JPS6217704B2 - - Google Patents

Info

Publication number
JPS6217704B2
JPS6217704B2 JP54165622A JP16562279A JPS6217704B2 JP S6217704 B2 JPS6217704 B2 JP S6217704B2 JP 54165622 A JP54165622 A JP 54165622A JP 16562279 A JP16562279 A JP 16562279A JP S6217704 B2 JPS6217704 B2 JP S6217704B2
Authority
JP
Japan
Prior art keywords
amplifier
output
signal
magnetic
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54165622A
Other languages
Japanese (ja)
Other versions
JPS5689053A (en
Inventor
Minoru Fujimoto
Takashi Kadowaki
Soichi Sasaki
Jun Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16562279A priority Critical patent/JPS5689053A/en
Publication of JPS5689053A publication Critical patent/JPS5689053A/en
Publication of JPS6217704B2 publication Critical patent/JPS6217704B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は電磁超音波探傷装置に係り、特に縦割
れ欠陥を検知するに好適な電磁超音波探傷装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic ultrasonic flaw detector, and more particularly to an electromagnetic ultrasonic flaw detector suitable for detecting vertical crack defects.

以下、本発明を図面に基づき説明する。第1図
に従来の電磁超音波探傷装置の構成を示す。同図
において1はその端部が被検体2に対向して配置
されるE型コアであり、該コア1には励磁コイル
3が巻回されており、該励磁コイル3の端部は直
流電源4に接続されて電磁石10が構成されてい
る。更に前記E型コア1の中央部には被検体2
(例えば鋼板)に超音波を発生させ、該被検体2
内に存在する欠陥からの反射波を検出する送受信
コイル5が設けられており、該送受信コイル5の
端部はパルス電圧を発生するパルス発生器6の出
力端に接続されている。
Hereinafter, the present invention will be explained based on the drawings. FIG. 1 shows the configuration of a conventional electromagnetic ultrasonic flaw detection device. In the figure, reference numeral 1 denotes an E-shaped core whose end is placed facing the subject 2. An excitation coil 3 is wound around the core 1, and the end of the excitation coil 3 is connected to a DC power source. 4 to form an electromagnet 10. Furthermore, a subject 2 is placed in the center of the E-shaped core 1.
(for example, a steel plate) to generate ultrasonic waves and
A transmitter/receiver coil 5 is provided for detecting reflected waves from defects present in the transmitter/receiver coil 5, and an end of the transmitter/receiver coil 5 is connected to an output end of a pulse generator 6 that generates a pulse voltage.

一方、パルス発生器6の出力端は前記送受信コ
イル5から検出された信号を増幅する増幅器7の
入力端に接続され、該増幅器7の出力端には検出
信号を表示する表示手段8、例えばシクロスコー
プが接続されている。
On the other hand, the output end of the pulse generator 6 is connected to the input end of an amplifier 7 for amplifying the signal detected from the transmitting/receiving coil 5, and the output end of the amplifier 7 has a display means 8 for displaying the detected signal, such as a cyclotron. Scope is connected.

以上の構成からなる従来の電磁超音波探傷装置
の動作を第2図及び第3図を混じえて説明する。
The operation of the conventional electromagnetic ultrasonic flaw detection apparatus having the above configuration will be explained with reference to FIGS. 2 and 3.

さて励磁コイル3は直流電源4により給電され
ると被検体2に直流磁界が発生する。
Now, when the excitation coil 3 is supplied with power by the DC power supply 4, a DC magnetic field is generated in the subject 2.

一方、パルス発生器6からのパルス信号を受け
る送受信コイル5により被検体2には渦電流が発
生する。この渦電流と前記直流磁界との相互作用
により被検体2にはフレミングの法則に基づく力
が作用し、超音波41が発生する。この超音波4
1は被検体表面から、ほぼ垂直に裏面へ向つて伝
搬し、欠陥31や裏面等で反射して表面へ戻る。
ここで欠陥から反射されて表面へ戻る超音波を欠
陥波21、裏面で反射されて表面へ戻る超音波を
裏面波22と呼ぶ。欠陥波21と裏面波22は前
記直流磁界との相互作用でフレミングの法則に従
つて逆変換を受け、送受信コイル5に起電力とし
て現われる。
On the other hand, an eddy current is generated in the subject 2 by the transmitting/receiving coil 5 receiving the pulse signal from the pulse generator 6. Due to the interaction between this eddy current and the DC magnetic field, a force based on Fleming's law acts on the subject 2, and an ultrasonic wave 41 is generated. This ultrasound 4
1 propagates from the surface of the object almost perpendicularly toward the back surface, is reflected by the defect 31, the back surface, etc., and returns to the front surface.
Here, the ultrasonic waves that are reflected from the defect and return to the front surface are called defect waves 21, and the ultrasonic waves that are reflected from the back surface and return to the front surface are called back waves 22. The defective wave 21 and the backside wave 22 undergo inverse transformation according to Fleming's law by interaction with the DC magnetic field, and appear as an electromotive force in the transmitting/receiving coil 5.

欠陥波21と裏面波22は増幅器6で増幅さ
れ、表示手段8によつて第3図に示したように、
送信パルス19と共に表示される。この場合、第
1図の増幅器6には信号レベルの高い送信パルス
19も入力される。送信パルス19の持続する
間、増幅器6は飽和し、かつ、その後、増幅器6
の増幅度が回復するまでに時間がかかるので、増
幅器6の出力信号に第3図の飽和パルス信号20
が現われ、その時間内は送信パルスに対して、例
えば100dBも信号レベルの低い微小な欠陥波21
は飽和パルス信号に埋もれて検出できない。
The defective wave 21 and the backside wave 22 are amplified by the amplifier 6, and displayed by the display means 8 as shown in FIG.
Displayed together with transmit pulse 19. In this case, the transmission pulse 19 with a high signal level is also input to the amplifier 6 in FIG. During the duration of the transmit pulse 19, the amplifier 6 saturates and then the amplifier 6
Since it takes time for the amplification degree to recover, the output signal of the amplifier 6 becomes the saturated pulse signal 20 in FIG.
appears, and during that time, a minute defective wave 21 with a signal level as low as 100 dB relative to the transmitted pulse appears.
is buried in the saturated pulse signal and cannot be detected.

即ち、従来装置では被検体2表面より深い位置
に存在する欠陥の検出は可能であるが、浅い位置
に存在する欠陥または縦割れ状の欠陥(以下、ク
ラツクと称す。)の検出は不可能である。
That is, with the conventional device, it is possible to detect defects that are located deeper than the surface of the object 2 to be inspected, but it is not possible to detect defects that are located at shallower positions or vertical crack-like defects (hereinafter referred to as cracks). be.

本発明の目的は上記従来装置の欠点を解消し、
被検体内部に存在するクラツクの検出が可能な電
磁超音波探傷装置を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional devices,
An object of the present invention is to provide an electromagnetic ultrasonic flaw detection device capable of detecting cracks existing inside an object.

本発明の特徴は電磁超音波探傷装置を構成する
電磁石により被検体に印加される直流磁界のうち
被検体内部に存在するクラツクに帰因する漏洩磁
束を前記電磁石のE型コア内に設けた一対の磁気
検出素子から得られる差信号により検出すること
により前記クラツクの存在を検知する如く構成し
た点にある。
A feature of the present invention is that leakage magnetic flux attributable to cracks existing inside the test object in the DC magnetic field applied to the test object by an electromagnet constituting an electromagnetic ultrasonic flaw detection device is eliminated by a pair of magnetic fluxes provided in the E-shaped core of the electromagnet. The present invention is configured to detect the presence of the crack by detecting the difference signal obtained from the magnetic detection element.

以下、本発明の実施例を第4図乃至第6図に基
づき説明する。
Embodiments of the present invention will be described below with reference to FIGS. 4 to 6.

第4図は本発明の一実施例の構成を示すブロツ
ク図であり、本実施例が第1図の従来例と構成
上、異なる点は電磁石10を構成するE型コア1
内の被検体2表面に垂直方向の磁束密度が最小と
なる位置に一対の磁気検出素子9A,9Bを設
け、更に該一対の検出素子9A,9Bから得られ
る検出信号の差信号を増幅する差動増幅器10を
設けると共に、該差動増幅器10の出力信号と前
記送受信コイルの検出信号を増幅する増幅器7の
出力信号を切換えるスイツチ手段11を前記表示
手段8の前に設けたことである。
FIG. 4 is a block diagram showing the configuration of an embodiment of the present invention. This embodiment differs from the conventional example shown in FIG.
A pair of magnetic detection elements 9A, 9B is provided at a position where the magnetic flux density in the direction perpendicular to the surface of the object 2 is minimum, and a difference signal is further amplified between the detection signals obtained from the pair of detection elements 9A, 9B. A dynamic amplifier 10 is provided, and a switch means 11 is provided in front of the display means 8 for switching between the output signal of the differential amplifier 10 and the output signal of the amplifier 7 for amplifying the detection signal of the transmitting/receiving coil.

ここで本発明において重要な点は磁気検出素子
9A,9Bの取付位置であり、第4図に示した如
きE型コア1の磁束密度の分布は被検体2の表面
に平行にX軸をとり、被検体2表面に垂直にY軸
をとれば第6図Bの如くE型コア1内のY軸方向
における磁束密度はE型コア1中央部において最
大となり、E型コア1のコの字状中央部において
最小(零)となることが実験により確認されてい
る。
Here, an important point in the present invention is the mounting position of the magnetic detection elements 9A and 9B, and the distribution of magnetic flux density of the E-shaped core 1 as shown in FIG. If the Y-axis is taken perpendicular to the surface of the object 2, as shown in FIG. It has been experimentally confirmed that the value is minimum (zero) at the center of the shape.

従つて前記磁気検出素子9A,9Bを検出感度
の良好な状態で使用する為にE型コア1のコの字
状中央部に前記検出素子9A,9Bを設けること
が必要となる。
Therefore, in order to use the magnetic detecting elements 9A, 9B with good detection sensitivity, it is necessary to provide the detecting elements 9A, 9B in the U-shaped center of the E-shaped core 1.

上記構成において被検体2表面から深い位置に
ある欠陥を調べる場合にはスイツチ手段11の接
点CをA側に切換えることにより行うがこの場合
は第1図の従来例と全く同様の構成になる。
In the above structure, when a defect located deep from the surface of the object 2 is to be investigated, the contact C of the switch means 11 is switched to the A side, and in this case, the structure is exactly the same as that of the conventional example shown in FIG.

次に被検体2に存在するクラツクを調べる場合
には前記接点CをB側に切換える。この場合第5
図に示す如く被検体2において磁気検出素子9A
直下にクラツク12が存在し、且つ磁気検出素子
9B直下にクラツクが存在しない場合には、前記
検出素子9Aにより漏洩磁束が検出され、前記検
出素子9Bからは漏洩磁束が検出されないから、
前記一対の磁気検出素子9A,9Bの出力を前記
差動増幅器10に入力し、その差信号によりクラ
ツクの存在を示す信号が得られる。
Next, when a crack existing in the subject 2 is to be investigated, the contact point C is switched to the B side. In this case the fifth
As shown in the figure, the magnetic detection element 9A in the subject 2
If the crack 12 exists directly below the magnetic detection element 9B, and no crack exists directly below the magnetic detection element 9B, leakage magnetic flux is detected by the detection element 9A, and no leakage magnetic flux is detected by the detection element 9B.
The outputs of the pair of magnetic detection elements 9A and 9B are input to the differential amplifier 10, and the difference signal provides a signal indicating the presence of a crack.

また磁気検出素子9A,9B直下に同様のクラ
ツクが存在する場合には差動増幅器10より得ら
れる信号は雑音レベルと判別ができない可能性も
あるが、これは被検体2又は電磁石10のいずれ
かを相対的に走査させる場合にその走査方向を例
えば縦方向と横方向の2通りを行うように変化さ
せることにより回避できる。
Furthermore, if a similar crack exists directly below the magnetic detection elements 9A and 9B, the signal obtained from the differential amplifier 10 may not be able to be distinguished from the noise level; This can be avoided by changing the scanning direction, for example, in the vertical direction and in the horizontal direction, when scanning relatively.

ここで磁気検出素子9A,9Bは例えばホール
素子、マグネツトダイオード等が使用される。
Here, the magnetic detection elements 9A and 9B are, for example, Hall elements, magnet diodes, or the like.

以上、本発明によれば従来装置では検出不可能
であつた被検体に存在するクラツクの検出が可能
となる。
As described above, according to the present invention, it is possible to detect cracks present in a subject that were undetectable with conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気超音波探傷装置の構成を示
すブロツク図、第2図及び第3図は第1図の従来
例の動作説明を行う為の説明図、第4図は本発明
の一実施例の構成を示すブロツク図、第5図は第
4図の動作説明を行う等のブロツク図、第6図は
第4図に示した実施例におけるE型コアの磁束密
度分布と磁気検出素子との位置関係を示す説明図
である。 1…E型コア、2…被検体、3…励磁コイル、
4…直流電源、5…送受信コイル、6…パルス発
生器、7,10…増幅器、8…表示手段、9A,
9B…磁気検出素子、11…スイツチ手段。
Fig. 1 is a block diagram showing the configuration of a conventional magnetic ultrasonic flaw detection device, Figs. 2 and 3 are explanatory diagrams for explaining the operation of the conventional example shown in Fig. 1, and Fig. 4 is an example of the present invention. 5 is a block diagram showing the configuration of the embodiment, FIG. 5 is a block diagram for explaining the operation of FIG. 4, and FIG. 6 is the magnetic flux density distribution of the E-shaped core and the magnetic detection element in the embodiment shown in FIG. 4. It is an explanatory view showing a positional relationship with. 1...E-type core, 2...subject, 3...excitation coil,
4... DC power supply, 5... Transmitting/receiving coil, 6... Pulse generator, 7, 10... Amplifier, 8... Display means, 9A,
9B...Magnetic detection element, 11...Switch means.

Claims (1)

【特許請求の範囲】[Claims] 1 E型コアに励磁コイルを巻回し、直流電源に
より励磁される電磁石と、前記E型コアの一端部
に設けられた送受信コイルと、該送受信コイルか
ら出力される検出信号を増幅する増幅器と、前記
送受信コイル及び増幅器にパルス電圧を供給する
パルス発生器と、前記増幅器の出力信号を表示す
る表示手段とからなり、前記電磁石のE型コアの
端部を被検体に対向させるように構成した電磁超
音波探傷装置において、E型コア内における被検
体表面の垂直方向の磁束密度が最小となる位置に
設けられる一対の磁気検出素子と、該一対の検出
素子の差信号を増幅する差動増幅器と、該差動増
幅器の出力と前記増幅器の出力とを切り換える前
記表示手段の前に設けられるスイツチ手段とを具
備したことを特徴とする電磁超音波探傷装置。
1. An excitation coil wound around an E-type core, an electromagnet excited by a DC power source, a transmitting/receiving coil provided at one end of the E-type core, and an amplifier for amplifying a detection signal output from the transmitting/receiving coil. The electromagnet comprises a pulse generator that supplies a pulse voltage to the transmitter/receiver coil and the amplifier, and a display means that displays the output signal of the amplifier, and is configured such that the end of the E-shaped core of the electromagnet faces the subject. An ultrasonic flaw detection device includes: a pair of magnetic detection elements provided in an E-type core at a position where the magnetic flux density in a direction perpendicular to the surface of a test object is minimized; and a differential amplifier that amplifies a difference signal between the pair of detection elements. , a switch means provided in front of the display means for switching between the output of the differential amplifier and the output of the amplifier.
JP16562279A 1979-12-21 1979-12-21 Electromagnetic ultrasonic inspector Granted JPS5689053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16562279A JPS5689053A (en) 1979-12-21 1979-12-21 Electromagnetic ultrasonic inspector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16562279A JPS5689053A (en) 1979-12-21 1979-12-21 Electromagnetic ultrasonic inspector

Publications (2)

Publication Number Publication Date
JPS5689053A JPS5689053A (en) 1981-07-20
JPS6217704B2 true JPS6217704B2 (en) 1987-04-18

Family

ID=15815852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16562279A Granted JPS5689053A (en) 1979-12-21 1979-12-21 Electromagnetic ultrasonic inspector

Country Status (1)

Country Link
JP (1) JPS5689053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428707U (en) * 1987-08-12 1989-02-20
JPH06272866A (en) * 1993-03-16 1994-09-27 Fuji Mc:Kk Composite type heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428707U (en) * 1987-08-12 1989-02-20
JPH06272866A (en) * 1993-03-16 1994-09-27 Fuji Mc:Kk Composite type heating device

Also Published As

Publication number Publication date
JPS5689053A (en) 1981-07-20

Similar Documents

Publication Publication Date Title
JP4911489B2 (en) Flaw detector
JP2006242770A (en) Electromagnetic ultrasonic flaw detection/measurement method and device
CN110849962A (en) Device and method for evaluating trend and depth of metal crack by utilizing electromagnetic ultrasonic principle
JPS6217704B2 (en)
US3550435A (en) Process and apparatus for the ultrasonic inspection of materials
JPH0772122A (en) Leak flux flaw detection method and apparatus for internal defect of magnetic material
JP2000146923A (en) Ultrasonic measurement method for steel material
JP2007003509A (en) Method and apparatus for diagnosing degradation of steel framed structure
US7395715B2 (en) Electromagnetic ultrasound probe
JPH0352578B2 (en)
Kaniak et al. Enhanced non-contact ultrasonic testing using an air-coupled optical microphone
JP2961061B2 (en) Electromagnetic ultrasonic flaw detector
JP2001013118A (en) Electromagnetic ultrasonic probe
JP2013068465A (en) Eddy current detector and phase control circuit
JP2004205380A (en) Magnetic flaw detection apparatus
JPH0815229A (en) High resolution eddy current flaw detector
JPH10253596A (en) Electromagnetic ultrasonic probe and ultrasonic flaw detector employing it
JPS6333658A (en) Non-contact ultrasonic flaw detection
JPS62177447A (en) Noncontact ultrasonic flaw detection method
JPS6250780B2 (en)
JPS6128301B2 (en)
JPS62126346A (en) Method for ultrasonic detection in non-contact state
JP2739972B2 (en) Ultrasonic flaw detector
JP2519501Y2 (en) Magnetic flaw detector
JPS62277556A (en) Electromagnetic ultrasonic probe