JPS6333658A - Non-contact ultrasonic flaw detection - Google Patents

Non-contact ultrasonic flaw detection

Info

Publication number
JPS6333658A
JPS6333658A JP61175668A JP17566886A JPS6333658A JP S6333658 A JPS6333658 A JP S6333658A JP 61175668 A JP61175668 A JP 61175668A JP 17566886 A JP17566886 A JP 17566886A JP S6333658 A JPS6333658 A JP S6333658A
Authority
JP
Japan
Prior art keywords
inspected
flaw detection
laser light
frequency
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61175668A
Other languages
Japanese (ja)
Other versions
JPH0610667B2 (en
Inventor
Koji Ishihara
石原 耕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61175668A priority Critical patent/JPH0610667B2/en
Publication of JPS6333658A publication Critical patent/JPS6333658A/en
Publication of JPH0610667B2 publication Critical patent/JPH0610667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect a defect, thickness and the like of an object to be inspected accurately in a non-contacted manner, by projecting a laser light to an exciting part of an object to be inspected to catch a Doppler shift of the laser light due to a surface vibration of the body being inspected as beat signal. CONSTITUTION:A first laser light with the frequency modulated is projected to an object 1 to be inspected through a hole 6 formed at the center magnetic core 3a of a high frequency magnetic core 3. The first laser light (with the frequency f0) projected to the object 1 being inspected receives a Doppler shift due to a surface vibration of the object 1 being inspected as generated by the reflected wave of an electromagnetic ultrasonic wave so that the frequency thereof is modulated to f0+f1+fd. A photodetector 15 catches the reflection of said first laser light and a second laser light as beat signal f2-f1-fd. In this case, when a first photoacoustic modulator 12 and a second photoacoustic modulator 14 has perfectly the same performance, the photodetector 15 catches the reflection as beat signal fd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、鋼材等の腐食、ラミネーション等の欠陥ま
たは板厚等を、センサーを接触させることなく、非接触
で検出するための非接触超音波探傷方法に関するもので
ある。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a non-contact ultrasonic wave for detecting corrosion of steel materials, defects such as lamination, plate thickness, etc. without contacting a sensor. This relates to flaw detection methods.

〔従来技術とその問題点〕[Prior art and its problems]

例えば、ガスパイプラインにおける管内面の欠陥の検出
、鋼材の熱間圧延ラインにおけるオンライン探傷等、敲
検査体の探傷を接触探傷方式で行なうことが出来ない場
合の探傷方法として、非接触超音波探傷が行なわれてい
る。
For example, non-contact ultrasonic flaw detection is used as a flaw detection method when it is not possible to perform flaw detection on a test piece using contact detection, such as detecting defects on the inner surface of a pipe in a gas pipeline or online flaw detection in a steel hot rolling line. It is being done.

このような非接触超音波探傷方法として 電磁超音゛波
コ式:、′探、)傷ノ法、およびレーザー光式探傷法が
知られている。電磁超音波式探傷法は、非接触で探傷で
きる利点のほかに、磁石(永久磁石または電磁石)とコ
イルとの組み合せにより種々のモードの超音波が発振で
き、且つ、センサー構造で決定される特定のモードの信
号のみを受信し得る効果を有している。
As such non-contact ultrasonic flaw detection methods, electromagnetic ultrasonic flaw detection method and laser beam flaw detection method are known. In addition to the advantage of non-contact flaw detection, the electromagnetic ultrasonic flaw detection method can oscillate ultrasonic waves in various modes using a combination of a magnet (permanent magnet or electromagnet) and a coil. It has the effect of being able to receive only mode signals.

しかしながら、電磁超音波式探傷法には、センサーとし
ての変換効率が悪く、発振時および受信時に各々40〜
50 dBの変換損が生ずる問題がある。従って、この
ような変換損を補うために、永久磁石を使用する場合に
は、発振のために高い保持力を有する、希土類元素によ
る大寸法の磁石が必要であり、電磁石を使用する場合に
は、発振のために巻数の多いコイルおよび大電流が必要
である。更に、受信のために、高増幅率のアンプを使用
し、S/N比向上向上めに受信信号の平均化処理を行な
うことが必要である。
However, the electromagnetic ultrasonic flaw detection method has a poor conversion efficiency as a sensor, and the
There is a problem that a conversion loss of 50 dB occurs. Therefore, in order to compensate for such conversion losses, when using permanent magnets, large-sized magnets made of rare earth elements and having high coercive force for oscillation are required; when using electromagnets, , a coil with a large number of turns and a large current are required for oscillation. Furthermore, for reception, it is necessary to use an amplifier with a high amplification factor and to average the received signal to improve the S/N ratio.

一方、レーザー光式探傷法は、非接触で探傷できる利点
のほかに、受信信号として被検査体の変位を直接捉える
ことができる効果を有している。
On the other hand, the laser beam flaw detection method not only has the advantage of being able to detect flaws without contact, but also has the advantage of being able to directly capture the displacement of the object to be inspected as a received signal.

しかしながら、レーザー光式探傷法には、受信時は数I
IIxW程度のレーザー出力で十分である反面、発振時
において超音波を被検査体に励振させるために、少なく
とも数Wの大出力レーザーが必要となり、このために、
大型の装置を必要とし、且つ高価となる上、装置の設置
のために広いスR−スを要する問題がある。
However, in the laser beam flaw detection method, the number of I
While a laser output of about II x W is sufficient, a high output laser of at least several W is required to excite the ultrasonic wave to the object to be inspected during oscillation, and for this reason,
There are problems in that it requires a large-sized device, is expensive, and requires a large space for installing the device.

また、発振にレーザー光を使用し、受信に電磁超音波を
使用する探傷法も知られているが、この方法には、上述
したようにレーザー光による発振のために大出力のレー
ザーを必要とするため装置が大型化し、且つ、電磁超音
波による受信時に変換損が生ずる等の問題がある。
There is also a known flaw detection method that uses laser light for oscillation and electromagnetic ultrasonic waves for reception, but as mentioned above, this method requires a high-power laser to oscillate with the laser light. This increases the size of the device, and there are problems such as conversion loss occurring when receiving electromagnetic ultrasonic waves.

本発明者等は、上述した問題を解決するため種々研究を
行ない、先に、発振に電磁超音波を使用し、電磁超音波
による被検査体の励振部分に向けてレーザー光を発射し
、励振部分からのレーザー光の反射信号に基いて、被検
査体の欠陥等を検出することからなる方法を開発し、特
許出願(特願昭61−17863号)した。
The present inventors conducted various studies to solve the above-mentioned problems, and first used electromagnetic ultrasound for oscillation, emitted a laser beam toward the excited part of the object to be inspected by the electromagnetic ultrasound, and We developed a method for detecting defects in the object to be inspected based on the reflected laser beam signals from the parts, and filed a patent application (Japanese Patent Application No. 17863/1983).

上述した方法によれば、装置の小型化および受信時にお
ける変換損の低減を図ることができるが、ナの後の研究
の結果、被検査体の表面が粗い場合には、上述した方法
では正確な探傷ができないことがわかった。
According to the method described above, it is possible to miniaturize the device and reduce conversion loss during reception, but as a result of subsequent research, the method described above is not accurate when the surface of the object to be inspected is rough. It turned out that proper flaw detection was not possible.

〔発明の目的〕[Purpose of the invention]

従って、この発明の目的は、小型な装置によシ受霞時に
おける変換損がなく且く被検査体が粗面の場合でも、効
率よく正確な探傷を行なうことができる非接触超音波探
傷方法を提供することにある。
Therefore, an object of the present invention is to provide a non-contact ultrasonic flaw detection method that uses a small device to perform efficient and accurate flaw detection even when the object to be inspected has a rough surface without causing conversion loss during haze. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

この発明は、被検査体に向けて電磁超音波を発振し、前
記電磁超音波の前記被検査体からの反射波により、前記
被検査体の欠陥、板厚等を検出する非接触超音波探傷方
法において、前記電磁超音波による前記被検査体の励振
部分に向けてレーザー光を投射し、前記電磁超音波によ
シ前記被検査体の表面に生じた振動による1、前記レー
ザー光のドツプラーシフトをビート信号として捉え、前
記ビート信号に基いて、前記被検査体の欠陥、板厚等を
検出することに特徴を有するものである。
This invention provides a non-contact ultrasonic flaw detection method that oscillates electromagnetic ultrasonic waves toward an object to be inspected and detects defects, plate thickness, etc. of the object to be inspected using reflected waves of the electromagnetic ultrasonic waves from the object to be inspected. In the method, a laser beam is projected toward an excited part of the object to be inspected by the electromagnetic ultrasound, and 1. Doppler of the laser beam is generated by vibration generated on the surface of the object to be inspected by the electromagnetic ultrasound. The present invention is characterized in that the shift is regarded as a beat signal, and defects, plate thickness, etc. of the object to be inspected are detected based on the beat signal.

〔発明の構成〕[Structure of the invention]

次に、この発明の方法を図面を参照しながら説明する。 Next, the method of the present invention will be explained with reference to the drawings.

第1図は、この発明の方法の一実施態様を示すブロック
図、第2図はこの発明の方法に使用される電磁超音波探
触子の平面図である。この発明においては、被検査体の
腐食、ラミネーション等の欠陥または板厚等の、非接触
超音波探傷による測定を、発振側は電磁超音波方式によ
りそして受信側はレーザー光方式により行なうものであ
る。
FIG. 1 is a block diagram showing one embodiment of the method of the present invention, and FIG. 2 is a plan view of an electromagnetic ultrasound probe used in the method of the present invention. In this invention, non-contact ultrasonic flaw detection is used to measure corrosion, defects such as lamination, or plate thickness of an object to be inspected, using an electromagnetic ultrasonic method on the oscillating side and a laser beam method on the receiving side. .

第1図および第2図に示すように、電磁超音波探触子2
は、E形状の高周波磁心3と、高周波磁心3の中央磁心
3aに巻かれた、バイアス磁界発生用コイル4と、高周
波磁心3の両側磁心3b。
As shown in FIGS. 1 and 2, an electromagnetic ultrasound probe 2
These are an E-shaped high-frequency magnetic core 3, a bias magnetic field generating coil 4 wound around the central magnetic core 3a of the high-frequency magnetic core 3, and magnetic cores 3b on both sides of the high-frequency magnetic core 3.

3bに巻かれた高周波磁界発生用コイル5,5とからな
っており、中央磁心3aにはその軸線に沿って貫通する
孔6が設けられている。7はバイアス磁界発生用コイル
4が接続されているバイアス磁界発生回路、8は高周波
磁界発生用コイル5が接続されている高圧・母ルス発生
回路である。
The central magnetic core 3a is provided with a hole 6 passing through it along its axis. 7 is a bias magnetic field generation circuit to which the bias magnetic field generation coil 4 is connected, and 8 is a high voltage/power pulse generation circuit to which the high frequency magnetic field generation coil 5 is connected.

上述のように構成された電磁超音波探触子2を、被検査
体1の表面に近接して位置させる。そして、バイアス磁
界発生用コイル4に通電してバイアス磁界を発生させ且
つ高周波磁界発生用コイル5゜5に高周波電流を通電す
る。かくして、被検査体1に、ローレンツ力によシ超音
波が矢印aのように発振され、被検査体1は励振される
The electromagnetic ultrasound probe 2 configured as described above is positioned close to the surface of the object to be inspected 1 . Then, the bias magnetic field generating coil 4 is energized to generate a bias magnetic field, and the high frequency magnetic field generating coil 5.5 is energized with a high frequency current. In this way, ultrasonic waves are oscillated in the object 1 to be inspected as shown by arrow a due to the Lorentz force, and the object 1 to be inspected is excited.

このように被検査体1を励振させた超音波が、被検査体
1中に存在する欠陥または被検査体1の底面から、矢印
すのように反射する信号を受信しこれを解析することに
よって、被検査体1の欠陥、板厚等が検出される。
The ultrasonic wave that excited the object 1 to be inspected in this way receives a signal reflected from the defect existing in the object 1 to be inspected or the bottom surface of the object 1 to be inspected as shown by the arrow, and this is analyzed. , defects, plate thickness, etc. of the object to be inspected 1 are detected.

次に、被検査体1からの反射信号を受信するための受信
部9について説明する。受信部9は、レーザー発振器1
oと、レーザー発振器1oからのレーザー光を2分割し
、その一方の第ル−ザー光を屈折させて、被検査体1の
電磁超音波による励振部分に向けて送シ、その他方の第
2レーザー光を直進させるための、高周波磁心3の中央
磁心3aの上方に配置されたビームスシリツタ−11と
、ビームスプリンター11により分割され、屈折して被
検査体1の励振部分に送られる第ル−ザー光の周波数を
変調するための第1光音響変調器(AOM)12と、ビ
ームスプリッタ−11によシ分割された他方の直進する
第2レーザー光を反射させるためのミラー13と、ミラ
ー13に送られる第2レーザー光の周波数を変調するた
めの第2光音響変調器(AOM)14と、被検査体1の
励振部分に送られた第ル−ザー光の反射光、および、ミ
ラー13による第2レーザー光の反射光を受光するため
のフォトデテクター15と、フォトデテクター15から
の信号を増幅するための増幅器16と、増幅器16によ
る信号を電圧信号に変換するためのバンドパスフィルタ
ー17およびF/V変換器18とからなっている。22
は、第1光音響変調器12と高周波磁心3との間、およ
びビームスプリッタ−11とフォトデテクター15との
間に設けられたレンズである。なお、レーザー発振器1
0は、小型にするため半導体レーザーによる発振器を使
用することが好ましい。
Next, the receiving section 9 for receiving the reflected signal from the inspected object 1 will be explained. The receiving section 9 includes a laser oscillator 1
The laser beam from the laser oscillator 1o and the laser oscillator 1o is divided into two parts, and one of the laser beams is refracted and sent toward the part of the object to be inspected 1 excited by electromagnetic ultrasound, and the other, the second A beam splitter 11 is arranged above the central magnetic core 3a of the high-frequency magnetic core 3 to make the laser beam go straight, and a beam splitter 11 is used to make the laser beam go straight. - a first photoacoustic modulator (AOM) 12 for modulating the frequency of the laser beam; a mirror 13 for reflecting the other straight-going second laser beam split by the beam splitter 11; a second photoacoustic modulator (AOM) 14 for modulating the frequency of the second laser beam sent to the laser beam 13; a reflected light of the first loser beam sent to the excitation part of the object to be inspected 1; and a mirror. 13, an amplifier 16 for amplifying the signal from the photodetector 15, and a bandpass filter 17 for converting the signal from the amplifier 16 into a voltage signal. and an F/V converter 18. 22
is a lens provided between the first photoacoustic modulator 12 and the high-frequency magnetic core 3 and between the beam splitter 11 and the photodetector 15. In addition, laser oscillator 1
It is preferable to use an oscillator using a semiconductor laser for miniaturization.

レーザー発振器10から発振されたレーザー光は、ビー
ムスグリツタ−11によって2つに分割される。そして
、その一方の第ル−ザー光(周波数f0)は、下方に9
0°屈折して第1光音響変調器12に至シ、第1光音響
変調器12において、f0+f1の周波数に変調される
。このように周波数が変調された第ル−ザー光は、高周
波磁心3の中央磁心3aに形成された孔6を通って、被
検査体1に投射される。被検査体1に投射された第ル−
ザー光は、前述した電磁超音波の反射波によシ生じた被
検査体1の表面振動によるドツプラーシフトを受け、そ
の周波数がf。十f、+fdに変調される。
A laser beam emitted from a laser oscillator 10 is split into two by a beam sinter 11. Then, one of the loser lights (frequency f0) is directed downward by 9
It is refracted by 0° and reaches the first photoacoustic modulator 12, where it is modulated to a frequency of f0+f1. The frequency-modulated first loser light passes through the hole 6 formed in the central magnetic core 3a of the high-frequency magnetic core 3 and is projected onto the object 1 to be inspected. The first rule projected onto the object to be inspected 1
The laser light undergoes a Doppler shift due to the surface vibration of the object to be inspected 1 caused by the reflected wave of the electromagnetic ultrasound described above, and its frequency becomes f. It is modulated to 10f, +fd.

このようにして、被検査体1に投射された第ル−ザー光
は、その表面で反射し、再び高周波磁心3の中央磁心3
aに形成された孔6を通り、ビームスグリツタ−11を
経てフォトデテクター15に至る。
In this way, the first loser light projected onto the object to be inspected 1 is reflected on its surface and returns to the central magnetic core of the high frequency magnetic core 3.
The beam passes through the hole 6 formed in a, passes through the beam gritter 11, and reaches the photodetector 15.

一方、ビームスプリッタ−11によって分割された他方
の第2レーザー光(周波数f。)は、ビームスシリツタ
−11を直進して第2光音響変調器14に至り、第2光
音響変調器14において、fO十f2の周波数に変調さ
れる。このように周波数が変調された第2レーザー光は
、ミラー13で反射され、ビームスプリッタ−11によ
シ上方に906屈折して、フォトデテクター15に至る
On the other hand, the other second laser beam (frequency f.) split by the beam splitter 11 goes straight through the beam splitter 11 and reaches the second photoacoustic modulator 14. , fO10f2. The second laser beam whose frequency has been modulated in this manner is reflected by the mirror 13, refracted upward by the beam splitter 11 906, and reaches the photodetector 15.

フォトデテクター15は、上述した第ル−ザー光および
第2レーザー光の反射を、ビート信号f、−f1−fd
として捉える。この場合、第1光音響変調器12および
第2光音響変調器14が完全に同じ性能を有しておれば
、フォトデテクター15は、ビート信号fdとして捉え
る。
The photodetector 15 converts the reflections of the above-mentioned loser light and second laser light into beat signals f, -f1-fd.
Take it as In this case, if the first photoacoustic modulator 12 and the second photoacoustic modulator 14 have completely the same performance, the photodetector 15 will capture it as a beat signal fd.

上述のようにして、フォトデテクター15で捉えられた
ビート信号は、増幅器16によって増幅された後、バン
ドパスフィルター17を通ってF/V変換器18に至り
、F/V変換器18によって電圧として出力される。そ
して、同期回路19からの信号と共に信号増幅処理回路
20に導かれ、表示器21によって表示される。
As described above, the beat signal captured by the photodetector 15 is amplified by the amplifier 16, passes through the bandpass filter 17, reaches the F/V converter 18, and is converted into a voltage by the F/V converter 18. Output. The signal is then guided to the signal amplification processing circuit 20 together with the signal from the synchronization circuit 19, and displayed on the display 21.

このようにして、電磁超音波により生じた被検査体1の
励振部分に向けてレーザー発振器1oによシレーデー光
を投射し、被検査体1の表面振動による、レーザー光の
ドツプラーシフトをビート信号として捉えることにより
、このビート信号に基いて被検査体1の欠陥、板厚等を
、非接触で確実に検出することができる。
In this way, the laser oscillator 1o projects the laser beam toward the excited part of the object 1 generated by the electromagnetic ultrasound, and the Doppler shift of the laser beam due to the surface vibration of the object 1 is converted into a beat signal. By capturing this beat signal, defects, plate thickness, etc. of the object to be inspected 1 can be reliably detected in a non-contact manner based on this beat signal.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明の方法によれば、超音波の
発振に電磁超音波を使用し、受信にレーザー光を使用し
たから、装置を小型化することができ、且つ、受信時に
おける変換損がなく、レーザー光のドツプラーシフトを
ビート信号として捉え、前記ビート信号に基いて欠陥、
板厚等の検出が行りわれるから、被検査体が粗面の場合
でも、効率よく正確な探傷を行なうことができる等、多
くの工業上優れた効果がもたらされる。
As described above, according to the method of the present invention, electromagnetic ultrasound is used to oscillate ultrasound waves, and laser light is used to receive ultrasound waves, so the device can be miniaturized, and the conversion during reception is possible. There is no loss, the Doppler shift of the laser beam is captured as a beat signal, and defects and defects are detected based on the beat signal.
Since the plate thickness and the like are detected, many excellent industrial effects are brought about, such as being able to perform efficient and accurate flaw detection even when the inspected object has a rough surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の一実施態様を示すブロック図
、第2図はこの発明の方法に使用される電磁超音波探触
子の平面図である。図面において、1・・・被検査体 
   2・・・電磁超音波探触子3・・・高周波磁心 
  3a・・・中央磁心3b・・・両側磁心 4・・・バイアス磁界発生用コイル 5・・・高周波磁界発生用コイル、 6・・孔、 7・・・バイアス磁界発生回路、 8・・・高圧・ぐルス発生回路、 9・・・受信部、 10・・・レーザー発振器。 11・・・ビームスグリツタ−1 12・・・第1光音響変調器、  13・・・ミラー、
14・・・第2光音響変調器、 15・・・フォトデテクター、  16・・・増幅器、
17・・・パントハスフィルター、 18・・・F/V変換器、    19・・・同期回路
、20・・・信号増幅処理回路、  21・・・表示器
22・・・レンズ。
FIG. 1 is a block diagram showing one embodiment of the method of the present invention, and FIG. 2 is a plan view of an electromagnetic ultrasound probe used in the method of the present invention. In the drawings, 1... object to be inspected
2... Electromagnetic ultrasound probe 3... High frequency magnetic core
3a... Central magnetic core 3b... Both side magnetic cores 4... Coil for bias magnetic field generation 5... Coil for high frequency magnetic field generation, 6... Hole, 7... Bias magnetic field generation circuit, 8... High voltage - Glucose generating circuit, 9... Receiving section, 10... Laser oscillator. 11... Beam sinter 1 12... First photoacoustic modulator, 13... Mirror,
14... Second photoacoustic modulator, 15... Photodetector, 16... Amplifier,
17...Panthos filter, 18...F/V converter, 19...Synchronization circuit, 20...Signal amplification processing circuit, 21...Indicator 22...Lens.

Claims (1)

【特許請求の範囲】 被検査体に向けて電磁超音波を発振し、前記電磁超音波
の前記被検査体からの反射波により、前記被検査体の欠
陥、板厚等を検出する非接触超音波探傷方法において、 前記電磁超音波による前記被検査体の励振部分に向けて
レーザー光を投射し、前記電磁超音波により前記被検査
体の表面に生じた振動による、前記レーザー光のドップ
ラーシフトをビート信号として捉え、前記ビート信号に
基いて、前記被検査体の欠陥、板厚等を検出することを
特徴とする非接触超音波探傷方法。
[Scope of Claims] A non-contact ultrasonic device that oscillates electromagnetic ultrasonic waves toward an object to be inspected and detects defects, plate thickness, etc. of the object to be inspected using reflected waves of the electromagnetic ultrasonic waves from the object to be inspected. In the sonic flaw detection method, a laser beam is projected toward an excited part of the object to be inspected by the electromagnetic ultrasonic wave, and a Doppler shift of the laser beam is detected due to vibrations generated on the surface of the object to be inspected by the electromagnetic ultrasonic wave. A non-contact ultrasonic flaw detection method characterized by detecting defects, plate thickness, etc. of the object to be inspected based on the beat signal.
JP61175668A 1986-07-28 1986-07-28 Non-contact ultrasonic flaw detector Expired - Lifetime JPH0610667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61175668A JPH0610667B2 (en) 1986-07-28 1986-07-28 Non-contact ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61175668A JPH0610667B2 (en) 1986-07-28 1986-07-28 Non-contact ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPS6333658A true JPS6333658A (en) 1988-02-13
JPH0610667B2 JPH0610667B2 (en) 1994-02-09

Family

ID=16000138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61175668A Expired - Lifetime JPH0610667B2 (en) 1986-07-28 1986-07-28 Non-contact ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPH0610667B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471352B1 (en) * 2001-07-10 2005-03-07 기아자동차주식회사 Volt engagement by non-contact vibration measurement
JP2008261806A (en) * 2007-04-13 2008-10-30 Toshiba Corp Material thickness monitoring system and material thickness measuring method
JP2010071741A (en) * 2008-09-17 2010-04-02 Toshiba Corp Piping thickness measurement method and device
CN113740441A (en) * 2021-08-25 2021-12-03 北京交通大学 Integrated laser acousto-magnetic metal defect flaw detection device and method
CN114336264A (en) * 2021-03-19 2022-04-12 武汉仟目激光有限公司 Laser detection method based on dual-wavelength laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171662A (en) * 1982-04-02 1983-10-08 Hitachi Ltd Noncontacting type ultrasonic wave receiver and transmitter
JPS58182524A (en) * 1982-04-20 1983-10-25 Sumitomo Electric Ind Ltd System for detecting change in light frequency

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171662A (en) * 1982-04-02 1983-10-08 Hitachi Ltd Noncontacting type ultrasonic wave receiver and transmitter
JPS58182524A (en) * 1982-04-20 1983-10-25 Sumitomo Electric Ind Ltd System for detecting change in light frequency

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471352B1 (en) * 2001-07-10 2005-03-07 기아자동차주식회사 Volt engagement by non-contact vibration measurement
JP2008261806A (en) * 2007-04-13 2008-10-30 Toshiba Corp Material thickness monitoring system and material thickness measuring method
JP2010071741A (en) * 2008-09-17 2010-04-02 Toshiba Corp Piping thickness measurement method and device
CN114336264A (en) * 2021-03-19 2022-04-12 武汉仟目激光有限公司 Laser detection method based on dual-wavelength laser
CN113740441A (en) * 2021-08-25 2021-12-03 北京交通大学 Integrated laser acousto-magnetic metal defect flaw detection device and method
CN113740441B (en) * 2021-08-25 2022-10-21 北京交通大学 Integrated laser acousto-magnetic metal defect flaw detection device and method

Also Published As

Publication number Publication date
JPH0610667B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JP5128004B2 (en) Ultrasonic testing system
US5814730A (en) Material characteristic testing method and apparatus using interferometry to detect ultrasonic signals in a web
CN111812037A (en) Laser composite system and method integrating cleaning, polishing and ultrasonic detection
JPS6333658A (en) Non-contact ultrasonic flaw detection
JPS62177447A (en) Noncontact ultrasonic flaw detection method
JPH0587780A (en) Method and apparatus for nondestructive inspection of metal pipe
JPS58171662A (en) Noncontacting type ultrasonic wave receiver and transmitter
US20060236764A1 (en) Electromagnetic ultrasound probe
JP3544783B2 (en) Laser ultrasonic flaw detector
JPS5831872B2 (en) Non-contact ultrasonic flaw detection method
JPH11125622A (en) Sh wave electromagnetic ultrasonic transducer and measuring method
JP2001013118A (en) Electromagnetic ultrasonic probe
JPH11248688A (en) Electromagnetic ultrasonic flaw detector
JPS5850891A (en) Electromagnetoacoustic transducer
JPH01248052A (en) Ultrasonic flaw detection method and apparatus therefor
KR102203609B1 (en) Electromagnetic acoustic transducer and pipe inspection apparatus comprising the same
CN113740441B (en) Integrated laser acousto-magnetic metal defect flaw detection device and method
JPH01203966A (en) Method and device for inspecting joining state of joined part of extremely small member
JPH07286993A (en) Laser ultrasonic construction material measurement device
JPH04283659A (en) Noncontact method and device for detecting abnormal adhesion of metal plate without any contact
JP2667016B2 (en) Electromagnetic ultrasonic transducer
JP2000002690A (en) Optical interferometer for detection ultrasonic oscillation
JP2002310997A (en) Thin plate inspection method
Martinho et al. Alignment precision enhancement of side-shifted dual periodic permanent magnets array with an enclosed-case electromagnetic acoustic transducer
JP2961061B2 (en) Electromagnetic ultrasonic flaw detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term