JPS62126346A - Method for ultrasonic detection in non-contact state - Google Patents

Method for ultrasonic detection in non-contact state

Info

Publication number
JPS62126346A
JPS62126346A JP60265995A JP26599585A JPS62126346A JP S62126346 A JPS62126346 A JP S62126346A JP 60265995 A JP60265995 A JP 60265995A JP 26599585 A JP26599585 A JP 26599585A JP S62126346 A JPS62126346 A JP S62126346A
Authority
JP
Japan
Prior art keywords
ultrasonic
laser
oscillation
signal
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60265995A
Other languages
Japanese (ja)
Inventor
Koji Ishihara
石原 耕司
Koji Yamada
浩司 山田
Yuji Matoba
的場 有治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60265995A priority Critical patent/JPS62126346A/en
Publication of JPS62126346A publication Critical patent/JPS62126346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To economically and accurately perform flaw detection in a non- contact state with high efficiency, by a compact apparatus constituted so that the oscillation of an ultrasonic wave is performed by an electromagnetic ultrasonic system and the reception of a reflection signal is performed by a laser ultrasonic system. CONSTITUTION:An electromagnetic ultrasonic oscillation part 3 consists of a bias magnetic field generating circuit 4, a high voltage pulse generating circuit 5 and a high frequency magnetic core 6 having lead wires from said circuits wound therearound and a laser ultrasonic wave receiving part 7 consists of a laser oscillator 8, a half mirror 9, a mirror 10, a PIN diode 11 and a signal amplifying/processing circuit 12. The oscillation part 3 and the receiving part 7 are connected to a synchronous circuit 13. The ultrasonic wave oscillated by the magnetic core 6 of the oscillation part 3 is reflected by the flaw part 2 of a pipe 1 and the reflected ultrasonic wave is caught as a laser beam signal by the receiving part 7 and grasped as a flaw signal by the signal amplifying/ processing circuit 12.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、例えばガス・にイブラインにおける管内面
の欠陥等を非接触で検出するための非接触超音波探傷方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a non-contact ultrasonic flaw detection method for non-contact detection of defects, etc. on the inner surface of a tube in, for example, gas/dry brine.

〔従来技術とその問題点〕[Prior art and its problems]

例えば、ガス・ぞイブラインにおける管内面の欠陥検査
、鋼材の熱間圧延ラインにおけるオンライン探傷等、被
検査体を接触探傷方式で行なうことが出来ない場合には
、非接触超音波探傷が行なわれている。
For example, non-contact ultrasonic flaw detection is used when it is not possible to perform contact flaw detection on the object to be inspected, such as inspecting for defects on the inner surface of a tube in a gas/zoo line, or online flaw detection in a steel hot rolling line. There is.

このような非接触超音波探傷方法として、電磁超音波方
式とレーザー超音波方式とが知られている。電磁超音波
方式は、非接触で探傷できる利点のほかに、磁石(永久
磁石または電磁石)とコイルとの組み合せにより種々の
モードの超音波が発振でき、且つ、センサー構造で決定
される特定のモードの信号のみを受信し得る特徴を有し
ている。
As such a non-contact ultrasonic flaw detection method, an electromagnetic ultrasonic method and a laser ultrasonic method are known. In addition to the advantage of non-contact flaw detection, the electromagnetic ultrasonic method can oscillate ultrasonic waves in various modes using a combination of a magnet (permanent magnet or electromagnet) and a coil. It has the feature of being able to receive only the following signals.

しかしながら、電磁超音波方式は、センサーとしての変
換効率が悪く、発振時および受信時に各々40〜50 
dB の変換損が生ずる。従って、このような変換損を
補うために、永久磁石を使用する場合は1発振時に高い
保持力を有する希十元素による大寸法の磁石構造が必要
であり、電磁石を使用する場合は、発振時にコイルの巻
数を増やし且つ大電流を流すことが必要である。更に、
受信時には、高増幅率のアンプを使用し、S/N  比
向上のために受信信号の平均化処理を行なうことが必要
である。
However, the electromagnetic ultrasonic method has poor conversion efficiency as a sensor, with a conversion efficiency of 40 to 50% during oscillation and reception.
A conversion loss of dB occurs. Therefore, in order to compensate for such conversion loss, when using permanent magnets, a large-sized magnet structure made of rare elements that has high coercive force during one oscillation is required, and when using electromagnets, It is necessary to increase the number of turns of the coil and to flow a large current. Furthermore,
During reception, it is necessary to use an amplifier with a high amplification factor and average the received signal to improve the S/N ratio.

一方、レーザー超音波方式は、非接触で探傷できる利点
のほかに、受信信号として被検査体の変位を直接捉える
ことができる特徴を有している。
On the other hand, the laser ultrasonic method has the advantage of non-contact flaw detection as well as the ability to directly capture the displacement of the object to be inspected as a received signal.

しかしながら、レーザー超音波方式は、受信時には数B
W程度のレーザー出力で十分である反面、発掘時には超
音波を被検査体に励振させるために、少なくとも数Wの
大出力レーザーが必要となり、このために、装置は高価
となる上、装置の設置のために広いス被−スヲ要スる。
However, the laser ultrasonic method uses several B at the time of reception.
While a laser output of about W is sufficient, during excavation a high-power laser of at least several W is required to excite the ultrasonic waves to the object to be inspected, which makes the equipment expensive and difficult to install. A wide space is required for this purpose.

このように、従来の非接触超音波探傷方法には、非接触
で探傷できる利点の反面、上述のような多くの問題があ
る。
As described above, although the conventional non-contact ultrasonic flaw detection method has the advantage of being able to perform non-contact flaw detection, it has many problems as described above.

〔発明の目的〕[Purpose of the invention]

従って、この発明の目的は、上述のような従来の問題を
解決し、発振時に大電力を必要とせず、コンノククトな
装置により、高い効率で経済的且つ適確に非接触で探傷
することができる非接触超音波探傷方法を提供すること
にある。
Therefore, the purpose of this invention is to solve the above-mentioned conventional problems, and to be able to perform non-contact flaw detection economically and accurately with high efficiency using a connoxious device that does not require large amounts of power during oscillation. The object of the present invention is to provide a non-contact ultrasonic flaw detection method.

〔発明の概要〕[Summary of the invention]

この発明は、被検査体に向けて超音波を発振し、その反
射信号により欠陥部を探知する非接触超音波探傷方法に
おいて、前記超音波の発振を電磁超音波方式で行ない、
前記被検査体からの反射信号の受信をレーザー超音波方
式で行なうことに特徴を有するものである。
The present invention provides a non-contact ultrasonic flaw detection method in which ultrasonic waves are oscillated toward an object to be inspected and defects are detected by the reflected signals thereof, in which the oscillation of the ultrasonic waves is performed using an electromagnetic ultrasonic method,
The apparatus is characterized in that the reflected signal from the object to be inspected is received by a laser ultrasonic method.

〔発明の構成〕[Structure of the invention]

次に、この発明の方法を図面を参照しながら説明する。 Next, the method of the present invention will be explained with reference to the drawings.

図面は、この発明の方法の一実施態様を示すブロック図
である。図面に示すように、この発明においては、被検
査体として、例えば、・ぞイブライン等における管1の
円周方向の溶接部1′の内面に発生した欠陥部2を非接
触超音波探傷で検知するために、発振側は電磁超音波方
式を使用し。
The drawing is a block diagram illustrating one embodiment of the method of the invention. As shown in the drawings, in the present invention, as an object to be inspected, for example, a defect 2 occurring on the inner surface of a circumferential weld 1' of a pipe 1 in a pipe line etc. is detected by non-contact ultrasonic flaw detection. In order to do this, the oscillation side uses an electromagnetic ultrasonic method.

受信側はレーザー超音波方式を使用するものである。The receiving side uses a laser ultrasound system.

電磁超音波発振部3は、バイアス磁界発生回路4と高圧
・ぐルス発生回路5と、前記バイアス磁界発生回路4お
よび高圧・ぐルス発生回路5の各々からの心線が巻きつ
けられた高周波磁電・6とからなっている。
The electromagnetic ultrasonic oscillator 3 includes a bias magnetic field generating circuit 4, a high voltage/gurus generating circuit 5, and a high frequency magnetoelectric generator around which core wires from each of the bias magnetic field generating circuit 4 and the high voltage/gurus generating circuit 5 are wound.・It consists of 6.

レーザー超音波受信部7は、レーザー発振器8と、レー
ザー発掘器8からのレーザー光を矢印の方向に変えるた
めのハーフミラ−9およびミラー10と、PIN ダイ
オード11と、信号増幅処理回路12とからなっている
。13は、電磁超音波発振部3とレーザー超音波受信部
7との同期回路である。
The laser ultrasonic receiver 7 includes a laser oscillator 8, a half mirror 9 and a mirror 10 for changing the laser beam from the laser excavator 8 in the direction of the arrow, a PIN diode 11, and a signal amplification processing circuit 12. ing. Reference numeral 13 denotes a synchronization circuit between the electromagnetic ultrasonic oscillator 3 and the laser ultrasonic receiver 7.

霜;磁超音波発掘部3の高周波磁心6によって発掘され
た超音波は、矢印に示すように管■の欠陥部2において
反射される。このような電磁超音波発掘部3から発振さ
れ、欠陥部2において反射した超音波は、レーザー超音
波受信部7によりレーザー光の信号として捉えられ、信
号増幅処理回路I2により欠陥信号として把握される。
Frost: The ultrasonic waves excavated by the high frequency magnetic core 6 of the magneto-ultrasonic excavation unit 3 are reflected at the defective part 2 of the tube (2) as shown by the arrow. The ultrasonic waves emitted from such an electromagnetic ultrasonic excavation section 3 and reflected at the defective section 2 are captured by the laser ultrasonic receiving section 7 as a laser light signal, and grasped as a defect signal by the signal amplification processing circuit I2. .

このように、本発明方法によれば、超音波の発振のみに
電磁超音波を使用し、発振された超音波の受信はレーザ
ー超音波を使用したことにより、従来の電磁超音波方式
のように、発振時に生ずる大電力による誘導が受信コイ
ルに与える影響を防止することができ、且つ、レーザー
超音波方式のように、発振時における大出力レーザーは
不要となる。
As described above, according to the method of the present invention, electromagnetic ultrasound is used only for oscillating ultrasound waves, and laser ultrasound is used for receiving the oscillated ultrasound waves. It is possible to prevent the influence of induction due to high power generated during oscillation on the receiving coil, and there is no need for a high-output laser during oscillation as in the laser ultrasonic method.

〔発明の効果〕〔Effect of the invention〕

U上述べたように、この発明によれば、例えばガス・ぞ
イブラインにおける管内面等の非接触による超音波探傷
を、発掘時に大電力を必要とせず、コン・ぞクトな装置
により、高い効率で経済的且つ適確に行なうことができ
る工業上優れた効果がもたらされる。
As mentioned above, according to the present invention, non-contact ultrasonic flaw detection of the inner surface of a tube in a gas/zooline, for example, can be performed with high efficiency without requiring large amounts of power during excavation and with a compact device. It can be carried out economically and accurately, resulting in excellent industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の方法の一実施態様を示すブロック図で
ある。図面において、 1・・・管、       1′・・・溶接部、2・・
・欠陥部、     3・・電磁超音波発振部、4・・
バイアス磁界発生回路、 5・・・高圧、oルス発生回路、 6・・高周波磁心、 7・・・レーザー超音波受信部。 8・・レーザー発振器、 9・・・ノ・−フミラー、1
0・ミラー、    11・・・PINダイオード、1
2・・信号増幅処理回路、 ■3・・・同期回路。
The drawing is a block diagram illustrating one embodiment of the method of the invention. In the drawings, 1...pipe, 1'...welded part, 2...
・Defect part, 3... Electromagnetic ultrasonic oscillation part, 4...
Bias magnetic field generation circuit, 5... High voltage, o-ruse generation circuit, 6... High frequency magnetic core, 7... Laser ultrasound receiving section. 8...Laser oscillator, 9...Nof mirror, 1
0. Mirror, 11... PIN diode, 1
2...Signal amplification processing circuit, ■3...Synchronization circuit.

Claims (1)

【特許請求の範囲】[Claims] 被検査体に向けて超音波を発振し、その反射信号により
欠陥部を探知する非接触超音波探傷方法において、前記
超音波の発振を電磁超音波方式で行ない、そして前記被
検査体からの反射信号の受信をレーザー超音波方式で行
なうことを特徴とする非接触超音波探傷方法。
In a non-contact ultrasonic flaw detection method in which ultrasonic waves are emitted toward the object to be inspected and defects are detected by the reflected signals, the ultrasonic waves are oscillated by an electromagnetic ultrasonic method, and the reflected signals from the object to be inspected are detected. A non-contact ultrasonic flaw detection method characterized by receiving signals using a laser ultrasonic method.
JP60265995A 1985-11-28 1985-11-28 Method for ultrasonic detection in non-contact state Pending JPS62126346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60265995A JPS62126346A (en) 1985-11-28 1985-11-28 Method for ultrasonic detection in non-contact state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60265995A JPS62126346A (en) 1985-11-28 1985-11-28 Method for ultrasonic detection in non-contact state

Publications (1)

Publication Number Publication Date
JPS62126346A true JPS62126346A (en) 1987-06-08

Family

ID=17424901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60265995A Pending JPS62126346A (en) 1985-11-28 1985-11-28 Method for ultrasonic detection in non-contact state

Country Status (1)

Country Link
JP (1) JPS62126346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750076B2 (en) * 1989-03-06 1995-05-31 コールフィールド,デイビッド・ドナルド Object detection device based on acoustic signal and object detection method based on acoustic signal
KR100471352B1 (en) * 2001-07-10 2005-03-07 기아자동차주식회사 Volt engagement by non-contact vibration measurement
CN102818841A (en) * 2011-06-09 2012-12-12 中国石油化工股份有限公司 Automatic ultrasonic detection system of non-contact solid geologic model

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171662A (en) * 1982-04-02 1983-10-08 Hitachi Ltd Noncontacting type ultrasonic wave receiver and transmitter
JPS6085363A (en) * 1983-10-17 1985-05-14 Hitachi Ltd Method and apparatus for detecting joint state

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171662A (en) * 1982-04-02 1983-10-08 Hitachi Ltd Noncontacting type ultrasonic wave receiver and transmitter
JPS6085363A (en) * 1983-10-17 1985-05-14 Hitachi Ltd Method and apparatus for detecting joint state

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750076B2 (en) * 1989-03-06 1995-05-31 コールフィールド,デイビッド・ドナルド Object detection device based on acoustic signal and object detection method based on acoustic signal
KR100471352B1 (en) * 2001-07-10 2005-03-07 기아자동차주식회사 Volt engagement by non-contact vibration measurement
CN102818841A (en) * 2011-06-09 2012-12-12 中国石油化工股份有限公司 Automatic ultrasonic detection system of non-contact solid geologic model

Similar Documents

Publication Publication Date Title
US4727321A (en) Method and device for magnetic and ultrasonic testing of ferro-magnetic objects
US4104922A (en) Electromagnetic transducer
US4466287A (en) Non-destructive, non-contact ultrasonic material
JPS62126346A (en) Method for ultrasonic detection in non-contact state
US20060173341A1 (en) Electromagnetic ultrasound converter
JPS6333658A (en) Non-contact ultrasonic flaw detection
US7395715B2 (en) Electromagnetic ultrasound probe
JP3673392B2 (en) Electromagnetic ultrasonic flaw detector
JPS62177447A (en) Noncontact ultrasonic flaw detection method
CN114441641A (en) Longitudinal wave type electromagnetic ultrasonic probe and detection method
CN113848250A (en) Ultra-high temperature metal material online detection probe, system and method
JP2001013118A (en) Electromagnetic ultrasonic probe
JPS60227163A (en) Electromagnetic ultrasonic transducer for transversal wave using high-frequency magnetic core
JPH01248052A (en) Ultrasonic flaw detection method and apparatus therefor
JP2961061B2 (en) Electromagnetic ultrasonic flaw detector
JP3504430B2 (en) Beveled electromagnetic ultrasonic transducer
CA1189947A (en) Non-destructive, non-contact ultrasonic material testing method and apparatus
JP2976726B2 (en) Electromagnetic ultrasonic flaw detector
Clark et al. A well-shielded EMAT for on-line ultrasonic monitoring of GMA welding
CN111426918B (en) Non-contact basin-type insulator detection device based on laser ultrasound
SU991285A1 (en) Electromagnetic acoustic transducer
JPS6217704B2 (en)
JPS6242440B2 (en)
JPS6067803A (en) Measuring apparatus for pipe
JPH0291562A (en) Ultrasonic flaw detector