with reference symbol VN (N is a natural number) is an on-off valve, and ten on-off valves V1 to V11 are depicted in FIG.
  • the supercritical processing apparatus 1 has a supercritical fluid supply device (processing fluid supply section) 30.
  • the supercritical fluid is carbon dioxide in a supercritical state (hereinafter also referred to as "supercritical CO2").
  • the supercritical fluid supply device 30 has a well-known configuration including, for example, a carbon dioxide cylinder, a pressure pump, a heater, and the like.
  • the supercritical fluid supply device 30 has the ability to send out supercritical CO2 at a supercritical state guarantee pressure (specifically, about 16 MPa), which will be described later, or a pressure higher than that.
  • a main supply line 32 is connected to the supercritical fluid supply device 30.
  • CO2 flows from the supercritical fluid supply device 30 into the main supply line 32 in a supercritical state, but may also become a gaseous state due to subsequent expansion or temperature changes.
  • a member called a "line" can be constituted by a pipe (piping member).
  • the main supply line 32 branches into a first supply line 34 and a second supply line 36 at a branch point 33.
  • the first supply line 34 is connected to the first fluid supply section 21 of the processing container 12 .
  • the second supply line 36 is connected to the second fluid supply section 22 of the processing container 12 .
  • a discharge line 38 is connected to the fluid discharge section 24 of the processing container 12.
  • the discharge line 38 is provided with a pressure regulating valve (back pressure valve) 40.
  • a pressure regulating valve back pressure valve
  • the control unit 300 schematically shown in FIG.
  • the opening degree (specifically, the position of the valve body) of the pressure regulating valve 40 is feedback-controlled so as to be maintained.
  • the detected value of can be used.
  • the pressure inside the processing container 12 may be measured directly by a pressure sensor provided inside the processing container 12, or indirectly by a pressure sensor (PS) provided outside the processing container 12 (discharge line 38). may be measured.
  • PS pressure sensor
  • the control unit 300 is, for example, a computer, and includes a calculation unit 301 and a storage unit 302.
  • the storage unit 302 stores programs that control various processes executed in a supercritical processing apparatus (or a substrate processing system including a supercritical processing apparatus).
  • the calculation unit 301 controls the operation of the supercritical processing apparatus by reading and executing a program stored in the storage unit 302.
  • the program may be one that has been recorded on a computer-readable storage medium, and may be installed in the storage unit 302 of the control unit 300 from the storage medium. Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnetic optical disks (MO), and memory cards.
  • a bypass line 44 branches off from the first supply line 34 at a branch point 42 set on the first supply line 34 .
  • the bypass line 44 is connected to the exhaust line 38 at a connection point 46 set in the exhaust line 38 .
  • Connection point 46 is upstream of pressure regulating valve 40 .
  • a vacuum line 50 branches from the discharge line 38 at a branch point 48 set in the discharge line 38 on the upstream side of the pressure regulating valve 40.
  • the downstream end of the vacuum line 50 is a discharge destination during normal operation of the supercritical processing apparatus 1 (normal operation discharge destination), for example, it is open to the atmospheric space outside the supercritical processing apparatus, or a factory exhaust duct. It is connected to the.
  • two vacuum lines 54 and 56 branch off from the discharge line 38.
  • the downstream ends of the vacuum lines 54 and 56 join the discharge line 38 again.
  • the downstream end of the exhaust line 38 can be connected to, for example, an factory exhaust duct (EXH).
  • the downstream end of the exhaust line 38 may be connected to the factory exhaust duct (EXH) via a fluid recovery device (not shown).
  • Useful components for example, IPA (isopropyl alcohol) contained in the CO2 recovered by the fluid recovery device are appropriately separated and reused.
  • a purge gas supply line 62 is connected to a confluence point 60 set in the first supply line 34 between the branch point 42 and the processing container 12.
  • a purge gas for example, nitrogen (N2) gas
  • N2 nitrogen
  • the purge gas supply source 63 may be provided for factory use in a semiconductor device manufacturing factory.
  • An exhaust line 66 branches off from a branch point 64 set in the main supply line 32 immediately upstream of the branch point 33.
  • a vacuum line 71 branches off from the discharge line 38.
  • the vacuum line 71 branches into a first sub-vacuum line 73 and a second sub-vacuum line 74.
  • a first vacuum pump 75 as a first evacuation device is interposed in the first sub-evacuation line 73 .
  • a second vacuum pump 76 as a second evacuation device is interposed in the second sub-evacuation line 74 .
  • the first vacuum pump 75 has a roughing function that lowers the pressure in the space to be depressurized (here, the internal space of the processing container 12) from normal pressure to a pressure at which the second vacuum pump can operate.
  • the second vacuum pump 76 has a function of reducing the pressure of the space to be depressurized to a desired processing pressure (vacuum cleaning pressure) after the first vacuum pump 75 has reduced the pressure of the space to be depressurized.
  • the first vacuum pump 75 is, for example, a rotary pump (RP)
  • the second vacuum pump 76 is, for example, a turbo molecular pump (TMP).
  • a first switching device 79 is provided for selectively communicating with either the vacuum pump line 71 (corresponding to "38D") or the vacuum suction line 71.
  • This first switching device 79 may be a three-way valve provided at the branch point 70.
  • the first switching device 79 connects an on-off valve provided in the discharge line 38 near the branch point 70 and on the downstream side of the branch point 70 and an on-off valve provided on the evacuation line 71 near the branch point 70. It may be a combination. At least one of the existing on-off valves (eg, V5 to V8) may be used to realize the function of the first switching device 79.
  • the first switching device 79 is schematically represented by a box surrounding the branch point 70.
  • a second switching device 80 is provided to selectively connect the vacuum line 71 to either the first sub-vacuum line 73 or the second sub-vacuum line 74.
  • the second switching device 80 may be one three-way valve like the first switching device 79, and may be connected to the first sub-vacuum line 73 and the second sub-vacuum line 74 in the vicinity of the branch point 70, respectively. It may be a combination of a plurality of on-off valves provided.
  • the second switching device 80 is also schematically represented by a box surrounding the branch point 72.
  • a substrate W having an IPA puddle (IPA liquid film) formed on its surface is placed on the tray 14 pulled out from the processing container 12, and then the tray 14 is accommodated in the processing container 12. .
  • IPA puddle IPA liquid film
  • CO2 carbon dioxide
  • CO2 which is a processing fluid
  • main supply line 32 the first supply line 34
  • first fluid supply section 21 the first fluid supply section 21. Since the pressure inside the processing container 12 is low for a while after the supply starts, CO2 flows into the processing container 12 in a gaseous state and at a high flow rate. The inflowing CO2 gas collides with the plate 18 and then spreads into the processing container 12. By continuing this state for a while, the pressure inside the processing container 12 increases.
  • the CO2 (CO2 not mixed with IPA) present within the processing container 12 becomes supercritical.
  • IPA on the substrate W begins to dissolve into the supercritical CO2.
  • the CO2 in the processing container 12 is maintained in a supercritical state regardless of the IPA concentration and temperature in the mixed fluid (CO2 + IPA) on the substrate W.
  • the above pressure increasing step is continued until the pressure reaches a guaranteed pressure (supercritical state guaranteed pressure).
  • the supercritical state guarantee pressure is approximately 16 MPa.
  • the supercritical CO2 supplied into the processing container 12 from the second fluid supply section 22 flows in the area above the substrate, and is then discharged from the fluid discharge section 24. At this time, a laminar flow of supercritical CO2 flowing approximately parallel to the surface of the substrate W is formed in the processing chamber 12.
  • IPA in the mixed fluid (IPA+CO2) on the surface of the substrate W exposed to the laminar flow of supercritical CO2 is replaced by supercritical CO2.
  • IPA+CO2 mixed fluid
  • supercritical CO2 Eventually, almost all of the IPA on the surface of the substrate W is replaced with supercritical CO2.
  • Contaminants include those derived from organic matter (for example, higher fatty acids) dissolved in the IPA paddle on the surface of the substrate W, those derived from moisture flowing into the processing container 12 when the tray 14 is opened and closed, and those derived from the adhesion of the substrate W.
  • Kimono for example, those derived from chemical components that adhered to the back surface of the substrate W during liquid processing, which is a pretreatment of supercritical drying processing.
  • Such contaminants are There is a risk that the substrate W may be contaminated by the substrate W.A vacuum cleaning process for cleaning the inside of the processing container 12 in order to prevent the substrate W from being contaminated will be described below.
  • the tray 14 With no substrate W accommodated in the processing container 12, the tray 14 is located at the processing position, that is, the closed position, and the inside of the processing container 12 is sealed. In this state, at least the on-off valves V1, V2, V4, and V11 are closed to prevent any fluid from flowing into the processing container 12. Further, the first switching device 79 connects the processing container 12 and the evacuation line 71, and the second switching device 80 connects the evacuation line 71 and the first sub-evacuation line 73.
  • the first vacuum pump 75 ie, rotary pump RP
  • the inside of the processing container 12 is thereby evacuated to a first pressure (for example, a medium vacuum of about 1 Pa).
  • the second switching device 80 connects the evacuation line 71 and the second sub-evacuation line 74, and the second vacuum pump 76 (ie, turbo molecular pump TMP) is driven.
  • the inside of the processing container 12 is evacuated to a second pressure lower than the first pressure (for example, a high vacuum of about 1 ⁇ 10 ⁇ 5 Pa).
  • the aforementioned contaminants are evaporated (vaporized) and are removed from the surface to which they were attached. Since the inside of the processing container 12 is suctioned by the second vacuum pump 76, contaminants are discharged from the processing container 12 through the discharge line 38, the evacuation line 71, and the second sub-evacuation line 74. By continuing this state for a predetermined period of time, the surface to which contaminants have adhered is cleaned.
  • the processing container 12 is provided with a heater H (schematically shown in FIG. 1).
  • the heater H is, for example, embedded in the wall of the processing container or attached to the surface of the wall. This heater H is used for temperature control to maintain CO2 in a supercritical state during the supercritical drying process. By operating this heater H, evaporation can be promoted and the removal efficiency of contaminants can be increased. In this case, a vacuum bake cleaning process will be performed.
  • the processing pressure and processing temperature pressure and temperature inside the processing container 12 during the vacuum cleaning process (vacuum bake cleaning process)
  • the vapor pressure diagram of the contaminant to be removed for example, the vapor pressure diagram of COX.
  • the processing pressure and processing temperature should be such that the most difficult to remove adhering substances (contaminants) that can be removed by vacuum cleaning processing (vacuum bake cleaning processing) can be reliably removed within the desired processing time.
  • processing conditions such as 100° C. and 1 ⁇ 10 ⁇ 5 Pa are exemplified, and under these conditions, it is possible to remove most of the problematic adhering substances within the processing container 12 of the supercritical drying apparatus.
  • the cleaning time can be shortened as the cleaning treatment conditions are higher temperature and lower pressure conditions that are further away from the vapor pressure diagram of the contaminant to be removed.
  • the energy cost during the vacuum cleaning process increases, so an appropriate vacuum cleaning process may be determined depending on the required vacuum cleaning process time.
  • the vacuum cleaning process vacuum bake cleaning process
  • the heater H does not need to be operated.
  • the temperature of the processing container 12 is sufficiently high due to the residual heat. Therefore, there is a possibility that processing can be performed at higher pressure (lower vacuum).
  • the supercritical processing equipment is returned to the standby state for normal processing. That is, the evacuation of the processing container 12 is stopped and the pressure inside the processing container 12 is returned to normal pressure.
  • An example of the procedure will be explained.
  • the first vacuum pump 75 and the second vacuum pump 76 are stopped, and the first switching device 79 cuts off communication between the part of the discharge line 38 upstream of the branch point 70 and the vacuum line 71, and branches A portion upstream from point 70 and a portion downstream from point 70 are communicated.
  • the on-off valves V1, V2, V3, V4, V9, V10, and V11 are kept closed.
  • the states of the on-off valves V5, V6, V7, and V8 are arbitrary.
  • the on-off valve V11 is opened, and nitrogen gas as a purge gas is supplied from the purge gas supply source 63 to the purge gas supply line 62, the first supply line 34, and the first fluid supply section. 21 into the processing container 12.
  • the nitrogen gas supplied from the purge gas supply source 63 for factory use is purified by an inert gas purification device (purification device) and then supplied to the purge gas supply line 62.
  • an inert gas purification device purification device
  • the on-off valve V11 When the pressure inside the processing container 12 detected by the pressure sensor PS provided in the discharge line 38 near the processing container 12 reaches normal pressure, the on-off valve V11 is closed to stop the supply of nitrogen gas as a purge gas. Good too.
  • the on-off valve V3 may be opened while continuing the supply of nitrogen gas (in this case, for example, the on-off valve V8 may be opened) to allow the nitrogen gas to pass through the processing container 12. If the tray 14 is moved to the open position and the substrate W is loaded into the processing container 12 immediately after the pressure inside the processing container 12 becomes normal pressure, nitrogen gas is continued to be supplied without opening the on-off valve V3. You can.
  • the nitrogen gas that has flowed into the processing container 12 will flow out from the opening for loading and unloading the substrate in the processing container 12, thereby preventing air containing moisture from flowing into the processing container 12. Can be done. In this case, the supply of nitrogen gas can be stopped, for example, when the tray 14 on which the substrate W is placed moves to the closed position.
  • opening and closing of the on-off valve V3 will be referred to later in the description with reference to FIG. 3E.
  • the inside of the processing container 12 is communicated with, for example, a space having an atmospheric atmosphere while the pressure inside the processing container 12 is lower than normal pressure after the vacuum cleaning process is finished, there is a risk that air may flow into the processing container 12. .
  • gas for example, air
  • the on-off valve V3 of the discharge line 38 is opened, gas (for example, air) in the discharge line 38 on the downstream side of the on-off valve V3 flows back into the processing container 12, and the particles in the discharge line 38 are There is a possibility that it will flow into the processing container 12 together with the water.
  • the pressure inside the processing container 12 should be set to normal pressure or higher pressure. is preferred.
  • CO2 supplied from the supercritical fluid supply device 30 may be used as the purge gas.
  • the on-off valve V11 instead of opening the on-off valve V11, the on-off valve V9 and the on-off valve V1 or V2 may be opened.
  • the vacuum cleaning process may be performed, for example, every time the processing of one lot of substrates W is completed, or every time the processing of a predetermined number of substrates W is completed.
  • the execution frequency of the vacuum cleaning process is not limited to this, and can be determined as appropriate according to the process schedule of the supercritical processing unit 10.
  • the above supercritical processing apparatus 1 can be incorporated into, for example, a substrate processing system (substrate processing apparatus) 400 shown in FIG.
  • the substrate processing system 400 will be briefly described below.
  • the substrate processing system 400 includes a loading/unloading station 102 and a processing station 103.
  • the loading/unloading station 102 includes a load port 111 and a transport block 112.
  • a plurality of carriers C are placed on the load port 111.
  • Each carrier C accommodates a plurality of substrates W (for example, semiconductor wafers) in a horizontal position at intervals in the vertical direction.
  • a transport device 113 and a delivery unit 114 are provided within the transport block 112.
  • the delivery unit 114 includes an unprocessed substrate platform on which one or more unprocessed substrates W (substrates W before being processed at the processing station 103) are temporarily placed, and one or more unprocessed substrates. It has a processed substrate mounting section on which a processed substrate W (substrate W processed at the processing station 103) is temporarily placed.
  • the transport device 113 can transport the substrate W between an arbitrary carrier C placed on the load port 111 and the delivery unit 114.
  • the processing station 103 includes a transport block 104 and a pair of processing blocks 105 provided on both sides of the transport block 4 in the Y direction.
  • Each processing block 105 is provided with a liquid processing unit 200, a supercritical processing unit 10, and a processing fluid supply cabinet 119.
  • the liquid processing unit 200 and the supercritical processing unit 10 are single-wafer processing units.
  • a processing fluid necessary for processing is supplied from the processing fluid supply cabinet 119 to the liquid processing unit 200 and the supercritical processing unit 10 .
  • the transport block 104 includes a transport area 115 and a transport device 116 disposed within the transport area 115.
  • the transport device 116 can transport the substrate W between the delivery unit 114, any liquid processing unit 200, and any supercritical processing unit 10.
  • Each processing block 105 has a multi-layer (for example, three-layer) structure.
  • each layer is provided with one liquid processing unit 200, one supercritical processing unit 10, and one processing fluid supply cabinet 119.
  • one transport device 116 may be able to access the liquid processing units 200 and supercritical processing units 10 of all layers.
  • control unit 300 The overall operation of the substrate processing system 400 is controlled by the aforementioned control unit (control device) 300 (see FIG. 1).
  • An external transfer robot places a carrier C containing an unprocessed substrate W on the load port 111.
  • the transport device 113 takes out one substrate W from the carrier C and carries it into the delivery unit 114.
  • the transport device 116 takes out the substrate W from the delivery unit 114 and carries it into the liquid processing unit 200.
  • the liquid processing unit 200 liquid processing consisting of a plurality of steps is performed.
  • the liquid processing unit 200 is, for example, a rotary single-wafer type liquid processing unit well known in the technical field of semiconductor manufacturing equipment.
  • the substrate W is subjected to liquid processing by supplying a processing liquid to the surface of the substrate W, which is held and rotated by a spin chuck.
  • the liquid treatment includes, for example, a chemical treatment step, a rinsing step, an IPA replacement step, and an IPA paddle forming step.
  • a chemical solution for cleaning or wet etching the surface of the substrate is supplied, in the rinsing process, for example, DIW is supplied as a rinsing liquid, in the IPA replacement process, the rinsing liquid is replaced with IPA, and in the IPA paddle forming process, An IPA paddle of desired thickness is formed.
  • an IPA liquid film also called an IPA puddle
  • a predetermined thickness is formed on the surface of the substrate W in the final step, the steps before that are optional.
  • the substrate W with the IPA paddle formed on the surface is taken out from the liquid processing unit 200 by the transport device 116 and carried into the supercritical processing unit 10.
  • the substrate W is dried in the above-described procedure using supercritical drying technology.
  • the transport device 116 takes out the dried substrate W from the supercritical processing unit 10 and transports it into the delivery unit 114.
  • the transport device 13 takes out the substrate W from the delivery unit 114 and stores it in the original carrier C placed on the load port 111.
  • the substrate processing system 400 includes one first vacuum pump 75 and one second vacuum pump 76 that are shared by a plurality of supercritical processing units 10.
  • the first vacuum pump 75 and one second vacuum pump 76 can be housed in a pump chamber 120 between the processing fluid supply cabinets 119, for example.
  • Vacuum line 74 is provided in the same manner as shown in FIG.
  • a plurality of first sub-evacuation lines 73 merge to form a first combined evacuation line 73M, and a first vacuum pump (RP) 75 is provided in this first combined evacuation line 73M.
  • RP first vacuum pump
  • the plurality of second sub-evacuation lines 74 merge to form a second combined evacuation line 74M, and a second vacuum pump (TMP) 76 is provided in this first combined evacuation line 74M.
  • the portion of the discharge line 38 upstream of the branch point 70 (first switching device 79) will be referred to as the upstream discharge line 38U, and the branch point of the discharge line 38.
  • the portion downstream from 70 (first switching device 79) is also referred to as downstream discharge line 38D.
  • the parts indicated by thin solid lines are under normal pressure (atmospheric pressure) or under normal pressure that changes depending on the pressure inside the processing container 12.
  • the shaded area means medium vacuum (approximately 1 Pa pressure), and the thick solid line indicates high vacuum (1 x 10 -5 This means that the pressure is on the order of Pa.
  • FIG. 3A shows a case where all supercritical processing units 10 are in a normal operating state.
  • the first vacuum pump 75 and one second vacuum pump 76 are in operation, all the vacuum lines 71 and the first sub-vacuum line 73 are at medium vacuum, and all the second The sub-vacuum line 74 is in high vacuum.
  • unit SCC1 the normal operation of one supercritical processing unit 10 (hereinafter also referred to as "unit SCC1") is stopped, and the supercritical processing unit 10 is vacuum cleaned.
  • the substrate W is taken out from the processing container 12 of the unit SCC1, and then the tray 14 is moved to the closed position and the processing container 12 is sealed.
  • the first switching device 79 corresponding to the unit SCC1 is switched to connect the processing chamber 12 of the unit SCC1 to the first vacuum pump (RP) 75.
  • the pressure in the processing container 12 and the upstream discharge line 38U associated with the unit SCC1 is reduced to a medium vacuum (see FIG. 3B).
  • the three vacuum lines 71, the three first sub vacuum lines 73, and the first combined vacuum line 73M are in a medium vacuum state. In other words, a space having a certain volume has already been made into a medium vacuum. Therefore, compared to a case where this is not the case, the time required to reduce the pressure of the processing container 12 and the upstream discharge line 38U related to the unit SCC1 to medium vacuum can be shortened.
  • the second switching device 80 corresponding to the unit SCC1 is switched to communicate the processing chamber 12 of the unit SCC1 with the second vacuum pump (TMP) 76.
  • TMP second vacuum pump
  • the pressure in the processing container 12, upstream discharge line 38U, and vacuum line 71 associated with the unit SCC1 is reduced to a high vacuum (see FIG. 3C).
  • the three second sub vacuum lines 74 and the second combined vacuum line 74M are in a high vacuum state. In other words, a space having a certain volume is already in a high vacuum. Therefore, compared to a case where this is not the case, the time required to reduce the pressure of the processing container 12, the upstream discharge line 38U, and the vacuum line 71 related to the unit SCC1 to a high vacuum can be shortened.
  • the inside of the processing container 12 of the unit SCC1 is cleaned according to the principle explained above.
  • cleaning efficiency can be improved by heating the processing container 12 with the heater attached to the processing container 12.
  • the processing vessel 12 of the supercritical processing unit 10 is formed of a metal block with a relatively large mass, and is heated to a relatively high temperature during normal operation to maintain the supercritical state of the processing fluid. Maintained. Therefore, the temperature of the processing vessel 12 will not drop significantly unless the operation of the supercritical processing unit 10 is stopped for a relatively long period of time. Therefore, it is not necessarily necessary to operate the heater attached to the processing container 12 during the vacuum cleaning process.
  • the inside of the processing container 12 of the unit SCC1 may be left in the state shown in FIG. 3C until the time when the next substrate W is scheduled to be processed in the unit SCC1.
  • the inside of the processing container 12 of the unit SCC1 can be maintained in a clean state.
  • the second switching device 80 corresponding to the unit SCC1 is switched and the first vacuum pump (RP) 75 is evacuated. It is connected to line 71. Thereafter, although not shown in FIG. 3D, as previously described with reference to FIG. 1, the on-off valve V3 of the discharge line 38 (38U) is closed. Next, for example, nitrogen gas is supplied as a purge gas into the processing container 12 to return the processing container 12 to normal pressure, and the first switching device 79 corresponding to SCC1 is switched to discharge the processing container 12 of the unit SCC1 to the downstream side. Connect it to line 38D.
  • the on-off valve V3 of the discharge line 38 (38U) may be opened at an appropriate timing. If the on-off valve V3 is opened immediately after the processing container 12 is returned to normal pressure, the state shown in FIG. 3E will occur. Regarding opening and closing of the on-off valve V3 at this time, please refer to the explanation given earlier with reference to FIG. 1.
  • the vacuum line 71 branched from the discharge line 38 used during normal supercritical drying processing is used, but the invention is not limited to this.
  • a vacuum line 71 is provided separately from the discharge line 38, and this vacuum line 71 is directly connected to the processing container 12, and this vacuum line 71 is connected to the first subsystem. It may be branched into a vacuum line 73 and a second sub-vacuum line 74.
  • the on-off valve V12 provided in the evacuation line 71 is kept closed during normal operation of the supercritical processing unit 10.
  • the on-off valve V12 is opened when performing the vacuum cleaning process, and is closed when the vacuum cleaning process is completed, and then nitrogen purge is performed to return the inside of the processing container to normal pressure.
  • the on-off valve V3 (not shown in FIG. 4, see FIG. 1) of the discharge line 38 is kept closed when the vacuum cleaning process is being performed, and is opened as necessary when the vacuum cleaning process is finished. .
  • the evacuation line (71) for vacuum cleaning processing it is also possible to connect the evacuation line (71) for vacuum cleaning processing to a line for supplying supercritical fluid to the processing container 12 (for example, supply lines 34, 36, etc.).
  • a line for supplying supercritical fluid to the processing container 12 for example, supply lines 34, 36, etc.
  • gas derived from contaminants generated during the vacuum cleaning process may flow into a line located upstream of the processing container 12 in the flow direction of fluid during the supercritical drying process.
  • the processing temperature of the vacuum cleaning treatment (vacuum bake cleaning treatment) is set high (for example, 200° C. or higher), a certain degree of cleaning effect can be expected even in a medium vacuum.
  • the first vacuum pump 75 is a rotary pump capable of achieving a medium vacuum of about 1 Pa, it is not necessary to provide the second vacuum pump 76 for achieving a high vacuum.
  • the pressure inside the processing container 12 is set to, for example, 1 Pa or lower.
  • the pressure inside the processing container 12 may be set to, for example, 1 ⁇ 10 ⁇ 2 Pa or less. preferable.
  • the substrate is not limited to a semiconductor wafer, and may be any other type of substrate used in the manufacture of semiconductor devices, such as a glass substrate or a ceramic substrate.
  • Processing container 30 Processing fluid supply section 38, 71, 73, 74 Discharge channel 75, 76 Discharge mechanism 300 Control section

Abstract

A substrate processing apparatus according to an embodiment includes: a processing container that is capable of storing a substrate; a processing fluid supply unit that supplies a processing fluid in a supercritical state to the processing container in order to perform supercritical drying processing on the substrate; a fluid discharge unit that discharges the fluid from the processing container and has a discharge channel connected to the processing container and a discharge mechanism provided in the discharge channel; and a control unit that controls at least the processing fluid supply unit and the fluid discharge unit, wherein when the substrate is not stored in the processing container, the control unit performs vacuum cleaning processing where the control unit seals the processing container and prevents the fluid from flowing into the processing container, and in this state the control unit operates the discharge mechanism of the fluid discharge unit to vacuum the processing container, lowers the pressure inside the processing container to a predetermined vacuum cleaning pressure, vaporizes pollutants of the processing container, and discharges the pollutants from the processing container.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus
  本開示は、基板処理方法および基板処理装置に関する。 The present disclosure relates to a substrate processing method and a substrate processing apparatus.
 半導体ウエハなどの基板の表面に集積回路の積層構造を形成する半導体装置の製造工程においては、薬液洗浄あるいはウエットエッチング等の液処理が行われる。こうした液処理にて基板の表面に付着した液体などを除去する際に、近年では、超臨界状態の処理流体を用いた乾燥方法が用いられつつある。 In the manufacturing process of semiconductor devices in which a laminated structure of integrated circuits is formed on the surface of a substrate such as a semiconductor wafer, liquid processing such as chemical cleaning or wet etching is performed. In recent years, a drying method using a processing fluid in a supercritical state has been used to remove liquid adhering to the surface of a substrate in such liquid processing.
特開2013-12538号公報Japanese Patent Application Publication No. 2013-12538
 本開示は、超臨界状態の処理流体を用いた基板の乾燥処理において、乾燥処理後の基板の清浄度を向上させることができる技術を提供する。 The present disclosure provides a technique that can improve the cleanliness of a substrate after the drying process in a drying process of the substrate using a processing fluid in a supercritical state.
 本開示の一実施形態に係る基板処理装置は、基板を収容可能な処理容器と、前記基板に超臨界乾燥処理を施すために、前記処理容器に超臨界状態の処理流体を供給する処理流体供給部と、前記処理容器から流体を排出する流体排出部であって、前記処理容器に接続された排出流路と、前記排出流路に設けられた排気機構と、を有する流体排出部と、少なくとも前記処理流体供給部および前記流体排出部を制御する制御部と、を備え、前記制御部は、前記処理容器に基板が収容されていないときに、前記処理容器を密閉するとともに前記処理容器内に流体が流入しないような状態とし、この状態で、前記流体排出部の前記排気機構を動作させることにより前記処理容器を真空引きして、前記処理容器内の圧力を予め定められた真空洗浄圧力に低下させ、前記処理容器内の汚染物質を気化させて前記処理容器内から排出する真空洗浄処理を行うものである。 A substrate processing apparatus according to an embodiment of the present disclosure includes a processing container capable of accommodating a substrate, and a processing fluid supply supplying a processing fluid in a supercritical state to the processing container in order to perform supercritical drying processing on the substrate. a fluid discharge section configured to discharge fluid from the processing container, the fluid discharge section having a discharge channel connected to the processing container, and an exhaust mechanism provided in the discharge channel; a control unit that controls the processing fluid supply unit and the fluid discharge unit, the control unit sealing the processing container and controlling the temperature inside the processing container when no substrate is accommodated in the processing container. A state is established in which no fluid flows in, and in this state, the exhaust mechanism of the fluid discharge section is operated to evacuate the processing container, and the pressure inside the processing container is brought to a predetermined vacuum cleaning pressure. A vacuum cleaning process is performed in which the contaminants in the processing container are vaporized and discharged from the processing container.
  本開示の上記実施形態によれば、超臨界状態の処理流体を用いた基板の乾燥処理において、乾燥処理後の基板の清浄度を向上させることができる。 According to the above embodiments of the present disclosure, in the drying process of a substrate using a processing fluid in a supercritical state, the cleanliness of the substrate after the drying process can be improved.
本開示の一実施形態に係る超臨界乾燥装置の配管系等図である。1 is a diagram of a piping system of a supercritical drying apparatus according to an embodiment of the present disclosure. 超臨界乾燥装置が組み込まれた基板処理システムの構成の一例を示す概略横断面図である。1 is a schematic cross-sectional view showing an example of the configuration of a substrate processing system incorporating a supercritical drying device. 複数の超臨界乾燥装置が組み込まれた基板処理システムにおいて実行される真空洗浄処理の手順の一例を説明するための図である。FIG. 2 is a diagram for explaining an example of a procedure of a vacuum cleaning process executed in a substrate processing system incorporating a plurality of supercritical drying devices. 処理容器に直接的に真空引きラインが接続された構成例を示す要部配管系統図である。FIG. 2 is a main piping system diagram showing a configuration example in which a vacuum line is directly connected to a processing container.
 本開示の一実施形態に係る超臨界処理装置1を、添付図面を参照して説明する。この超臨界処理装置は、表面に液体(例えばIPA)が付着した基板を、超臨界状態の処理流体を用いて乾燥させる超臨界乾燥処理を行うために用いることができる。 A supercritical processing apparatus 1 according to an embodiment of the present disclosure will be described with reference to the accompanying drawings. This supercritical processing apparatus can be used to perform a supercritical drying process in which a substrate having a liquid (for example, IPA) attached to its surface is dried using a processing fluid in a supercritical state.
 図1に示すように、超臨界処理装置1は、内部で超臨界乾燥処理が行われる超臨界処理ユニット10を備えている。超臨界処理ユニット10は、処理容器12と、処理容器12内で基板を保持する基板保持トレイ14(以下、単に「トレイ14」と呼ぶ)とを有している。 As shown in FIG. 1, the supercritical processing apparatus 1 includes a supercritical processing unit 10 in which supercritical drying processing is performed. The supercritical processing unit 10 includes a processing container 12 and a substrate holding tray 14 (hereinafter simply referred to as "tray 14") that holds a substrate within the processing container 12.
 一実施形態において、トレイ14は、処理容器12の側壁に設けられた開口を塞ぐ蓋部16と、蓋部16に連結された水平方向に延びる基板支持プレート(基板保持部)18(以下、単に「プレート18」と呼ぶ)とを有する。プレート18の上には、表面(デバイス形成面)を上向きにした状態で、水平に基板Wが載置される。 In one embodiment, the tray 14 includes a lid 16 that closes an opening provided in a side wall of the processing container 12, and a horizontally extending substrate support plate (substrate holder) 18 (hereinafter simply referred to as a substrate holder) connected to the lid 16. (referred to as "plate 18"). A substrate W is placed horizontally on the plate 18 with the front surface (device forming surface) facing upward.
 トレイ14は、図示しないトレイ移動機構により、処理位置(閉位置)と、基板受け渡し位置(開位置)との間で水平方向に移動することができる。処理位置では、プレート18が処理容器12の内部空間内に位置し、かつ蓋部16が処理容器12の側壁の開口を閉鎖する(図1に示す状態)。基板受け渡し位置では、プレート18が処理容器12の外に出ており、プレート18と図示しない基板搬送アームとの間で基板Wの受け渡しを行うことが可能である。トレイ14の移動方向は、例えば、図1の左右方向である。 The tray 14 can be moved in the horizontal direction between a processing position (closed position) and a substrate transfer position (open position) by a tray movement mechanism (not shown). In the processing position, the plate 18 is located within the internal space of the processing container 12, and the lid 16 closes the opening in the side wall of the processing container 12 (the state shown in FIG. 1). At the substrate transfer position, the plate 18 extends outside the processing container 12, and the substrate W can be transferred between the plate 18 and a substrate transfer arm (not shown). The moving direction of the tray 14 is, for example, the left-right direction in FIG.
 トレイ14が処理位置にあるとき、プレート18により、処理容器12の内部空間が、処理中に基板Wが存在するプレート18の上方の上方空間12Aと、プレート18の下方の下方空間12Bとに分割される。但し、上方空間12Aと下方空間12Bとが完全に分離されているわけではない。処理位置にあるトレイ14の周縁部と処理容器12の内壁面との間には、上方空間12Aと下方空間12Bとを連通させる連通路となる隙間が形成されている。さらに蓋部16の近傍において、上方空間12Aと下方空間12Bとを連通させる貫通孔がプレート18に設けられていてもよい。 When the tray 14 is in the processing position, the internal space of the processing container 12 is divided by the plate 18 into an upper space 12A above the plate 18 where the substrate W exists during processing and a lower space 12B below the plate 18. be done. However, the upper space 12A and the lower space 12B are not completely separated. A gap is formed between the peripheral edge of the tray 14 in the processing position and the inner wall surface of the processing container 12, which serves as a communication path that communicates the upper space 12A and the lower space 12B. Further, in the vicinity of the lid portion 16, a through hole may be provided in the plate 18 to communicate the upper space 12A and the lower space 12B.
 上述したように、処理容器12の内部空間が、上方空間12Aと下方空間12Bとに分割され、かつ、上方空間12Aと下方空間12Bとを連通させる連通路が設けられているならば、トレイ14(プレート18)は処理容器12内に移動不能に固定された基板載置台(基板保持部)として構成されていてもよい。この場合、処理容器12に設けられた図示しない蓋を開けた状態で、図示しない基板搬送アームが容器本体内に侵入して、基板載置台と基板搬送アームとの間で基板の受け渡しが行われる。 As described above, if the internal space of the processing container 12 is divided into the upper space 12A and the lower space 12B, and a communication path is provided that communicates the upper space 12A and the lower space 12B, the tray 14 (Plate 18) may be configured as a substrate mounting table (substrate holder) immovably fixed within processing container 12. In this case, with a lid (not shown) provided on the processing container 12 open, a substrate transfer arm (not shown) enters the container body, and the substrate is transferred between the substrate mounting table and the substrate transfer arm. .
 処理容器12は、処理容器12の内部空間に加圧された処理流体、本実施形態においては超臨界状態にある二酸化炭素(以下、簡便のため「CO2」とも記載する)を受け入れるための第1流体供給部21と第2流体供給部22とを有している。 The processing container 12 has a first chamber for receiving pressurized processing fluid, in this embodiment, carbon dioxide in a supercritical state (hereinafter also referred to as "CO2" for convenience). It has a fluid supply section 21 and a second fluid supply section 22.
 第1流体供給部21は、処理位置にあるトレイ14のプレート18の下方に設けられている。第1流体供給部21は、プレート18の下面に向けて、下方空間12B内にCO2を供給する。第1流体供給部21は、処理容器12の底壁に形成された貫通孔により構成することができる。第1流体供給部21は処理容器12の底壁に取り付けられたノズル体であってもよい。 The first fluid supply section 21 is provided below the plate 18 of the tray 14 in the processing position. The first fluid supply section 21 supplies CO2 into the lower space 12B toward the lower surface of the plate 18. The first fluid supply section 21 can be configured by a through hole formed in the bottom wall of the processing container 12. The first fluid supply section 21 may be a nozzle body attached to the bottom wall of the processing container 12.
 第2流体供給部22は、処理位置にあるトレイ14のプレート18上に載置された基板Wの側方に位置するように設けられている。第2流体供給部22は、例えば、処理容器12の一つの側壁(第1側壁)またはその近傍に設けることができる。第2流体供給部22は、基板Wのやや上方の領域に向けて、上方空間12A内にCO2を供給する。 The second fluid supply section 22 is provided to be located on the side of the substrate W placed on the plate 18 of the tray 14 in the processing position. The second fluid supply section 22 can be provided, for example, on one side wall (first side wall) of the processing container 12 or in the vicinity thereof. The second fluid supply section 22 supplies CO2 into the upper space 12A toward a region slightly above the substrate W.
 第2流体供給部22は、水平方向(例えば図1の紙面垂直方向)に並んだ複数の吐出口により構成することができる。より具体的には、第2流体供給部22は、例えば、複数の孔が穿たれた水平方向に延びるパイプ状部材からなるヘッダーとして形成することができる。第2流体供給部22は、基板Wの直径全体にわたって、基板Wの上方の領域にほぼ均等に、基板Wの上面(表面)に沿ってCO2を流すことができるように構成されていることが好ましい。 The second fluid supply section 22 can be configured with a plurality of discharge ports arranged in a horizontal direction (for example, in a direction perpendicular to the plane of the paper in FIG. 1). More specifically, the second fluid supply section 22 can be formed, for example, as a header made of a horizontally extending pipe-like member with a plurality of holes. The second fluid supply section 22 may be configured to be able to flow CO2 almost evenly over the entire diameter of the substrate W and along the upper surface (surface) of the substrate W. preferable.
 処理容器12は、処理容器12の内部空間から処理流体を排出する流体排出部24をさらに有している。流体排出部24は、第2流体供給部22と同様に複数の孔が穿たれた水平方向に延びるパイプ状部材からなるヘッダーとして形成することができる。流体排出部24は、例えば、第2流体供給部22が設けられている処理容器12の第1側壁とは反対側の側壁(第2側壁)またはその近傍に設けることができる。 The processing container 12 further includes a fluid discharge section 24 that discharges the processing fluid from the internal space of the processing container 12. The fluid discharge section 24, like the second fluid supply section 22, can be formed as a header made of a horizontally extending pipe-like member with a plurality of holes. The fluid discharge part 24 can be provided, for example, on a side wall (second side wall) opposite to the first side wall of the processing container 12 where the second fluid supply part 22 is provided, or in the vicinity thereof.
 流体排出部24は、第2流体供給部22から処理容器12内に供給されたCO2がプレート18上にある基板Wの上方の領域を通過した後に流体排出部24から排出されるような位置であれば、任意の位置に配置することができる。すなわち、例えば、流体排出部24は、第2側壁近傍の処理容器12の底部に設けられていてもよい。この場合、CO2は、上方空間12A内の基板Wの上方の領域を通過して流れた後に、プレート18の周縁部に設けられた連通路(あるいはプレート18に形成された貫通孔)を通って下方空間12Bに流入した後、流体排出部24から排出される。 The fluid discharge section 24 is located at such a position that the CO2 supplied into the processing container 12 from the second fluid supply section 22 is discharged from the fluid discharge section 24 after passing through the area above the substrate W on the plate 18. If so, it can be placed at any position. That is, for example, the fluid discharge section 24 may be provided at the bottom of the processing container 12 near the second side wall. In this case, the CO2 flows through the area above the substrate W in the upper space 12A, and then passes through the communication path provided at the peripheral edge of the plate 18 (or through the through hole formed in the plate 18). After flowing into the lower space 12B, it is discharged from the fluid discharge section 24.
 次に、超臨界処理装置において、処理容器12に対してCO2の供給および排出を行う供給/排出系について説明する。図1に示した配管系統図において、丸で囲んだTで示す部材は温度センサ、丸で囲んだPで示す部材は圧力センサである。符号OLFが付けられた部材はオリフィス(固定絞り)であり、その下流側の配管内を流れるCO2の圧力を所望の値まで低下させる。四角で囲んだSVで示す部材は安全弁(リリーフ弁)であり、不測の過大圧力により配管あるいは処理容器12等の超臨界処理装置の構成要素が破損することを防止する。符号Fが付けられた部材はフィルタであり、CO2中に含まれるパーティクル等の汚染物質を除去する。符号CVが付けられた部材はチェック弁(逆止弁)である。丸で囲んだFVで示す部材はフローメーター(流量計)である。四角で囲んだHで示す部材はCO2を温調するためのヒータである。参照符号VN(Nは自然数)が付けられた部材は開閉弁であり、図1には10個の開閉弁V1~V11が描かれている。 Next, a supply/discharge system that supplies and discharges CO2 to and from the processing container 12 in the supercritical processing apparatus will be described. In the piping system diagram shown in FIG. 1, the member indicated by a circled T is a temperature sensor, and the member indicated by a circled P is a pressure sensor. The member designated with the symbol OLF is an orifice (fixed throttle), which lowers the pressure of CO2 flowing in the pipe on the downstream side to a desired value. The member indicated by SV surrounded by a square is a safety valve (relief valve), which prevents components of the supercritical processing apparatus such as piping or processing vessel 12 from being damaged due to unexpected excessive pressure. The member labeled with F is a filter, which removes pollutants such as particles contained in CO2. The member labeled CV is a check valve. The member indicated by FV in a circle is a flow meter. The member indicated by H surrounded by a square is a heater for controlling the temperature of CO2. A member with reference symbol VN (N is a natural number) is an on-off valve, and ten on-off valves V1 to V11 are depicted in FIG.
 超臨界処理装置1は、超臨界流体供給装置(処理流体供給部)30を有する。本実施形態では、超臨界流体は超臨界状態にある二酸化炭素(以下、「超臨界CO2」とも呼ぶ)である。超臨界流体供給装置30は、例えば炭酸ガスボンベ、加圧ポンプ、ヒータ等を備えた周知の構成を有している。超臨界流体供給装置30は、後述する超臨界状態保証圧力(具体的には約16MPa)またはそれ以上の圧力で超臨界CO2を送り出す能力を有している。 The supercritical processing apparatus 1 has a supercritical fluid supply device (processing fluid supply section) 30. In this embodiment, the supercritical fluid is carbon dioxide in a supercritical state (hereinafter also referred to as "supercritical CO2"). The supercritical fluid supply device 30 has a well-known configuration including, for example, a carbon dioxide cylinder, a pressure pump, a heater, and the like. The supercritical fluid supply device 30 has the ability to send out supercritical CO2 at a supercritical state guarantee pressure (specifically, about 16 MPa), which will be described later, or a pressure higher than that.
 超臨界流体供給装置30には主供給ライン32が接続されている。超臨界流体供給装置30から超臨界状態でCO2が主供給ライン32に流出するが、その後の膨張あるいは温度変化により、ガス状態にもなり得る。本明細書において、「ライン」と呼ばれる部材は、パイプ(配管部材)により構成することができる。 A main supply line 32 is connected to the supercritical fluid supply device 30. CO2 flows from the supercritical fluid supply device 30 into the main supply line 32 in a supercritical state, but may also become a gaseous state due to subsequent expansion or temperature changes. In this specification, a member called a "line" can be constituted by a pipe (piping member).
 主供給ライン32は分岐点33において、第1供給ライン34と第2供給ライン36とに分岐している。第1供給ライン34は、処理容器12の第1流体供給部21に接続されている。第2供給ライン36は、処理容器12の第2流体供給部22に接続されている。 The main supply line 32 branches into a first supply line 34 and a second supply line 36 at a branch point 33. The first supply line 34 is connected to the first fluid supply section 21 of the processing container 12 . The second supply line 36 is connected to the second fluid supply section 22 of the processing container 12 .
 処理容器12の流体排出部24に、排出ライン38が接続されている。排出ライン38には、圧力調整弁(背圧弁)40が設けられている。圧力調整弁40の開度を調整することにより、圧力調整弁40の一次側圧力を調節することができ、従って、処理容器12内の圧力を調節することができる。 A discharge line 38 is connected to the fluid discharge section 24 of the processing container 12. The discharge line 38 is provided with a pressure regulating valve (back pressure valve) 40. By adjusting the opening degree of the pressure regulating valve 40, the primary side pressure of the pressure regulating valve 40 can be adjusted, and therefore the pressure inside the processing container 12 can be adjusted.
 図1に概略的に示された制御部300が、処理容器12内の圧力の測定値(PV)と設定値(SV)とのの偏差に基づいて、処理容器12内の圧力が設定値に維持されるように、圧力調整弁40の開度(具体的には弁体の位置)をフィードバック制御する。処理容器12内の圧力の測定値としては、例えば、図1に示されたように、排出ライン38の開閉弁V3と処理容器12との間に設けられた参照符号PSが付けられた圧力センサの検出値を用いることができる。つまり、処理容器12内の圧力は、処理容器12内に設けた圧力センサにより直接的に測定してもよく、処理容器12の外(排出ライン38)に設けた圧力センサ(PS)により間接的に測定してもよい。 The control unit 300 schematically shown in FIG. The opening degree (specifically, the position of the valve body) of the pressure regulating valve 40 is feedback-controlled so as to be maintained. As a measurement value of the pressure inside the processing container 12, for example, as shown in FIG. The detected value of can be used. In other words, the pressure inside the processing container 12 may be measured directly by a pressure sensor provided inside the processing container 12, or indirectly by a pressure sensor (PS) provided outside the processing container 12 (discharge line 38). may be measured.
 制御部300は、たとえばコンピュータであり、演算部301と記憶部302とを備える。記憶部302には、超臨界処理装置(または超臨界処理装置を含む基板処理システム)において実行される各種の処理を制御するプログラムが格納される。演算部301は、記憶部302に記憶されたプログラムを読み出して実行することによって超臨界処理装置の動作を制御する。プログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部300の記憶部302にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 The control unit 300 is, for example, a computer, and includes a calculation unit 301 and a storage unit 302. The storage unit 302 stores programs that control various processes executed in a supercritical processing apparatus (or a substrate processing system including a supercritical processing apparatus). The calculation unit 301 controls the operation of the supercritical processing apparatus by reading and executing a program stored in the storage unit 302. The program may be one that has been recorded on a computer-readable storage medium, and may be installed in the storage unit 302 of the control unit 300 from the storage medium. Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnetic optical disks (MO), and memory cards.
 第1供給ライン34上に設定された分岐点42において、第1供給ライン34からバイパスライン44が分岐している。バイパスライン44は、排出ライン38に設定された接続点46において、排出ライン38に接続されている。接続点46は、圧力調整弁40の上流側にある。 A bypass line 44 branches off from the first supply line 34 at a branch point 42 set on the first supply line 34 . The bypass line 44 is connected to the exhaust line 38 at a connection point 46 set in the exhaust line 38 . Connection point 46 is upstream of pressure regulating valve 40 .
 圧力調整弁40の上流側において排出ライン38に設定された分岐点48において、排出ライン38から真空引きライン50が分岐している。真空引きライン50の下流端は、超臨界処理装置1の通常運転時における排出先(通常運転時排出先)、例えば、超臨界処理装置の外部の大気空間に開放されているか、あるいは工場排気ダクトに接続されている。 A vacuum line 50 branches from the discharge line 38 at a branch point 48 set in the discharge line 38 on the upstream side of the pressure regulating valve 40. The downstream end of the vacuum line 50 is a discharge destination during normal operation of the supercritical processing apparatus 1 (normal operation discharge destination), for example, it is open to the atmospheric space outside the supercritical processing apparatus, or a factory exhaust duct. It is connected to the.
 排出ライン38に設定された分岐点52において、排出ライン38から2つの真空引きライン54,56が分岐している。真空引きライン54,56の下流端は再び排出ライン38に合流する。排出ライン38の下流端は、例えば、工場排気ダクト(EXH)に接続することができる。これに代えて、排出ライン38の下流端を、流体回収装置(図示せず)を介して工場排気ダクト(EXH)に接続してもよい。流体回収装置で回収されたCO2に含まれる有用成分(例えばIPA(イソプロピルアルコール))は、適宜分離されて再利用される。 At a branch point 52 set in the discharge line 38, two vacuum lines 54 and 56 branch off from the discharge line 38. The downstream ends of the vacuum lines 54 and 56 join the discharge line 38 again. The downstream end of the exhaust line 38 can be connected to, for example, an factory exhaust duct (EXH). Alternatively, the downstream end of the exhaust line 38 may be connected to the factory exhaust duct (EXH) via a fluid recovery device (not shown). Useful components (for example, IPA (isopropyl alcohol)) contained in the CO2 recovered by the fluid recovery device are appropriately separated and reused.
 分岐点42と処理容器12との間において第1供給ライン34に設定された合流点60にパージガス供給ライン62が接続されている。パージガス供給ライン62を介して、パージガス供給源63から、パージガス(例えば窒素(N2)ガス)を処理容器12に供給することができる。パージガス供給源63は、半導体装置製造工場の工場用力として提供されるものであってよい。 A purge gas supply line 62 is connected to a confluence point 60 set in the first supply line 34 between the branch point 42 and the processing container 12. A purge gas (for example, nitrogen (N2) gas) can be supplied to the processing container 12 from a purge gas supply source 63 via a purge gas supply line 62 . The purge gas supply source 63 may be provided for factory use in a semiconductor device manufacturing factory.
 分岐点33のすぐ上流側において主供給ライン32に設定された分岐点64から、排気ライン66が分岐している。 An exhaust line 66 branches off from a branch point 64 set in the main supply line 32 immediately upstream of the branch point 33.
 排出ライン38に設定された分岐点70において、排出ライン38から、真空引きライン71が分岐している。真空引きライン71に設定された分岐点72において、真空引きライン71は、第1サブ真空引きライン73と第2サブ真空引きライン74とに分岐している。第1サブ真空引きライン73には第1排気装置としての第1真空ポンプ75が介設されている。第2サブ真空引きライン74には第2排気装置としての第2真空ポンプ76が介設されている。 At a branch point 70 set in the discharge line 38, a vacuum line 71 branches off from the discharge line 38. At a branch point 72 set in the vacuum line 71, the vacuum line 71 branches into a first sub-vacuum line 73 and a second sub-vacuum line 74. A first vacuum pump 75 as a first evacuation device is interposed in the first sub-evacuation line 73 . A second vacuum pump 76 as a second evacuation device is interposed in the second sub-evacuation line 74 .
 第1真空ポンプ75は、減圧対象空間(ここでは処理容器12の内部空間)の圧力を常圧から第2真空ポンプが作動可能となる圧力まで低下させる粗引き機能を有する。第2真空ポンプ76は、第1真空ポンプ75により減圧対象空間の圧力を低下させた後に所望の処理圧力(真空洗浄圧力)まで減圧対象空間の圧力を低下させる機能を有する。第1真空ポンプ75は例えばロータリーポンプ(RP)であり、第2真空ポンプ76は例えばターボ分子ポンプ(TMP)である。 The first vacuum pump 75 has a roughing function that lowers the pressure in the space to be depressurized (here, the internal space of the processing container 12) from normal pressure to a pressure at which the second vacuum pump can operate. The second vacuum pump 76 has a function of reducing the pressure of the space to be depressurized to a desired processing pressure (vacuum cleaning pressure) after the first vacuum pump 75 has reduced the pressure of the space to be depressurized. The first vacuum pump 75 is, for example, a rotary pump (RP), and the second vacuum pump 76 is, for example, a turbo molecular pump (TMP).
 排出ライン38のうちの分岐点70より上流側(処理容器12側)の部分を、排出ライン38のうちの分岐点70より下流側の部分(これは図3A~図3Gにおける「下流側排出ライン38D」に相当する)または真空引きライン71のいずれか一方に択一的に連通させるための第1切り替え装置79が設けられている。この第1切り替え装置79は、分岐点70のところに設けた三方弁であってもよい。第1切り替え装置79は、分岐点70の近傍であってかつ分岐点70の下流側において排出ライン38に設けた開閉弁と、分岐点70の近傍において真空引きライン71に設けた開閉弁との組み合わせであってもよい。既存の開閉弁(例えばV5~V8等)のうちの少なくとも1つを第1切り替え装置79の機能を実現するために流用してもよい。図面の簡略化のため、第1切り替え装置79は分岐点70を囲むボックスにより概略的に表示されている。 The part of the discharge line 38 upstream of the branch point 70 (processing vessel 12 side) is the part of the discharge line 38 downstream of the branch point 70 (this is referred to as the "downstream discharge line" in FIGS. 3A to 3G). A first switching device 79 is provided for selectively communicating with either the vacuum pump line 71 (corresponding to "38D") or the vacuum suction line 71. This first switching device 79 may be a three-way valve provided at the branch point 70. The first switching device 79 connects an on-off valve provided in the discharge line 38 near the branch point 70 and on the downstream side of the branch point 70 and an on-off valve provided on the evacuation line 71 near the branch point 70. It may be a combination. At least one of the existing on-off valves (eg, V5 to V8) may be used to realize the function of the first switching device 79. To simplify the drawing, the first switching device 79 is schematically represented by a box surrounding the branch point 70.
 真空引きライン71を第1サブ真空引きライン73または第2サブ真空引きライン74いずれか一方に択一的に連通させるための第2切り替え装置80が設けられている。第2切り替え装置80は、第1切り替え装置79と同様に、1つの三方弁であってもよいし、分岐点70の近傍において第1サブ真空引きライン73および第2サブ真空引きライン74にそれぞれ設けられた複数の開閉弁の組みあわせであってもよい。第2切り替え装置80も、分岐点72を囲むボックスにより概略的に表示されている。 A second switching device 80 is provided to selectively connect the vacuum line 71 to either the first sub-vacuum line 73 or the second sub-vacuum line 74. The second switching device 80 may be one three-way valve like the first switching device 79, and may be connected to the first sub-vacuum line 73 and the second sub-vacuum line 74 in the vicinity of the branch point 70, respectively. It may be a combination of a plurality of on-off valves provided. The second switching device 80 is also schematically represented by a box surrounding the branch point 72.
 次に、上記の超臨界処理装置を用いて実行される基板乾燥方法について簡単に説明しておく。なお、以下に説明する基板乾燥方法それ自体は公知のものであり、簡単な説明にとどめる。詳細については、例えば本件出願人による先行出願に係る特許公開公報:特開2022-069237号を参照されたい。 Next, the substrate drying method performed using the above supercritical processing apparatus will be briefly explained. Note that the substrate drying method described below is a well-known method per se, and therefore only a brief explanation will be provided. For details, please refer to, for example, the patent publication publication No. 2022-069237 related to the earlier application filed by the applicant.
 まず最初に、処理容器12から引き出されたトレイ14の上に表面にIPAパドル(IPAの液膜)が形成された基板Wが載置され、その後、トレイ14が処理容器12内に収容される。 First, a substrate W having an IPA puddle (IPA liquid film) formed on its surface is placed on the tray 14 pulled out from the processing container 12, and then the tray 14 is accommodated in the processing container 12. .
 [昇圧工程]
 最初に、昇圧工程が行われる。超臨界流体供給装置30から主供給ライン32、第1供給ライン34、第1流体供給部21を介して処理容器12内に、処理流体であるCO2(二酸化炭素)を供給する。供給開始後しばらくの間は、処理容器12内の圧力が低いため、CO2はガス状態且つ高流速で処理容器12内に流入する。流入したCO2ガスは、プレート18に衝突してから処理容器12内に広がってゆく。この状態をしばらく継続することにより、処理容器12内の圧力が上昇してゆく。この昇圧工程の初期には、主供給ライン32を流れるCO2の一部を排気ライン66に流すことにより、あるいは、第1供給ライン34を流れるCO2の一部をバイパスライン44を介して排出ライン38に流すことにより、処理容器12内に流入に流入するCO2の流速を抑制することができる。
[Boosting process]
First, a pressure increasing step is performed. CO2 (carbon dioxide), which is a processing fluid, is supplied from the supercritical fluid supply device 30 into the processing container 12 via the main supply line 32, the first supply line 34, and the first fluid supply section 21. Since the pressure inside the processing container 12 is low for a while after the supply starts, CO2 flows into the processing container 12 in a gaseous state and at a high flow rate. The inflowing CO2 gas collides with the plate 18 and then spreads into the processing container 12. By continuing this state for a while, the pressure inside the processing container 12 increases. At the beginning of this pressurization process, a part of the CO2 flowing through the main supply line 32 is allowed to flow into the exhaust line 66, or a part of the CO2 flowing through the first supply line 34 is passed through the bypass line 44 to the exhaust line 38. By allowing the CO2 to flow into the processing container 12, the flow rate of CO2 flowing into the processing container 12 can be suppressed.
 処理容器12内の圧力がCO2の臨界圧力(約8MPa)を越えると、処理容器12内に存在するCO2(IPAと混合されていないCO2)は、超臨界状態となる。処理容器12内のCO2が超臨界状態となると、基板W上のIPAが超臨界状態のCO2に溶け込み始める。処理容器12内の圧力がCO2の臨界圧力を超えた後、基板W上の混合流体(CO2+IPA)中のIPA濃度および温度に関わらず、処理容器12内のCO2が超臨界状態に維持されることが保証される圧力(超臨界状態保証圧力)となるまで上記の昇圧工程が継続される。超臨界状態保証圧力は概ね16MPa程度である。 When the pressure within the processing container 12 exceeds the critical pressure of CO2 (approximately 8 MPa), the CO2 (CO2 not mixed with IPA) present within the processing container 12 becomes supercritical. When the CO2 in the processing container 12 becomes supercritical, IPA on the substrate W begins to dissolve into the supercritical CO2. After the pressure in the processing container 12 exceeds the critical pressure of CO2, the CO2 in the processing container 12 is maintained in a supercritical state regardless of the IPA concentration and temperature in the mixed fluid (CO2 + IPA) on the substrate W. The above pressure increasing step is continued until the pressure reaches a guaranteed pressure (supercritical state guaranteed pressure). The supercritical state guarantee pressure is approximately 16 MPa.
 [流通工程]
 処理容器12内の圧力が上記の超臨界状態保証圧力に到達したら、第1流体供給部21から処理容器12内へのCO2の供給を止め、代わりに、第2流体供給部22から処理容器12内へのCO2の供給を開始する。圧力調整弁40の開度をフィードバック制御することにより、処理容器12内の圧力が超臨界状態保証圧力よりやや高い予め定められた圧力に維持される。
[Distribution process]
When the pressure inside the processing container 12 reaches the above-mentioned supercritical state guarantee pressure, the supply of CO2 from the first fluid supply section 21 to the processing container 12 is stopped, and instead, the supply of CO2 from the second fluid supply section 22 to the processing container 12 is stopped. Start supplying CO2 into the tank. By feedback controlling the opening degree of the pressure regulating valve 40, the pressure inside the processing container 12 is maintained at a predetermined pressure that is slightly higher than the supercritical state guarantee pressure.
 第2流体供給部22から処理容器12内に供給された超臨界CO2が基板の上方領域を流れ、その後流体排出部24から排出される。このとき、処理容器12内には、基板Wの表面と略平行に流動する超臨界CO2の層流が形成される。超臨界CO2の層流に晒された基板Wの表面上の混合流体(IPA+CO2)中のIPAは超臨界CO2に置換されてゆく。最終的には、基板Wの表面上にあったIPAのほぼ全てが超臨界CO2に置換される。 The supercritical CO2 supplied into the processing container 12 from the second fluid supply section 22 flows in the area above the substrate, and is then discharged from the fluid discharge section 24. At this time, a laminar flow of supercritical CO2 flowing approximately parallel to the surface of the substrate W is formed in the processing chamber 12. IPA in the mixed fluid (IPA+CO2) on the surface of the substrate W exposed to the laminar flow of supercritical CO2 is replaced by supercritical CO2. Eventually, almost all of the IPA on the surface of the substrate W is replaced with supercritical CO2.
 IPAから超臨界CO2への置換が完了したら、処理容器12へのCO2の供給を止めて、処理容器12を排出ライン38を大気雰囲気に連通させることにより、処理容器12の圧力を常圧まで下げる。これにより、基板Wのパターン内にあった超臨界CO2が気体となりパターン内から離脱し、気体状態のCO2は処理容器12から排出されてゆく。以上により基板Wの乾燥が終了する。乾燥された基板Wは、処理容器12から搬出される。 When the replacement of IPA with supercritical CO2 is completed, the supply of CO2 to the processing container 12 is stopped and the exhaust line 38 of the processing container 12 is connected to the atmosphere, thereby lowering the pressure of the processing container 12 to normal pressure. . As a result, the supercritical CO2 present in the pattern of the substrate W becomes a gas and leaves the pattern, and the gaseous CO2 is discharged from the processing container 12. With the above steps, drying of the substrate W is completed. The dried substrate W is carried out from the processing container 12.
 上述した超臨界乾燥処理を繰り返し行うと、処理容器12の雰囲気に面する部材の表面(処理容器12の内壁面、トレイ14の表面等において例えば処理流体の流速が遅い部分)に汚染物質が付着する。汚染物質としては、基板Wの表面のIPAパドルに溶解していた有機物(例えば高級脂肪酸)に由来するもの、トレイ14の開閉時に処理容器12内に流入する水分に由来するもの、基板Wの付着物(例えば超臨界乾燥処理の前処理である液処理時に基板Wの裏面に付着した薬液成分等に由来するもの等が例示される。このような汚染物質は、超臨界乾燥処理時に部材の表面から離脱し、基板Wを汚染するおそれがある。以下、基板Wの汚染を防止するために処理容器12の内部を洗浄する真空洗浄処理について説明する。 When the above-mentioned supercritical drying process is repeated, contaminants may adhere to the surfaces of the members facing the atmosphere of the processing container 12 (for example, the inner wall surface of the processing container 12, the surface of the tray 14, etc., where the flow rate of the processing fluid is slow). do. Contaminants include those derived from organic matter (for example, higher fatty acids) dissolved in the IPA paddle on the surface of the substrate W, those derived from moisture flowing into the processing container 12 when the tray 14 is opened and closed, and those derived from the adhesion of the substrate W. Kimono (for example, those derived from chemical components that adhered to the back surface of the substrate W during liquid processing, which is a pretreatment of supercritical drying processing. Such contaminants are There is a risk that the substrate W may be contaminated by the substrate W.A vacuum cleaning process for cleaning the inside of the processing container 12 in order to prevent the substrate W from being contaminated will be described below.
 処理容器12内に基板Wが収容されていない状態で、トレイ14が処理位置つまり閉位置に位置し、処理容器12内が密閉される。この状態で、少なくとも開閉弁V1,V2,V4,V11が閉じられ、如何なる流体も処理容器12に流入することが無いようにする。また、第1切り替え装置79が、処理容器12と真空引きライン71とを連通させ、第2切り替え装置80が真空引きライン71と第1サブ真空引きライン73とを連通させる。 With no substrate W accommodated in the processing container 12, the tray 14 is located at the processing position, that is, the closed position, and the inside of the processing container 12 is sealed. In this state, at least the on-off valves V1, V2, V4, and V11 are closed to prevent any fluid from flowing into the processing container 12. Further, the first switching device 79 connects the processing container 12 and the evacuation line 71, and the second switching device 80 connects the evacuation line 71 and the first sub-evacuation line 73.
 この状態で、第1真空ポンプ75(すなわちロータリーポンプRP)が駆動され、これにより、処理容器12内が第1の圧力(例えば1Pa程度の中真空)まで真空引きされる。次いで、第2切り替え装置80が真空引きライン71と第2サブ真空引きライン74とを連通させ、かつ、第2真空ポンプ76(すなわちターボ分子ポンプTMP)が駆動される。これにより、処理容器12内が第1の圧力より低い第2の圧力(例えば1×10-5Pa程度の高真空)まで真空引きされる。 In this state, the first vacuum pump 75 (ie, rotary pump RP) is driven, and the inside of the processing container 12 is thereby evacuated to a first pressure (for example, a medium vacuum of about 1 Pa). Next, the second switching device 80 connects the evacuation line 71 and the second sub-evacuation line 74, and the second vacuum pump 76 (ie, turbo molecular pump TMP) is driven. As a result, the inside of the processing container 12 is evacuated to a second pressure lower than the first pressure (for example, a high vacuum of about 1×10 −5 Pa).
 これにより、前述した汚染物質が蒸発(気化)することにより当該汚染物質が付着していた表面から離脱する。処理容器12内は第2真空ポンプ76により吸引されているため、汚染物質は、排出ライン38、真空引きライン71および第2サブ真空引きライン74を通って処理容器12から排出される。この状態を予め定められた時間継続することにより、汚染物質が付着していた表面が清浄化される。 As a result, the aforementioned contaminants are evaporated (vaporized) and are removed from the surface to which they were attached. Since the inside of the processing container 12 is suctioned by the second vacuum pump 76, contaminants are discharged from the processing container 12 through the discharge line 38, the evacuation line 71, and the second sub-evacuation line 74. By continuing this state for a predetermined period of time, the surface to which contaminants have adhered is cleaned.
 なお、第1真空ポンプ75により処理容器12内が真空引きされている間にも、蒸発しやすい汚染物質は、当該汚染物質が付着していた表面から離脱し、処理容器12から排出されている。第2真空ポンプ76により処理容器12内が真空引きされている間には、第1真空ポンプ75で達成される真空度では蒸発しない物質が除去されることになる。 Note that even while the inside of the processing container 12 is being evacuated by the first vacuum pump 75, contaminants that are easily evaporated are separated from the surface to which they were attached and are discharged from the processing container 12. . While the inside of the processing container 12 is being evacuated by the second vacuum pump 76, substances that do not evaporate at the degree of vacuum achieved by the first vacuum pump 75 are removed.
 なお、処理容器12にはヒータH(図1に概略的に示した)が設けられている。ヒータHは、例えば処理容器の壁体に埋設されているか、当該壁体の表面に貼り付けられている。このヒータHは、超臨界乾燥処理時にCO2を超臨界状態に維持するための温度制御に用いられているものである。このヒータHを稼働させることにより、蒸発を促進することができ、汚染物質の除去効率を高めることができる。この場合、真空ベーク洗浄処理が行われることとなる。 Note that the processing container 12 is provided with a heater H (schematically shown in FIG. 1). The heater H is, for example, embedded in the wall of the processing container or attached to the surface of the wall. This heater H is used for temperature control to maintain CO2 in a supercritical state during the supercritical drying process. By operating this heater H, evaporation can be promoted and the removal efficiency of contaminants can be increased. In this case, a vacuum bake cleaning process will be performed.
 真空洗浄処理(真空ベーク洗浄処理)時の処理圧力および処理温度(処理容器12内の圧力および温度)は、除去対象である汚染物質の蒸気圧線図(例えばCOXの蒸気圧線図)を参照して決定することができる。処理圧力および処理温度は、真空洗浄処理(真空ベーク洗浄処理)により除去可能な付着物質(汚染物質)のうちの最も除去し難い物質が所望の処理時間内に確実に除去できるようなものとすればよい。例えば100℃、1×10-5Paといった処理条件が例示され、この条件であれば、超臨界乾燥装置の処理容器12内で問題となる付着物質の殆どを除去することができる。洗浄処理条件が、除去対象である汚染物質の蒸気圧線図からより離れたより高温、より低圧力の条件であるほど、洗浄時間を短縮することができる。但し、高温、低圧力にすると真空洗浄処理(真空ベーク洗浄処理)時のエネルギコストが増大するため、求められる真空洗浄処理時間に応じて適当な真空洗浄処理を定めればよい。なお、真空洗浄処理(真空ベーク洗浄処理)は、基板Wの超臨界乾燥処理が行われて当該基板Wが取り出された直ぐ後に行うことが可能であり、この場合、ヒータHを稼働させなくても余熱により処理容器12の温度は十分に高い。このため、より高圧力(低真空)で処理を行うことができる可能性もある。 For the processing pressure and processing temperature (pressure and temperature inside the processing container 12) during the vacuum cleaning process (vacuum bake cleaning process), refer to the vapor pressure diagram of the contaminant to be removed (for example, the vapor pressure diagram of COX). can be determined. The processing pressure and processing temperature should be such that the most difficult to remove adhering substances (contaminants) that can be removed by vacuum cleaning processing (vacuum bake cleaning processing) can be reliably removed within the desired processing time. Bye. For example, processing conditions such as 100° C. and 1×10 −5 Pa are exemplified, and under these conditions, it is possible to remove most of the problematic adhering substances within the processing container 12 of the supercritical drying apparatus. The cleaning time can be shortened as the cleaning treatment conditions are higher temperature and lower pressure conditions that are further away from the vapor pressure diagram of the contaminant to be removed. However, if high temperature and low pressure are used, the energy cost during the vacuum cleaning process (vacuum bake cleaning process) increases, so an appropriate vacuum cleaning process may be determined depending on the required vacuum cleaning process time. Note that the vacuum cleaning process (vacuum bake cleaning process) can be performed immediately after the substrate W has been subjected to the supercritical drying process and the substrate W has been taken out. In this case, the heater H does not need to be operated. The temperature of the processing container 12 is sufficiently high due to the residual heat. Therefore, there is a possibility that processing can be performed at higher pressure (lower vacuum).
 真空洗浄処理(または真空ベーク洗浄処理)が終了したら、超臨界処理装置を通常処理の待機状態に戻す。つまり、処理容器12の真空引きを停止するとともに処理容器12内を常圧に戻す。その手順の一例について説明する。まず、第1真空ポンプ75および第2真空ポンプ76が停止され、第1切り替え装置79が、排出ライン38のうちの分岐点70より上流側の部分と真空引きライン71との連通を断ち、分岐点70より上流側の部分と下流側の部分とを連通させる。開閉弁V1,V2,V3,V4,V9,V10,V11は閉じておく。開閉弁V5、V6,V7,V8の状態は任意である。この状態から、処理容器12内を常圧に戻すために、開閉弁V11を開いて、パージガス供給源63からパージガスとしての窒素ガスをパージガス供給ライン62、第1供給ライン34および第1流体供給部21を介して処理容器12内に供給する。 After the vacuum cleaning process (or vacuum bake cleaning process) is completed, the supercritical processing equipment is returned to the standby state for normal processing. That is, the evacuation of the processing container 12 is stopped and the pressure inside the processing container 12 is returned to normal pressure. An example of the procedure will be explained. First, the first vacuum pump 75 and the second vacuum pump 76 are stopped, and the first switching device 79 cuts off communication between the part of the discharge line 38 upstream of the branch point 70 and the vacuum line 71, and branches A portion upstream from point 70 and a portion downstream from point 70 are communicated. The on-off valves V1, V2, V3, V4, V9, V10, and V11 are kept closed. The states of the on-off valves V5, V6, V7, and V8 are arbitrary. From this state, in order to return the inside of the processing container 12 to normal pressure, the on-off valve V11 is opened, and nitrogen gas as a purge gas is supplied from the purge gas supply source 63 to the purge gas supply line 62, the first supply line 34, and the first fluid supply section. 21 into the processing container 12.
 工場用力としてのパージガス供給源63から供給された窒素ガスは、不活性ガス精製装置(純化装置)で精製した後に、パージガス供給ライン62に供給されることが好ましい。これにより、後述する真空洗浄処理後の処理容器12にパージガスに含まれている不純物成分により処理容器12が汚染されることを防止することができる。 It is preferable that the nitrogen gas supplied from the purge gas supply source 63 for factory use is purified by an inert gas purification device (purification device) and then supplied to the purge gas supply line 62. Thereby, it is possible to prevent the processing container 12 from being contaminated by impurity components contained in the purge gas after the vacuum cleaning process described below.
 処理容器12の近傍の排出ライン38に設けられた圧力センサPSにより検出される処理容器12内の圧力が常圧になったら、開閉弁V11を閉じてパージガスとしての窒素ガスの供給を停止してもよい。あるいは、窒素ガスの供給を継続しながら開閉弁V3を開いて(この場合、例えば開閉弁V8が開かれる)、窒素ガスが処理容器12内を通過するようにしてもよい。処理容器12内の圧力が常圧になった後直ぐにトレイ14を開位置に移動させて処理容器12への基板Wの搬入を行うならば、開閉弁V3を開かずに窒素ガスを供給し続けてもよい。そうすることにより、処理容器12内に流入した窒素ガスが処理容器12の基板搬出入用の開口から流出するようになるため、水分を含む空気が処理容器12内に流入することを防止することができる。この場合、窒素ガスの供給は、例えば、基板Wが載置されたトレイ14が閉位置に移動したときに停止することができる。上記の開閉弁V3の開閉に関する説明は、後に図3Eを参照してなされる説明で援用される。 When the pressure inside the processing container 12 detected by the pressure sensor PS provided in the discharge line 38 near the processing container 12 reaches normal pressure, the on-off valve V11 is closed to stop the supply of nitrogen gas as a purge gas. Good too. Alternatively, the on-off valve V3 may be opened while continuing the supply of nitrogen gas (in this case, for example, the on-off valve V8 may be opened) to allow the nitrogen gas to pass through the processing container 12. If the tray 14 is moved to the open position and the substrate W is loaded into the processing container 12 immediately after the pressure inside the processing container 12 becomes normal pressure, nitrogen gas is continued to be supplied without opening the on-off valve V3. You can. By doing so, the nitrogen gas that has flowed into the processing container 12 will flow out from the opening for loading and unloading the substrate in the processing container 12, thereby preventing air containing moisture from flowing into the processing container 12. Can be done. In this case, the supply of nitrogen gas can be stopped, for example, when the tray 14 on which the substrate W is placed moves to the closed position. The above description regarding opening and closing of the on-off valve V3 will be referred to later in the description with reference to FIG. 3E.
 なお、真空洗浄処理の終了後に処理容器12内の圧力が常圧より低い状態で処理容器12の内部を例えば大気雰囲気となっている空間と連通させると、空気が処理容器12に流れ込むおそれがある。特に、例えば排出ライン38の開閉弁V3を開くと、開閉弁V3より下流側の排出ライン38内にあるガス(例えば空気)が処理容器12に逆流して、排出ライン38内にあるパーティクルが空気と一緒に処理容器12に流れ込むおそれがある。このような事態を防止するために、処理容器12の内部空間をそこより高い圧力の雰囲気(例えば大気雰囲気)に連通させるときには、処理容器12内の圧力を常圧またはそれ以上の圧力にすることが好ましい。 Note that if the inside of the processing container 12 is communicated with, for example, a space having an atmospheric atmosphere while the pressure inside the processing container 12 is lower than normal pressure after the vacuum cleaning process is finished, there is a risk that air may flow into the processing container 12. . Particularly, for example, when the on-off valve V3 of the discharge line 38 is opened, gas (for example, air) in the discharge line 38 on the downstream side of the on-off valve V3 flows back into the processing container 12, and the particles in the discharge line 38 are There is a possibility that it will flow into the processing container 12 together with the water. In order to prevent such a situation, when the internal space of the processing container 12 is communicated with an atmosphere with a higher pressure (for example, atmospheric atmosphere), the pressure inside the processing container 12 should be set to normal pressure or higher pressure. is preferred.
 上述した窒素ガスに代えて、超臨界流体供給装置30から供給されるCO2を、パージガスとして用いてもよい。この場合、開閉弁V11を開くことに代えて、開閉弁V9および開閉弁V1またはV2を開けばよい。 Instead of the nitrogen gas mentioned above, CO2 supplied from the supercritical fluid supply device 30 may be used as the purge gas. In this case, instead of opening the on-off valve V11, the on-off valve V9 and the on-off valve V1 or V2 may be opened.
 なお、真空洗浄処理は、例えば、1ロットの基板Wの処理が終了する度に行ってもよく、あるいは、予め定められた枚数の基板Wの処理が終了する毎に行ってもよい。真空洗浄処理の実行頻度はこれに限定されるものではなく、超臨界処理ユニット10の処理スケジュールに応じて適宜決定することができる。 Note that the vacuum cleaning process may be performed, for example, every time the processing of one lot of substrates W is completed, or every time the processing of a predetermined number of substrates W is completed. The execution frequency of the vacuum cleaning process is not limited to this, and can be determined as appropriate according to the process schedule of the supercritical processing unit 10.
  図2に示すように、上記の超臨界処理装置1は、例えば図2に示す基板処理システム(基板処理装置)400に組み込むことができる。以下、基板処理システム400について簡単に説明する。 As shown in FIG. 2, the above supercritical processing apparatus 1 can be incorporated into, for example, a substrate processing system (substrate processing apparatus) 400 shown in FIG. The substrate processing system 400 will be briefly described below.
 基板処理システム400は、搬入出ステーション102と、処理ステーション103とを備えている。 The substrate processing system 400 includes a loading/unloading station 102 and a processing station 103.
  搬入出ステーション102は、ロードポート111と、搬送ブロック112とを備えている。ロードポート111には、複数のキャリアCが載置される。各キャリアCは、複数枚の基板W(例えば半導体ウェハ)を水平姿勢で鉛直方向に間隔を空けて収容する。 The loading/unloading station 102 includes a load port 111 and a transport block 112. A plurality of carriers C are placed on the load port 111. Each carrier C accommodates a plurality of substrates W (for example, semiconductor wafers) in a horizontal position at intervals in the vertical direction.
 搬送ブロック112内には、搬送装置113および受渡ユニット114が設けられている。受渡ユニット114は、1枚ないし複数枚の未処理の基板W(処理ステーション103で処理が施される前の基板W)を一時的に載置する未処理基板載置部と、1枚ないし複数枚の処理済みの基板W(処理ステーション103で処理が施された基板W)を一時的に載置する処理済み基板載置部と、を有している。搬送装置113は、ロードポート111に載置された任意のキャリアCと、受渡ユニット114との間で基板Wを搬送することができる。 A transport device 113 and a delivery unit 114 are provided within the transport block 112. The delivery unit 114 includes an unprocessed substrate platform on which one or more unprocessed substrates W (substrates W before being processed at the processing station 103) are temporarily placed, and one or more unprocessed substrates. It has a processed substrate mounting section on which a processed substrate W (substrate W processed at the processing station 103) is temporarily placed. The transport device 113 can transport the substrate W between an arbitrary carrier C placed on the load port 111 and the delivery unit 114.
 処理ステーション103は、搬送ブロック104と、搬送ブロック4のY方向両脇に設けられた一対の処理ブロック105とを備えている。各処理ブロック105には、液処理ユニット200と、超臨界処理ユニット10と、処理流体供給キャビネット119とが設けられている。本実施形態では、液処理ユニット200および超臨界処理ユニット10は、枚葉式の処理ユニットである。処理流体供給キャビネット119から、液処理ユニット200および超臨界処理ユニット10に処理に必要な処理流体が供給される。 The processing station 103 includes a transport block 104 and a pair of processing blocks 105 provided on both sides of the transport block 4 in the Y direction. Each processing block 105 is provided with a liquid processing unit 200, a supercritical processing unit 10, and a processing fluid supply cabinet 119. In this embodiment, the liquid processing unit 200 and the supercritical processing unit 10 are single-wafer processing units. A processing fluid necessary for processing is supplied from the processing fluid supply cabinet 119 to the liquid processing unit 200 and the supercritical processing unit 10 .
  搬送ブロック104は、搬送エリア115と、搬送エリア115内に配置された搬送装置116とを備えている。搬送装置116は、受渡ユニット114と、任意の液処理ユニット200と、任意の超臨界処理ユニット10との間で基板Wを搬送することができる。 The transport block 104 includes a transport area 115 and a transport device 116 disposed within the transport area 115. The transport device 116 can transport the substrate W between the delivery unit 114, any liquid processing unit 200, and any supercritical processing unit 10.
 各処理ブロック105は多層(例えば三層)構造を有している。この場合、各層に、液処理ユニット200、超臨界処理ユニット10および処理流体供給キャビネット119が1つずつ設けられる。この場合、1つの搬送装置116が全ての層の液処理ユニット200および超臨界処理ユニット10にアクセス可能となっていてもよい。 Each processing block 105 has a multi-layer (for example, three-layer) structure. In this case, each layer is provided with one liquid processing unit 200, one supercritical processing unit 10, and one processing fluid supply cabinet 119. In this case, one transport device 116 may be able to access the liquid processing units 200 and supercritical processing units 10 of all layers.
  基板処理システム400の全体の動作は、前述した制御部(制御装置)300(図1参照)により制御される。 The overall operation of the substrate processing system 400 is controlled by the aforementioned control unit (control device) 300 (see FIG. 1).
 次に、上述した基板処理システム400における基板Wの搬送フローについて簡単に説明する。 Next, the transport flow of the substrate W in the substrate processing system 400 described above will be briefly described.
 図示しない外部搬送ロボットが、未処理の基板Wを収容したキャリアCをロードポート111に載置する。搬送装置113が1枚の基板WをキャリアCから取り出し、受渡ユニット114に搬入する。搬送装置116が受渡ユニット114から基板Wを取り出し、液処理ユニット200に搬入する。 An external transfer robot (not shown) places a carrier C containing an unprocessed substrate W on the load port 111. The transport device 113 takes out one substrate W from the carrier C and carries it into the delivery unit 114. The transport device 116 takes out the substrate W from the delivery unit 114 and carries it into the liquid processing unit 200.
 液処理ユニット200内において、複数の工程からなる液処理が施される。液処理ユニット200は、例えば半導体製造装置の技術分野において周知の枚葉式の回転式液処理ユニットである。液処理ユニット200では、スピンチャックにより保持されて回転する基板Wの表面に処理液を供給することにより基板Wに液処理が施される。液処理は、例えば、薬液処理工程と、リンス工程と、IPA置換工程と、IPAパドル形成工程と、を含む。薬液処理工程では、基板の表面の洗浄またはウエットエッチングのための薬液が供給され、リンス工程ではリンス液として例えばDIWが供給され、IPA置換工程ではリンス液がIPAで置換され、IPAパドル形成工程では所望の厚さのIPAパドルが形成あれる。最終工程で基板Wの表面に予め定められた膜厚のIPAの液膜(IPAパドルとも呼ばれる)が形成されさえすれば、それ以前の工程は任意である。 Within the liquid processing unit 200, liquid processing consisting of a plurality of steps is performed. The liquid processing unit 200 is, for example, a rotary single-wafer type liquid processing unit well known in the technical field of semiconductor manufacturing equipment. In the liquid processing unit 200, the substrate W is subjected to liquid processing by supplying a processing liquid to the surface of the substrate W, which is held and rotated by a spin chuck. The liquid treatment includes, for example, a chemical treatment step, a rinsing step, an IPA replacement step, and an IPA paddle forming step. In the chemical treatment process, a chemical solution for cleaning or wet etching the surface of the substrate is supplied, in the rinsing process, for example, DIW is supplied as a rinsing liquid, in the IPA replacement process, the rinsing liquid is replaced with IPA, and in the IPA paddle forming process, An IPA paddle of desired thickness is formed. As long as an IPA liquid film (also called an IPA puddle) of a predetermined thickness is formed on the surface of the substrate W in the final step, the steps before that are optional.
 次に、表面にIPAパドルが形成された基板Wが、搬送装置116により液処理ユニット200から取り出され、超臨界処理ユニット10に搬入される。超臨界処理ユニット10では、超臨界乾燥技術を用いて、前述した手順で基板Wの乾燥が行われる。その後、搬送装置116は、乾燥した基板Wを超臨界処理ユニット10から取り出し、受渡ユニット114に搬入する。搬送装置13はこの基板Wを受渡ユニット114から取り出し、ロードポート111に載置された元のキャリアCに収容する。以上により1枚の基板に対する一連の処理が終了する。 Next, the substrate W with the IPA paddle formed on the surface is taken out from the liquid processing unit 200 by the transport device 116 and carried into the supercritical processing unit 10. In the supercritical processing unit 10, the substrate W is dried in the above-described procedure using supercritical drying technology. Thereafter, the transport device 116 takes out the dried substrate W from the supercritical processing unit 10 and transports it into the delivery unit 114. The transport device 13 takes out the substrate W from the delivery unit 114 and stores it in the original carrier C placed on the load port 111. With the above steps, a series of processes for one substrate is completed.
 基板処理システム400は、複数の超臨界処理ユニット10で共用される1台の第1真空ポンプ75および1台の第2真空ポンプ76を備えている。第1真空ポンプ75および1台の第2真空ポンプ76は、例えば処理流体供給キャビネット119の間のポンプ室120に収容することができる。 The substrate processing system 400 includes one first vacuum pump 75 and one second vacuum pump 76 that are shared by a plurality of supercritical processing units 10. The first vacuum pump 75 and one second vacuum pump 76 can be housed in a pump chamber 120 between the processing fluid supply cabinets 119, for example.
 次に、図3A~図3Gを参照して、複数の超臨界処理ユニット10および第1真空ポンプ75および第2真空ポンプ76の動作のうち各超臨界処理ユニット10の処理容器12の真空引きに関与する部分のみ抜き出して説明する。図3A~図3Gは、超臨界処理ユニット10の処理容器12(SCC1~SCC3)の下流側の配管構成の要部を概略的に示している。また、図3A~図3Gでは、図面の簡略化のため、3台の超臨界処理ユニット10(処理容器12)で1台の第1真空ポンプ75および1台の第2真空ポンプ76が共用されているような記載となっているが、超臨界処理ユニット10の数が増えても基本的な動作は同じである。 Next, with reference to FIGS. 3A to 3G, among the operations of the plurality of supercritical processing units 10 and the first vacuum pump 75 and second vacuum pump 76, the process of evacuation of the processing container 12 of each supercritical processing unit 10 will be explained. Only the relevant parts will be extracted and explained. 3A to 3G schematically show the main parts of the piping configuration on the downstream side of the processing vessels 12 (SCC1 to SCC3) of the supercritical processing unit 10. In addition, in FIGS. 3A to 3G, one first vacuum pump 75 and one second vacuum pump 76 are shared by three supercritical processing units 10 (processing vessels 12) to simplify the drawings. However, even if the number of supercritical processing units 10 increases, the basic operation remains the same.
 図3Aに示すように、各超臨界処理ユニット10の処理容器12に接続された排出ライン38、そこから分岐する真空引きライン71、さらにそこから分岐する第1サブ真空引きライン73と第2サブ真空引きライン74は、図1で示したものと同じ態様で設けられている。図3Aに示す実施形態では、複数の第1サブ真空引きライン73が合流して第1合流真空引きライン73Mとなり、この第1合流真空引きライン73Mに第1真空ポンプ(RP)75が設けられている。また、複数の第2サブ真空引きライン74が合流して第2合流真空引きライン74Mとなり、この第1合流真空引きライン74Mに第2真空ポンプ(TMP)76が設けられている。この構成の運用例について以下に説明する。なお、以下の説明において、表記の簡略化のため、排出ライン38のうちの分岐点70(第1切り替え装置79)より上流側の部分を上流側排出ライン38U、排出ライン38のうちの分岐点70(第1切り替え装置79)より下流側の部分を下流側排出ライン38Dとも呼ぶこととする。 As shown in FIG. 3A, a discharge line 38 connected to the processing vessel 12 of each supercritical processing unit 10, a vacuum line 71 branching from there, a first sub vacuum line 73 and a second sub vacuum line 73 branching from there. Vacuum line 74 is provided in the same manner as shown in FIG. In the embodiment shown in FIG. 3A, a plurality of first sub-evacuation lines 73 merge to form a first combined evacuation line 73M, and a first vacuum pump (RP) 75 is provided in this first combined evacuation line 73M. ing. Further, the plurality of second sub-evacuation lines 74 merge to form a second combined evacuation line 74M, and a second vacuum pump (TMP) 76 is provided in this first combined evacuation line 74M. An operational example of this configuration will be described below. In the following description, for simplicity of notation, the portion of the discharge line 38 upstream of the branch point 70 (first switching device 79) will be referred to as the upstream discharge line 38U, and the branch point of the discharge line 38. The portion downstream from 70 (first switching device 79) is also referred to as downstream discharge line 38D.
 図3A~図3Gにおいて、各ライン71,73,74,73M,74Mのうち、細実線で記載された部分は常圧(大気圧)または処理容器12内の圧力に応じて変化する常圧より高い圧力となっていることを意味し、網掛けされた部分は中真空(1Pa程度の圧力)となっていることを意味し、太実線で記載された部分は高真空(1×10-5Pa程度の圧力)となっていることを意味している。 3A to 3G, among the lines 71, 73, 74, 73M, and 74M, the parts indicated by thin solid lines are under normal pressure (atmospheric pressure) or under normal pressure that changes depending on the pressure inside the processing container 12. The shaded area means medium vacuum (approximately 1 Pa pressure), and the thick solid line indicates high vacuum (1 x 10 -5 This means that the pressure is on the order of Pa.
 図3Aは全ての超臨界処理ユニット10が通常運転状態にある場合を示している。このときも、第1真空ポンプ75および1台の第2真空ポンプ76が稼働しており、全ての真空引きライン71および第1サブ真空引きライン73が中真空となっており、全ての第2サブ真空引きライン74が高真空となっている。 FIG. 3A shows a case where all supercritical processing units 10 are in a normal operating state. At this time as well, the first vacuum pump 75 and one second vacuum pump 76 are in operation, all the vacuum lines 71 and the first sub-vacuum line 73 are at medium vacuum, and all the second The sub-vacuum line 74 is in high vacuum.
 図3Aの状態から、1つの超臨界処理ユニット10(以下「ユニットSCC1」とも呼ぶ)の通常運転を停止して、当該超臨界処理ユニット10の真空洗浄処理を行うものとする。まず、ユニットSCC1の処理容器12から基板Wを取り出し、その後、トレイ14を閉位置に移動し、処理容器12を密閉する。 From the state of FIG. 3A, the normal operation of one supercritical processing unit 10 (hereinafter also referred to as "unit SCC1") is stopped, and the supercritical processing unit 10 is vacuum cleaned. First, the substrate W is taken out from the processing container 12 of the unit SCC1, and then the tray 14 is moved to the closed position and the processing container 12 is sealed.
 次に、ユニットSCC1に対応する第1切り替え装置79を切り替えて、ユニットSCC1の処理容器12を第1真空ポンプ(RP)75に連通させる。これにより、ユニットSCC1に関連する処理容器12および上流側排出ライン38Uが中真空となるまで減圧される(図3Bを参照)。第1切り替え装置79の切り替えの直前において、3つの真空引きライン71、3つの第1サブ真空引きライン73および第1合流真空引きライン73Mが中真空状態となっている。つまり、ある程度の容積を有する空間が既に中真空とされている。このため、そうなっていない場合と比較して、ユニットSCC1に関連する処理容器12および上流側排出ライン38Uを中真空まで減圧するための所要時間を短くすることができる。 Next, the first switching device 79 corresponding to the unit SCC1 is switched to connect the processing chamber 12 of the unit SCC1 to the first vacuum pump (RP) 75. As a result, the pressure in the processing container 12 and the upstream discharge line 38U associated with the unit SCC1 is reduced to a medium vacuum (see FIG. 3B). Immediately before switching of the first switching device 79, the three vacuum lines 71, the three first sub vacuum lines 73, and the first combined vacuum line 73M are in a medium vacuum state. In other words, a space having a certain volume has already been made into a medium vacuum. Therefore, compared to a case where this is not the case, the time required to reduce the pressure of the processing container 12 and the upstream discharge line 38U related to the unit SCC1 to medium vacuum can be shortened.
 次に、図3Bの状態から、ユニットSCC1に対応する第2切り替え装置80を切り替えて、ユニットSCC1の処理容器12を第2真空ポンプ(TMP)76に連通させる。これにより、ユニットSCC1に関連する処理容器12、上流側排出ライン38Uおよび真空引きライン71が高真空となるまで減圧される(図3Cを参照)。第2切り替え装置80の切り替えの直前において、3つの第2サブ真空引きライン74および第2合流真空引きライン74Mが高真空状態となっている。つまり、ある程度の容積を有する空間が既に高真空とされている。このため、そうなっていない場合と比較して、ユニットSCC1に関連する処理容器12、上流側排出ライン38Uおよび真空引きライン71を高真空まで減圧するための所要時間を短くすることができる。 Next, from the state shown in FIG. 3B, the second switching device 80 corresponding to the unit SCC1 is switched to communicate the processing chamber 12 of the unit SCC1 with the second vacuum pump (TMP) 76. As a result, the pressure in the processing container 12, upstream discharge line 38U, and vacuum line 71 associated with the unit SCC1 is reduced to a high vacuum (see FIG. 3C). Immediately before switching of the second switching device 80, the three second sub vacuum lines 74 and the second combined vacuum line 74M are in a high vacuum state. In other words, a space having a certain volume is already in a high vacuum. Therefore, compared to a case where this is not the case, the time required to reduce the pressure of the processing container 12, the upstream discharge line 38U, and the vacuum line 71 related to the unit SCC1 to a high vacuum can be shortened.
 図3Cの状態を予め定められた時間だけ継続することにより、先に説明した原理によりユニットSCC1の処理容器12の内部が洗浄される。このとき、先に説明したように、処理容器12に付設されたヒータにより処理容器12を加熱することにより、洗浄効率を向上させることができる。なお、一般的には、超臨界処理ユニット10の処理容器12は、比較的マスの大きな金属ブロックにより形成されており、通常運転中は処理流体の超臨界状態を維持するために比較的高温に維持されている。このため、比較的長時間にわたって超臨界処理ユニット10の運転を休止しない限り、処理容器12が温度は大きく低下することはない。従って、真空洗浄処理中に処理容器12に付設されたヒータを稼働させる必要は必ずしもない。 By continuing the state shown in FIG. 3C for a predetermined period of time, the inside of the processing container 12 of the unit SCC1 is cleaned according to the principle explained above. At this time, as described above, cleaning efficiency can be improved by heating the processing container 12 with the heater attached to the processing container 12. Generally, the processing vessel 12 of the supercritical processing unit 10 is formed of a metal block with a relatively large mass, and is heated to a relatively high temperature during normal operation to maintain the supercritical state of the processing fluid. Maintained. Therefore, the temperature of the processing vessel 12 will not drop significantly unless the operation of the supercritical processing unit 10 is stopped for a relatively long period of time. Therefore, it is not necessarily necessary to operate the heater attached to the processing container 12 during the vacuum cleaning process.
 ユニットSCC1の処理容器12の内部の洗浄が完了したら、次にユニットSCC1で基板Wの処理が予定されている時刻まで、図3Cの状態のまま放置しておいて構わない。ユニットSCC1の処理容器12内を真空状態に維持しておくことにより、処理容器12内を清浄な状態に維持することができる。 Once the cleaning of the inside of the processing container 12 of the unit SCC1 is completed, it may be left in the state shown in FIG. 3C until the time when the next substrate W is scheduled to be processed in the unit SCC1. By maintaining the inside of the processing container 12 of the unit SCC1 in a vacuum state, the inside of the processing container 12 can be maintained in a clean state.
 次にユニットSCC1で基板Wの処理が予定されている時刻が到来したら、図3Dに示すようにユニットSCC1に対応する第2切り替え装置80を切り替えて、第1真空ポンプ(RP)75を真空引きライン71に連通させる。その後、図3Dには表示していないが、先に図1を参照して説明したように、排出ライン38(38U)の開閉弁V3を閉じる。次いで、処理容器12内にパージガスとして例えば窒素ガスを供給して、処理容器12を常圧に戻すとともに、SCC1に対応する第1切り替え装置79を切り替えて、ユニットSCC1の処理容器12を下流側排出ライン38Dに連通させる。その後、排出ライン38(38U)の開閉弁V3を適当なタイミングで開けばよい。処理容器12を常圧に戻した後直ぐに開閉弁V3を開いた場合には、図3Eに示した状態となる。このときの開閉弁V3の開閉については、先に図1を参照してなされた説明を参照されたい。 Next, when the time when the substrate W is scheduled to be processed in the unit SCC1 arrives, as shown in FIG. 3D, the second switching device 80 corresponding to the unit SCC1 is switched and the first vacuum pump (RP) 75 is evacuated. It is connected to line 71. Thereafter, although not shown in FIG. 3D, as previously described with reference to FIG. 1, the on-off valve V3 of the discharge line 38 (38U) is closed. Next, for example, nitrogen gas is supplied as a purge gas into the processing container 12 to return the processing container 12 to normal pressure, and the first switching device 79 corresponding to SCC1 is switched to discharge the processing container 12 of the unit SCC1 to the downstream side. Connect it to line 38D. Thereafter, the on-off valve V3 of the discharge line 38 (38U) may be opened at an appropriate timing. If the on-off valve V3 is opened immediately after the processing container 12 is returned to normal pressure, the state shown in FIG. 3E will occur. Regarding opening and closing of the on-off valve V3 at this time, please refer to the explanation given earlier with reference to FIG. 1.
 上記の説明では、複数の超臨界処理ユニット10のうちの1つだけ(SCC1)のみを真空洗浄する場合について説明したが、複数の超臨界処理ユニット10を真空洗浄する場合も上記と同様にすればよい。つまり、図3Aに示した状態を出発点として、第1切り替え装置79および第2切り替え装置80を順次図3Fおよび図3Gの状態にすることにより、2つの超臨界処理ユニット10(SCC2およびSCC3)を真空洗浄することができる。 In the above explanation, the case where only one (SCC1) of the plurality of supercritical processing units 10 is vacuum cleaned is explained, but the same procedure as above is also applied when vacuum cleaning the plurality of supercritical processing units 10. Bye. That is, starting from the state shown in FIG. 3A, the first switching device 79 and the second switching device 80 are sequentially brought into the states shown in FIGS. 3F and 3G, thereby controlling the two supercritical processing units 10 (SCC2 and SCC3). Can be vacuum cleaned.
 上記実施形態では、超臨界処理ユニット10の処理容器12内を真空引きするために、通常の超臨界乾燥処理時に用いる排出ライン38から分岐する真空引きライン71を用いたが、これには限定されない。例えば、図4に示すように、排出ライン38とは別個に真空引きライン71を設け、この真空引きライン71を直接的に処理容器12に接続し、かつ、この真空引きライン71を第1サブ真空引きライン73および第2サブ真空引きライン74に分岐させてもよい。真空引きライン71に設けた開閉弁V12は、超臨界処理ユニット10の通常運転時には閉じたままにされる。開閉弁V12は、真空洗浄処理を行うときに開かれ、真空洗浄処理が終了したら閉じられ、その後窒素パージが行われて処理容器内が常圧に戻される。真空洗浄処理が行われているときには排出ライン38の開閉弁V3(図4には図示せず。図1を参照)は閉じたままにしておき、真空洗浄処理が終了したら必要に応じて開かれる。 In the above embodiment, in order to evacuate the inside of the processing container 12 of the supercritical processing unit 10, the vacuum line 71 branched from the discharge line 38 used during normal supercritical drying processing is used, but the invention is not limited to this. . For example, as shown in FIG. 4, a vacuum line 71 is provided separately from the discharge line 38, and this vacuum line 71 is directly connected to the processing container 12, and this vacuum line 71 is connected to the first subsystem. It may be branched into a vacuum line 73 and a second sub-vacuum line 74. The on-off valve V12 provided in the evacuation line 71 is kept closed during normal operation of the supercritical processing unit 10. The on-off valve V12 is opened when performing the vacuum cleaning process, and is closed when the vacuum cleaning process is completed, and then nitrogen purge is performed to return the inside of the processing container to normal pressure. The on-off valve V3 (not shown in FIG. 4, see FIG. 1) of the discharge line 38 is kept closed when the vacuum cleaning process is being performed, and is opened as necessary when the vacuum cleaning process is finished. .
 真空洗浄処理のための真空引きライン(71)を超臨界流体を処理容器12に供給するためのライン(例えば供給ライン34,36等)に接続することも可能である。但し、このようにすると、超臨界乾燥処理時の流体の流れ方向に関して処理容器12よりも上流側にあるラインに真空洗浄処理時に発生する汚染物質由来のガスが流入する可能性がある。このため、超臨界乾燥処理時の流体の流れ方向に関して処理容器12よりも下流側にあるライン(例えばライン38,50等)に真空引きライン(71)を接続することが好ましい。 It is also possible to connect the evacuation line (71) for vacuum cleaning processing to a line for supplying supercritical fluid to the processing container 12 (for example, supply lines 34, 36, etc.). However, if this is done, there is a possibility that gas derived from contaminants generated during the vacuum cleaning process may flow into a line located upstream of the processing container 12 in the flow direction of fluid during the supercritical drying process. For this reason, it is preferable to connect the vacuum line (71) to a line (for example, lines 38, 50, etc.) located downstream of the processing container 12 with respect to the fluid flow direction during the supercritical drying process.
 真空洗浄処理(真空ベーク洗浄処理)の処理温度を高く(例えば200℃以上)とすると、中真空でもある程度の洗浄効果が期待できる。この場合、例えば、第1真空ポンプ75が1Pa程度の中真空を実現する能力があるロータリーポンプであった場合、高真空を実現するための第2真空ポンプ76を設けなくてもよい。上記のように処理温度を高く(例えば200℃以上)して真空洗浄処理(真空ベーク洗浄処理)を行う場合には、処理容器12内の圧力を例えば1Pa以下の圧力とすることが好ましい。処理温度を高くしない(例えば常温~100℃程度)で真空洗浄処理(真空ベーク洗浄処理)を行う場合には、処理容器12内の圧力を例えば1×10-2Pa以下の圧力とすることが好ましい。 If the processing temperature of the vacuum cleaning treatment (vacuum bake cleaning treatment) is set high (for example, 200° C. or higher), a certain degree of cleaning effect can be expected even in a medium vacuum. In this case, for example, if the first vacuum pump 75 is a rotary pump capable of achieving a medium vacuum of about 1 Pa, it is not necessary to provide the second vacuum pump 76 for achieving a high vacuum. When vacuum cleaning processing (vacuum bake cleaning processing) is performed at a high processing temperature (for example, 200° C. or higher) as described above, it is preferable that the pressure inside the processing container 12 is set to, for example, 1 Pa or lower. When vacuum cleaning processing (vacuum bake cleaning processing) is performed without raising the processing temperature (for example, from room temperature to about 100° C.), the pressure inside the processing container 12 may be set to, for example, 1×10 −2 Pa or less. preferable.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The embodiments described above may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.
 基板は半導体ウエハに限定されるものではなく、ガラス基板、セラミック基板等の半導体装置の製造において用いられる他の種類の基板であってもよい。 The substrate is not limited to a semiconductor wafer, and may be any other type of substrate used in the manufacture of semiconductor devices, such as a glass substrate or a ceramic substrate.
 12 処理容器
 30 処理流体供給部
 38,71,73,74 排出流路
 75,76 排出機構
 300 制御部
12 Processing container 30 Processing fluid supply section 38, 71, 73, 74 Discharge channel 75, 76 Discharge mechanism 300 Control section

Claims (14)

  1.  基板を収容可能な処理容器と、
     前記基板に超臨界乾燥処理を施すために、前記処理容器に超臨界状態の処理流体を供給する処理流体供給部と、
     前記処理容器から流体を排出する流体排出部であって、前記処理容器に接続された排出流路と、前記排出流路に設けられた排気機構と、を有する流体排出部と、
     少なくとも前記処理流体供給部および前記流体排出部を制御する制御部と、
    を備え、
     前記制御部は、前記処理容器に基板が収容されていないときに、前記処理容器を密閉するとともに前記処理容器内に流体が流入しないような状態とし、この状態で、前記流体排出部の前記排気機構を動作させることにより前記処理容器を真空引きして、前記処理容器内の圧力を予め定められた真空洗浄圧力に低下させ、前記処理容器内の汚染物質を気化させて前記処理容器内から排出する真空洗浄処理を行う、基板処理装置。
    a processing container capable of accommodating a substrate;
    a processing fluid supply unit that supplies a processing fluid in a supercritical state to the processing container in order to perform supercritical drying processing on the substrate;
    a fluid discharge section that discharges fluid from the processing container, the fluid discharge section having a discharge channel connected to the processing container and an exhaust mechanism provided in the discharge channel;
    a control unit that controls at least the processing fluid supply unit and the fluid discharge unit;
    Equipped with
    The control section is configured to seal the processing container and to prevent fluid from flowing into the processing container when no substrate is housed in the processing container, and in this state, to control the exhaust of the fluid discharge section. By operating a mechanism, the processing container is evacuated, the pressure inside the processing container is reduced to a predetermined vacuum cleaning pressure, and the contaminants in the processing container are vaporized and discharged from the processing container. Substrate processing equipment that performs vacuum cleaning processing.
  2.  前記処理容器を加熱するヒータをさらに備え、前記制御部は、前記真空洗浄処理を行うときに、前記ヒータにより前記処理容器を加熱し、前記処理容器内の汚染物質の気化を促進させる、請求項1記載の基板処理装置。 5. The method further comprises a heater that heats the processing container, and the control unit heats the processing container with the heater to promote vaporization of contaminants in the processing container when performing the vacuum cleaning process. 1. The substrate processing apparatus according to 1.
  3.  前記流体排出部の前記排気機構は、第1排気装置および第2排気装置を含み、前記第1排気装置は、常圧から前記第2排気装置が作動可能となる圧力まで前記処理容器内の圧力を低下させる粗引き機能を有し、前記第2排気装置は前記第1排気装置により前記処理容器内の圧力を低下させた後に前記真空洗浄圧力まで前記処理容器内の圧力を低下させる機能を有する、請求項1記載の基板処理装置。 The exhaust mechanism of the fluid discharge section includes a first exhaust device and a second exhaust device, and the first exhaust device reduces the pressure in the processing container from normal pressure to a pressure at which the second exhaust device can operate. The second exhaust device has a function of reducing the pressure in the processing container to the vacuum cleaning pressure after the pressure in the processing container is reduced by the first exhaust device. The substrate processing apparatus according to claim 1.
  4.  前記第1排気装置はロータリーポンプであり、前記第2排気装置はターボ分子ポンプである、請求項3記載の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the first exhaust device is a rotary pump, and the second exhaust device is a turbomolecular pump.
  5.  前記排出流路は、前記処理容器に接続されるとともに前記処理容器から前記処理流体を通常運転時排出先へと排出するための排出ラインと、第1分岐点において前記排出ラインから分岐した真空引きラインと、を有し、前記排気機構は、前記真空引きラインを介して前記処理容器に連通し、
     前記排出ラインを流下してきた流体が、前記真空引きラインに流入せずに前記通常運転時排出先へと流下してゆく通常排気状態と、前記排出ラインを流下してきた流体が、前記通常運転時排出先へと流下せずに前記真空引きライン流入してゆく洗浄用排気状態と、を切り替える第1切り替え装置が設けられている、請求項1記載の基板処理装置。
    The discharge flow path includes a discharge line connected to the processing container and for discharging the processing fluid from the processing container to a discharge destination during normal operation, and a vacuum line branched from the discharge line at a first branch point. line, the exhaust mechanism communicates with the processing container via the vacuum line,
    A normal exhaust state in which the fluid that has flowed down the discharge line does not flow into the vacuum line and flows down to the discharge destination during the normal operation, and a fluid that has flowed down the discharge line does not flow into the vacuum line during the normal operation. 2. The substrate processing apparatus according to claim 1, further comprising a first switching device for switching between a cleaning exhaust state in which the cleaning exhaust gas flows into the vacuum line without flowing down to a discharge destination.
  6.  前記真空引きラインは、第2分岐点において、第1サブ真空引きラインと第2サブ真空引きラインとに分岐しており、
     前記排気機構は、第1排気装置および第2排気装置を含み、前記第1排気装置は、常圧から前記第2排気装置が作動可能となる作動可能圧力まで前記処理容器内の圧力を低下させる粗引き機能を有し、前記第2排気装置は前記第1排気装置により前記処理容器内の圧力を低下させた後に前記真空洗浄圧力まで前記処理容器内の圧力を低下させる機能を有し、
     前記第1排気装置は第1サブ真空引きラインに設けられ、前記第2排気装置は第2サブ真空引きラインに設けられ、
     前記真空引きラインを流下してきた流体が、前記第2サブ真空引きラインに流入せずに前記第1サブ真空引きラインに流入する第1状態と、前記真空引きラインを流下してきた流体が、前記第1サブ真空引きラインに流入せずに前記第2サブ真空引きラインに流入する第2状態と、を切り替える第2切り替え装置が設けられている、請求項5記載の基板処理装置。
    The vacuum line is branched into a first sub-vacuum line and a second sub-vacuum line at a second branch point,
    The exhaust mechanism includes a first exhaust device and a second exhaust device, and the first exhaust device reduces the pressure within the processing container from normal pressure to an operable pressure at which the second exhaust device can operate. has a rough evacuation function, and the second exhaust device has a function of reducing the pressure in the processing container to the vacuum cleaning pressure after reducing the pressure in the processing container by the first exhaust device,
    The first evacuation device is provided in a first sub-evacuation line, the second evacuation device is provided in a second sub-evacuation line,
    A first state in which the fluid flowing down the evacuation line does not flow into the second sub-evacuation line but flows into the first sub-evacuation line, and a fluid flowing down the evacuation line is 6. The substrate processing apparatus according to claim 5, further comprising a second switching device for switching between a second state in which the substrate does not flow into the first sub-evacuation line but flows into the second sub-evacuation line.
  7.  前記基板処理装置は、複数の前記処理容器と、前記複数の処理容器を真空引きするために共用される1つの前記第1排気装置および1つの前記第2排気装置を含んでおり、
     前記各処理容器には、前記排出流路、前記真空引きライン、前記第1サブ真空引きラインおよび前記第2サブ真空引きラインが接続されており、従って、前記基板処理装置には複数の前記第1サブ真空引きラインおよび複数の前記第2サブ真空引きラインが設けられており、
     前記複数の第1サブ真空引きラインの下流端が合流して第1合流真空引きラインとなり、前記第1合流真空引きラインに前記1つの前記第1排気装置が設けられており、
     前記複数の第2サブ真空引きラインの下流端が合流して第2合流真空引きラインとなり、前記第2合流真空引きラインに前記1つの前記第2排気装置が設けられている、
    請求項6記載の基板処理装置。
    The substrate processing apparatus includes a plurality of processing containers, one first exhaust device and one second exhaust device that are commonly used to evacuate the plurality of processing containers,
    The discharge flow path, the vacuum line, the first sub-vacuum line, and the second sub-vacuum line are connected to each of the processing containers, and therefore, the substrate processing apparatus has a plurality of sub-vacuum lines. One sub-vacuum line and a plurality of second sub-vacuum lines are provided,
    The downstream ends of the plurality of first sub vacuum lines are merged to form a first combined vacuum line, and the first combined vacuum line is provided with the one first exhaust device,
    The downstream ends of the plurality of second sub vacuum lines are merged to form a second combined vacuum line, and the second combined vacuum line is provided with the one second exhaust device.
    The substrate processing apparatus according to claim 6.
  8.  前記制御部は、
     前記基板処理装置の通常運転中には、
     前記第1排気装置、前記第2排気装置、前記第1切り替え装置および前記第2切り替え装置を制御することにより、前記排出ラインを流下してきた流体が、前記真空引きラインに流入せずに前記通常運転時排出先へと流下してゆく通常排気状態とし、かつ、全ての前記第1サブ真空引きラインおよび前記第1合流真空引きライン内を前記作動可能圧力に維持するとともに、全ての前記第2サブ真空引きラインおよび前記第2合流真空引きライン内を前記真空洗浄圧力に維持し、
     前記複数の処理容器のうちの少なくとも1つにおいて真空洗浄処理が行われるときには、
     前記第1排気装置、前記第2排気装置、前記第1切り替え装置および前記第2切り替え装置を制御することにより、
     前記真空洗浄処理が行われる処理容器に前記第1排気装置を連通させて、当該処理容器に対応する前記排出ライン、前記真空引きラインおよび前記第1サブ真空引きラインを介して当該処理容器内を前記作動可能圧力とし、
     その後、前記真空洗浄処理が行われる処理容器に前記第2排気装置を連通させて、当該処理容器に対応する前記排出ライン、前記真空引きラインおよび前記第1サブ真空引きラインを介して当該処理容器内を前記真空洗浄圧力とする、
    請求項7記載の基板処理装置。
    The control unit includes:
    During normal operation of the substrate processing apparatus,
    By controlling the first exhaust device, the second exhaust device, the first switching device, and the second switching device, the fluid flowing down the discharge line is prevented from flowing into the vacuum line and is During operation, the exhaust is in a normal exhaust state flowing down to the exhaust destination, and all the first sub vacuum lines and the first combined vacuum line are maintained at the operable pressure, and all the second vacuum lines are maintained at the operable pressure. maintaining the vacuum cleaning pressure in the sub-vacuum line and the second combined vacuum line;
    When vacuum cleaning processing is performed in at least one of the plurality of processing vessels,
    By controlling the first exhaust device, the second exhaust device, the first switching device, and the second switching device,
    The first evacuation device is communicated with the processing container in which the vacuum cleaning process is performed, and the inside of the processing container is moved through the discharge line, the evacuation line, and the first sub-evacuation line corresponding to the processing container. the operable pressure;
    After that, the second evacuation device is communicated with the processing container in which the vacuum cleaning process is performed, and the processing container is connected to the processing container via the discharge line, the evacuation line, and the first sub-evacuation line corresponding to the processing container. The inside is set to the vacuum cleaning pressure,
    The substrate processing apparatus according to claim 7.
  9.  前記処理容器にパージガスを供給するパージガス供給部をさらに備え、
     前記制御部は、前記真空洗浄処理の終了後に前記処理容器内を常圧に戻すために、前記処理流体供給部とは別個に設けられたガス供給部から前記処理容器にパージガスを供給する、請求項1記載の基板処理装置。
    further comprising a purge gas supply unit that supplies purge gas to the processing container,
    The control unit supplies purge gas to the processing container from a gas supply unit provided separately from the processing fluid supply unit, in order to return the inside of the processing container to normal pressure after the vacuum cleaning process is completed. Item 1. Substrate processing apparatus according to item 1.
  10.  前記パージガスは窒素ガスである、請求項9記載の基板処理装置。 The substrate processing apparatus according to claim 9, wherein the purge gas is nitrogen gas.
  11.  前記制御部は、前記真空洗浄処理の終了後に前記処理容器内を常圧に戻すために、前記制御部が前記処理流体供給部に前記処理流体を前記処理容器に供給させる、請求項1記載の基板処理装置。 The control unit according to claim 1, wherein the control unit causes the processing fluid supply unit to supply the processing fluid to the processing container in order to return the inside of the processing container to normal pressure after the vacuum cleaning process is completed. Substrate processing equipment.
  12.  基板を収容可能な処理容器と、前記基板に超臨界乾燥処理を施すために、前記処理容器に超臨界状態の処理流体を供給する処理流体供給部と、を備えた基板処理装置において、前記処理容器の内部を洗浄する洗浄方法において、
     前記処理容器に基板が収容されていないときに、前記処理容器を密閉するとともに前記処理容器内に流体が流入しないような状態とし、この状態で、前記処理容器を真空引きすることにより、前記処理容器内の圧力を予め定められた真空洗浄圧力に低下させ、前記処理容器内の汚染物質を気化させて前記処理容器内から排出する、洗浄方法。
    A substrate processing apparatus comprising a processing container capable of accommodating a substrate, and a processing fluid supply unit supplying a processing fluid in a supercritical state to the processing container in order to perform supercritical drying processing on the substrate. In a cleaning method for cleaning the inside of a container,
    When no substrate is housed in the processing container, the processing container is sealed and no fluid flows into the processing container, and in this state, the processing container is evacuated to perform the processing. A cleaning method that reduces the pressure inside a container to a predetermined vacuum cleaning pressure, vaporizes contaminants in the processing container, and discharges the contaminants from the processing container.
  13.  前記処理容器の真空引ききは、第1排気装置および第2排気装置を用いて行われ、
     前記第1排気装置が、常圧から前記第2排気装置が作動可能となる圧力まで前記処理容器内の圧力を低下させる粗引きを行い、
     その後に、前記第2排気装置が前記真空洗浄圧力まで前記処理容器内の圧力を低下させる、請求項12記載の洗浄方法。
    The processing container is evacuated using a first exhaust device and a second exhaust device,
    The first exhaust device performs rough evacuation to reduce the pressure within the processing container from normal pressure to a pressure at which the second exhaust device can operate,
    13. The cleaning method according to claim 12, wherein the second exhaust device then reduces the pressure within the processing vessel to the vacuum cleaning pressure.
  14.  前記処理容器をヒータにより加熱しながら行われる、請求項12記載の洗浄方法。 The cleaning method according to claim 12, wherein the cleaning method is performed while heating the processing container with a heater.
PCT/JP2023/027268 2022-07-28 2023-07-25 Substrate processing method and substrate processing apparatus WO2024024804A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022120883 2022-07-28
JP2022-120883 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024804A1 true WO2024024804A1 (en) 2024-02-01

Family

ID=89706394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027268 WO2024024804A1 (en) 2022-07-28 2023-07-25 Substrate processing method and substrate processing apparatus

Country Status (1)

Country Link
WO (1) WO2024024804A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190943A (en) * 1985-02-20 1986-08-25 Hitachi Ltd Cleaning of interior of reaction-treatment device, purification of gas-phase substance for treatment and reaction-treatment device
JPH10508078A (en) * 1994-10-31 1998-08-04 セイス ピュア ガス インコーポレイテッド In situ getter pump apparatus and method
WO2000053928A1 (en) * 1999-03-05 2000-09-14 Tokyo Electron Limited Vacuum device
JP2001289166A (en) * 2000-04-11 2001-10-19 Ulvac Japan Ltd Device and method for vacuum treatment
JP2008078642A (en) * 2006-08-28 2008-04-03 Interuniv Micro Electronica Centrum Vzw Method and system for measuring contamination of lithography component
KR20170137243A (en) * 2016-06-02 2017-12-13 세메스 주식회사 Apparatus and Method for treating substrate
JP2019091772A (en) * 2017-11-14 2019-06-13 東京エレクトロン株式会社 Cleaning apparatus and cleaning method for substrate processing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190943A (en) * 1985-02-20 1986-08-25 Hitachi Ltd Cleaning of interior of reaction-treatment device, purification of gas-phase substance for treatment and reaction-treatment device
JPH10508078A (en) * 1994-10-31 1998-08-04 セイス ピュア ガス インコーポレイテッド In situ getter pump apparatus and method
WO2000053928A1 (en) * 1999-03-05 2000-09-14 Tokyo Electron Limited Vacuum device
JP2001289166A (en) * 2000-04-11 2001-10-19 Ulvac Japan Ltd Device and method for vacuum treatment
JP2008078642A (en) * 2006-08-28 2008-04-03 Interuniv Micro Electronica Centrum Vzw Method and system for measuring contamination of lithography component
KR20170137243A (en) * 2016-06-02 2017-12-13 세메스 주식회사 Apparatus and Method for treating substrate
JP2019091772A (en) * 2017-11-14 2019-06-13 東京エレクトロン株式会社 Cleaning apparatus and cleaning method for substrate processing apparatus

Similar Documents

Publication Publication Date Title
TWI720261B (en) Substrate processing device, substrate processing method and recording medium
KR101524334B1 (en) Liquid processing apparatus, liquid processing method and recording medium having computer program for performing the same method
KR100964041B1 (en) Substrate processing method and substrate processing apparatus
JP5458314B2 (en) Substrate processing apparatus and supercritical fluid discharge method
JP5544666B2 (en) Substrate processing equipment
CN108074840B (en) Substrate processing apparatus, substrate processing method, and storage medium
TWI761396B (en) Cleaning method for substrate treatment device and cleaning system for substrate treatment device
JP6951923B2 (en) Substrate processing equipment, substrate processing method and computer storage medium
JP7113949B2 (en) Substrate processing equipment
CN111415884B (en) Substrate processing apparatus
TWI829726B (en) Particle removal method for substrate processing device and substrate processing device
JPH11274024A (en) Method and device for supplying treatment liquid
JP5224567B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP7362300B2 (en) Substrate processing equipment and its control method
WO2024024804A1 (en) Substrate processing method and substrate processing apparatus
JP2003115519A (en) Manufacturing method of semiconductor device, semiconductor manufacturing apparatus, load lock chamber, substrate storage case and stocker
JPWO2012008439A1 (en) Substrate processing method and substrate processing system
JP2021015971A (en) Fluid supply unit and substrate processing apparatus having the same
US7415985B2 (en) Substrate cleaning and drying apparatus
TWI769623B (en) Apparatus for treating substrate and method for treating substrate
KR20230133231A (en) Substrate processing method and substrate processing system
CN116741621A (en) Substrate processing method and substrate processing system
JP2023119497A (en) Substrate processing device and substrate processing method
JP2023133102A (en) Substrate processing method and substrate processing apparatus
TW202100249A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846534

Country of ref document: EP

Kind code of ref document: A1