JPH0291562A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPH0291562A
JPH0291562A JP63245190A JP24519088A JPH0291562A JP H0291562 A JPH0291562 A JP H0291562A JP 63245190 A JP63245190 A JP 63245190A JP 24519088 A JP24519088 A JP 24519088A JP H0291562 A JPH0291562 A JP H0291562A
Authority
JP
Japan
Prior art keywords
magnetic flux
coil
laser beam
ultrasonic flaw
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63245190A
Other languages
Japanese (ja)
Inventor
Kazuo Takaku
高久 和夫
Kimio Kanda
神田 喜美雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP63245190A priority Critical patent/JPH0291562A/en
Publication of JPH0291562A publication Critical patent/JPH0291562A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To apply detection to a container, tubular object to be inspected, etc., by providing a magnetizing coil by which a magnetic flux is generated in an object to be inspected in the vicinity of the surface irradiated with a laser beam and a detecting coil to detect a current generated by an echo signal coming from the object. CONSTITUTION:When a defect 5 is existed in the object 3, an ultrasonic wave beam 4 is partly reflected and returned as the echo signal 6 to the surface of the object 3. The magnetizing coil 7 is arranged over the surface of the object 3, and the generated magnetic flux 8 is existed around the surface of the object 3. Therefore, the current 10 is made to flow in the neighbourhood of the crossing pint of the echo signal 6 and the magnetic flux 8, while intersecting orthogonally with both of them. The magnetic flux is generated around the place where the current 10 is made to flow, and an induced voltage is generated in the detecting coil 8 due to the magnetic flux is crossed with the detecting coil 9, then by means of detecting this voltage, the echo signal 8 corresponding to the induced voltage can be detected. The detection is thereby applicable for the container and the tubular object to be inspected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非接触式の超音波探傷装置に係り、特に送信
にレーザビームを用い、受信に電磁超音波接触、子を用
い、被検体の一方の面から探触子を非接触にて超音波探
傷を行うのに好適な超音波探傷装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a non-contact type ultrasonic flaw detection device, and in particular uses a laser beam for transmission and an electromagnetic ultrasonic contact for reception. The present invention relates to an ultrasonic flaw detection device suitable for performing ultrasonic flaw detection from one side of a probe without contacting the probe.

〔従来の技術〕[Conventional technology]

従来のこの種の装置は、特公昭60−36019号公報
に記載のように、被検体の一方の面おいてレーザビーム
を走査して超音波ビームを送信し、他方の面において電
磁超音波接触子を走査して該超音波ビームを受信して前
記被検体の探傷を行うものであった。
Conventional devices of this type, as described in Japanese Patent Publication No. 60-36019, scan a laser beam on one surface of the object to transmit an ultrasound beam, and transmit an electromagnetic ultrasound beam on the other surface. The ultrasonic beam was received by scanning the object and detecting flaws in the object.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記した従来技術は、容器及び管状被検体を対
象とした場合に外側からのみ、すなわち超音波ビーム送
信側からの接近が可能な場合の配慮、エコーの検出に用
いる電磁超音波接触子の検出能力向上に関する配慮等が
なされていなかった。
However, the above-mentioned conventional technology takes into account the case where containers and tubular objects can be approached only from the outside, that is, from the ultrasonic beam transmitting side, and the electromagnetic ultrasonic contactor used for detecting echoes. No consideration was given to improving detection ability.

このため、被検体の一方の面からのみの探傷が不可能で
あり、また、検出能力も不充分であると・いう問題があ
った。
For this reason, there were problems in that it was impossible to detect flaws from only one side of the object, and the detection ability was also insufficient.

本発明は、このような事情に基づいてなされたものであ
り、その目的は、ビーム送信側に検出器を配置でき、た
とえば容器、管状被検体等をも対象とでき、しかも小形
でその検出能力を向上させることのできる超音波探傷検
出装置を提供するにある。
The present invention was made based on the above circumstances, and its purpose is to enable a detector to be placed on the beam transmitting side, to be able to target, for example, containers, tubular objects, etc., and to be small in size with high detection capability. An object of the present invention is to provide an ultrasonic flaw detection device that can improve the flaw detection.

〔課題を解決するための手段〕[Means to solve the problem]

このような目的を達成するために、本発明は。 In order to achieve such an objective, the present invention.

被検体の一面にレーザビームを照射するレーザビーム発
生装置と、前記レーザビームの周囲に配置され前記レー
ザビーム照射面近傍の被検体に磁束を発生させる磁化コ
イルと、前記レーザビームの周囲に配置され前記被検体
からのエコー信号により発生する電流を検出する検出コ
イルとから構成するようにしたものである。
a laser beam generator that irradiates one surface of a subject with a laser beam; a magnetization coil that is arranged around the laser beam and generates a magnetic flux in the subject near the laser beam irradiation surface; and a detection coil that detects a current generated by an echo signal from the subject.

また、前記磁化コイルはその磁束の通路部に磁心を設け
るようにしたものである。
Further, the magnetizing coil has a magnetic core provided in the path of the magnetic flux.

【作用〕[Effect]

このようにすれば、レーザ照射面側において、被検体・
の探傷に必要とする励磁コイル、検出コイルを配置する
ことができる。したがって、前記被検体がたとえば、容
器状1円筒状のものであったとしても、その内容の探傷
を検出することができる。
In this way, the object to be inspected and
Excitation coils and detection coils required for flaw detection can be placed. Therefore, even if the object to be inspected is, for example, a cylindrical container, the contents of the object can be detected.

また、前記励磁コイル、検出コイルは、レーザビームの
周辺に配置することから、前記励磁コイルによるエコー
信号の取り出し量を多くできるとともに、前記検出コイ
ルによって前記エコー信号を電気信号にする変換量を多
くすることができるので検出能力を向上させることがで
きる。
Furthermore, since the excitation coil and the detection coil are arranged around the laser beam, the amount of echo signals extracted by the excitation coil can be increased, and the amount of conversion of the echo signal into an electric signal by the detection coil can be increased. Therefore, the detection ability can be improved.

〔実施例〕〔Example〕

以下、本発明による超音波探傷検出装置の実施例を第1
1!l〜第11図を用いて説明する。
Hereinafter, a first embodiment of the ultrasonic flaw detection device according to the present invention will be described.
1! This will be explained using FIGS. 1 to 11.

まず、第1図は本発明の送信にレーザビームを用い、受
信に電磁超音波接触子を用いたレーザ、電磁気型超音波
探傷装置の第1の実施例を示す図である。ここで、1は
レーザビーム、2はレンズ。
First, FIG. 1 is a diagram showing a first embodiment of a laser and electromagnetic ultrasonic flaw detection apparatus according to the present invention, which uses a laser beam for transmission and uses an electromagnetic ultrasonic contactor for reception. Here, 1 is a laser beam and 2 is a lens.

3は被検体面、4は被検体3内の超音波ビーム、5は被
検体3内の欠陥、6は被検体3内のエコー信号、7は磁
化コイル、8は磁束、9は検出コイル、10は前記エコ
ー信号6より生ずる電流である。ここで、前記磁化コイ
ル7、および検出コイル9はいずれも空心で、同軸配置
され、その中心軸に沿って前記レーザビーム1が入射さ
れるようになって、前記被検体3に照射されるようにな
っている。
3 is the object surface, 4 is the ultrasonic beam inside the object 3, 5 is a defect inside the object 3, 6 is an echo signal inside the object 3, 7 is a magnetizing coil, 8 is a magnetic flux, 9 is a detection coil, 10 is a current generated from the echo signal 6. Here, the magnetization coil 7 and the detection coil 9 are both air-centered and coaxially arranged, and the laser beam 1 is incident along the central axis thereof so that the object 3 is irradiated with the laser beam 1. It has become.

このような構成にて、いま、パルス状のレーザビーム1
を被検体3面に投入すると、被検体3面が急激に加熱さ
れるため膨張し、被検体3面に応力波を生じる。この応
用波が超音波ビーム4となり、被検体3内に伝搬する。
With this configuration, now the pulsed laser beam 1
When the liquid is placed on the three surfaces of the object, the three surfaces of the object are rapidly heated and expand, producing stress waves on the three surfaces of the object. This applied wave becomes an ultrasonic beam 4 and propagates into the subject 3.

ここで被検体3内に欠陥5があると超音波ビーム4の一
部が反射され、エコー信号6として被検体3の表面に戻
ってくるようになる。被検体3の表面上には磁化コイル
7があり、磁束8を発生しており、磁束8は被検体3の
表面付近に存在している。このため、エコー信号6と磁
束8との交点付近で、これら両者に直交して電流10が
流れる。電流10が流れるとこの周囲に磁束(図示せず
)が発生し、この磁束が検出コイル9と交わるため、検
出コイル8に誘起電圧を生じ、これを検出することによ
り、この誘起電圧と対応するエコー信号8を検出できる
If there is a defect 5 within the object 3, a portion of the ultrasound beam 4 is reflected and returns to the surface of the object 3 as an echo signal 6. A magnetization coil 7 is located on the surface of the subject 3 and generates a magnetic flux 8, and the magnetic flux 8 exists near the surface of the subject 3. Therefore, near the intersection of the echo signal 6 and the magnetic flux 8, a current 10 flows perpendicularly to the echo signal 6 and the magnetic flux 8. When the current 10 flows, a magnetic flux (not shown) is generated around this, and this magnetic flux intersects with the detection coil 9, so an induced voltage is generated in the detection coil 8, and by detecting this, it corresponds to this induced voltage. Echo signal 8 can be detected.

第2図は本発明の第2の実施例で、第1図の構成を基本
したもので、前記磁化コイル7、検出コイル9の外側に
カップ形の磁心11を設けたものである。この磁心11
を設けることにより磁束8の量を大きくでき、検出感度
の向上が図れる。
FIG. 2 shows a second embodiment of the present invention, which is based on the configuration shown in FIG. 1, in which a cup-shaped magnetic core 11 is provided outside the magnetizing coil 7 and the detection coil 9. This magnetic core 11
By providing this, the amount of magnetic flux 8 can be increased, and detection sensitivity can be improved.

第3図は本発明の第3の実施例で、磁化コイルによって
形成される磁束14の方向を被検体3面と平行になるよ
うに構成した場合である。ここで、12は一方の磁化コ
イル、13は他方の磁化コイル、14は磁束、15は電
流である。磁化コイル12.13をレーザビーム1に対
して左右に配置したため、磁束14の第1図の磁束8の
方向と変えることができる。このようにすれば、第1図
は被検体3面に垂直方向の磁束8の付近にレーザビーム
1が投入されているのに対して、第3図は被検体3面に
平行方向の磁束14の付近にレーザビーム1が投入され
ることになる。このため、電流15の分布も異なる。し
たがって本実施例はレーザビーム1の投入付近に電流1
5が流れるようになる。
FIG. 3 shows a third embodiment of the present invention, in which the direction of the magnetic flux 14 formed by the magnetizing coil is configured to be parallel to the surface of the object 3. Here, 12 is one magnetization coil, 13 is the other magnetization coil, 14 is a magnetic flux, and 15 is a current. Since the magnetizing coils 12 and 13 are arranged on the left and right sides of the laser beam 1, the direction of the magnetic flux 14 can be changed from the direction of the magnetic flux 8 in FIG. In this way, in FIG. 1, the laser beam 1 is injected near the magnetic flux 8 perpendicular to the 3 surfaces of the object to be examined, whereas in FIG. The laser beam 1 will be injected into the vicinity of . Therefore, the distribution of the current 15 is also different. Therefore, in this embodiment, a current of 1 is applied near the input of the laser beam 1.
5 will start flowing.

第4図は本発明の第4の実施例で、第3図の構成を基本
とし、前記磁束14通路にコの字形の磁心16を設けた
ものである。この磁心16を設けることにより磁束14
の大きさを大きくすることができ、検出感度の向上が図
れる。この場合磁心16には、レーザビーム1が通過す
る個所穴16A等を設け、前記レーザビーム1と干渉し
ないようにしている。
FIG. 4 shows a fourth embodiment of the present invention, which is based on the configuration shown in FIG. 3, but in which a U-shaped magnetic core 16 is provided in the magnetic flux 14 path. By providing this magnetic core 16, the magnetic flux 14
can be increased in size, and detection sensitivity can be improved. In this case, the magnetic core 16 is provided with holes 16A through which the laser beam 1 passes, so as not to interfere with the laser beam 1.

第5図は本発明の第5の実施例で、第4図の構成のうち
、磁化コイル13を取り除いて磁化コイル12を1個の
みとした場合である。小型化でき図示せぬ他の部品と干
渉することなく被検体3への接近性等が改善される。
FIG. 5 shows a fifth embodiment of the present invention, in which the magnetizing coil 13 is removed from the configuration shown in FIG. 4, leaving only one magnetizing coil 12. It can be miniaturized and the accessibility to the subject 3 can be improved without interfering with other parts (not shown).

第6図は本発明の第6の実施例で、第1図の構成に対応
し、磁化コイルに超電導磁化コイルを用いた場合である
。ここで、20は例えばイツトリウム系等の高温超電導
材からなる超電導磁化コイル、21は超電導磁化コイル
2oを冷却する液体窒素等の冷却材、22は断熱材等で
構成される冷却材21保持用の容器である。その他の信
号1〜9は第1図と同様の部材を用いている。磁化コイ
ルに超電導磁化コイル20を用いているために通常の磁
化コイルによる場合より大きな磁束8を供給でき、検出
感度の向上が図れる。
FIG. 6 shows a sixth embodiment of the present invention, which corresponds to the configuration shown in FIG. 1 and uses a superconducting magnetizing coil as the magnetizing coil. Here, 20 is a superconducting magnetizing coil made of a high-temperature superconducting material such as yttrium, 21 is a coolant such as liquid nitrogen that cools the superconducting magnetizing coil 2o, and 22 is a cooling material 21-holding material made of a heat insulating material or the like. It is a container. Other signals 1 to 9 use the same members as in FIG. Since the superconducting magnetizing coil 20 is used as the magnetizing coil, a larger magnetic flux 8 can be supplied than when using a normal magnetizing coil, and detection sensitivity can be improved.

第7図は本発明の第7の実施例で、第6図の超電導磁化
コイル20を用いた場合の構成を基本とし、これの外側
にカップ形の磁心11を設けたものである。この磁心1
1により磁束8の大きさを大きくできる。
FIG. 7 shows a seventh embodiment of the present invention, which is based on the configuration using the superconducting magnetizing coil 20 shown in FIG. 6, and a cup-shaped magnetic core 11 is provided on the outside of the superconducting magnetizing coil 20. This magnetic core 1
1 allows the magnitude of the magnetic flux 8 to be increased.

第8図は本発明の第8の実施例で、第3図の構成に対応
し、磁化コイルに超電導磁化コイルを用いた場合である
。ここで1図中、23は一方の超電導磁化コイルで、2
4は他方の超電導用磁化コイルであり、両コイルにより
磁束14を供給する。
FIG. 8 shows an eighth embodiment of the present invention, which corresponds to the configuration shown in FIG. 3 and uses a superconducting magnetizing coil as the magnetizing coil. Here, in Figure 1, 23 is one superconducting magnetizing coil, and 23 is one superconducting magnetizing coil.
4 is the other superconducting magnetizing coil, and both coils supply magnetic flux 14.

25.26は超電導磁化コイル23.24の冷却材、2
7.28は同冷却材23.24の保持用容器である6そ
の他の記号1〜9は第3図と同じである。超電導磁化コ
イルに23.24によれば、より大きな磁束14の供給
が可能となる。
25.26 is the coolant for the superconducting magnetization coil 23.24, 2
7.28 is a container for holding the coolant 23.24. 6 Other symbols 1 to 9 are the same as in FIG. 3. 23.24 to the superconducting magnetization coil, it is possible to supply a larger magnetic flux 14.

第9図は本発明の第9の実施例で、第4図の構成に対応
し、磁化コイルに超電導磁化コイルを用いた場合である
。即ち、第8図にコの字形磁心16を設けたものである
。記号1〜14.23〜28は第8図と同じである。磁
心11を設けたことによりさらに大きな磁束14の供給
が可能となる。
FIG. 9 shows a ninth embodiment of the present invention, which corresponds to the configuration shown in FIG. 4 and uses a superconducting magnetizing coil as the magnetizing coil. That is, a U-shaped magnetic core 16 is provided as shown in FIG. Symbols 1 to 14 and 23 to 28 are the same as in FIG. By providing the magnetic core 11, an even larger magnetic flux 14 can be supplied.

第10図は本発明の第10の実施例で、第5図の構成に
対応し、磁化コイルに超電導磁化コイルを用いた場合で
ある。記号1〜27は第9図と同じである。小型化を図
ったものである。
FIG. 10 shows a tenth embodiment of the present invention, which corresponds to the configuration shown in FIG. 5 and uses a superconducting magnetizing coil as the magnetizing coil. Symbols 1 to 27 are the same as in FIG. It is designed to be smaller.

第11図は本発明の第11の実施例であり1代表的なレ
ーザ、電磁気型超音波探傷装置の構成を示す、ここで、
30はパルスレーザビーム発生器、31は同期回路、3
2は磁化用電源装置、33は受信信号の増幅器、34は
受信信号の表示装置、35は冷却材供給装置である。
FIG. 11 is an eleventh embodiment of the present invention, and shows the configuration of a typical laser and electromagnetic ultrasonic flaw detection device.
30 is a pulse laser beam generator, 31 is a synchronization circuit, 3
2 is a magnetization power supply device, 33 is a received signal amplifier, 34 is a received signal display device, and 35 is a coolant supply device.

パルスレーザビーム発生器30は同期回路32の同期信
号によりレーザビーム1を発生する。これに先立って、
磁化用電源装置32により磁化コイル23.24に電流
を供給し、磁化しておく。
A pulsed laser beam generator 30 generates a laser beam 1 in response to a synchronization signal from a synchronization circuit 32 . Prior to this,
The magnetization power supply device 32 supplies current to the magnetization coils 23 and 24 to magnetize them.

被検体3面に投入されたレーザビーム1により。By laser beam 1 applied to 3 surfaces of the object.

被検体3面は急激に加熱されるため、被検体3面の熱膨
張による応力波が発生する。この応力波は超音波ビーム
4として被検体3内を伝搬し、欠陥等の不連続部がある
とエコー信号として戻ってくる。エコー信号は磁束14
との相互作用により被検体3内に電流を生じ、この電流
の磁束の作用により検出コイル9に電圧が誘起する。そ
こで、この誘起電圧を増幅器33で増幅し、表示装置3
4に示すことにより欠陥等の識別が可能となる。
Since the three surfaces of the subject are rapidly heated, stress waves are generated due to thermal expansion of the three surfaces of the subject. This stress wave propagates within the object 3 as an ultrasonic beam 4, and returns as an echo signal if there is a discontinuity such as a defect. The echo signal is magnetic flux 14
A current is generated in the subject 3 due to the interaction with the current, and a voltage is induced in the detection coil 9 due to the action of the magnetic flux of this current. Therefore, this induced voltage is amplified by the amplifier 33, and the display device 3
4, it becomes possible to identify defects, etc.

以上説明したように、本実施例によれば、従来の非接触
式超音波探傷法の難点であった検出感度、不感帯、指向
性、小型化、検出法等多くの問題を解決できる効果があ
る。詳述すると、 (1)検出感度 パルスレーザビームを強力にし、磁束を大きくすること
により検出感度及びSN比の向上が可能である。
As explained above, this embodiment has the effect of solving many problems such as detection sensitivity, dead zone, directivity, miniaturization, detection method, etc., which were difficult points of conventional non-contact ultrasonic flaw detection methods. . In detail, (1) Detection sensitivity It is possible to improve the detection sensitivity and the S/N ratio by making the pulsed laser beam more powerful and increasing the magnetic flux.

(2)不感帯 短いパルスレーザビームで励振するため不感帯を短くす
ることが可能である。
(2) Dead zone Since it is excited with a short pulsed laser beam, it is possible to shorten the dead zone.

(3)指向性 レーザビームの大きさ、形状等を変えることにより指向
性を変えることが可能である。
(3) Directivity It is possible to change the directivity by changing the size, shape, etc. of the laser beam.

(4)小型化 レーザビームを点状に入射できるので検出部の小型化が
可能である。
(4) Miniaturization Since the laser beam can be incident point-wise, the detection section can be miniaturized.

(5)レーザ、電磁気型超音波探傷法が可能となる。(5) Laser and electromagnetic ultrasonic flaw detection methods become possible.

(6)出力波形 レーザビームによる振動をうず電流効果を用いて検出す
るため、波形としてwt測できる。
(6) Output waveform Since the vibration caused by the laser beam is detected using the eddy current effect, it can be measured in wt as a waveform.

(7)モード レーザビームによるパルス送信時の応力波モードは熱膨
張によるため、磁場とうす電流により送信する応力波よ
りは単純なモードとなる6(8)構造 振動を電磁気法で検出するため、磁化及び検出コイルの
みで信号を変換でき、簡単な構造とすることができる。
(7) Mode The stress wave mode during pulse transmission by a laser beam is due to thermal expansion, so it is a simpler mode than the stress wave transmitted by a magnetic field and thin current. 6 (8) To detect structural vibration by electromagnetic method, Signals can be converted using only magnetization and detection coils, resulting in a simple structure.

〔発明の効果〕〔Effect of the invention〕

以上説明したことから明らかなように、本発明によれば
、ビーム送信側に検出部を配置でき、たとえば容器、管
状被検体等をも対象とでき、しかも、小形でその検出能
力を向上させることのできる超音波探傷検出装置を提供
することができる。
As is clear from the above explanation, according to the present invention, the detection section can be placed on the beam transmitting side, and can be used to target, for example, containers, tubular objects, etc., and the detection ability can be improved with a small size. It is possible to provide an ultrasonic flaw detection device that can perform

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による超音波探傷装置の第1の実施例を
示す構成図、第2図ないし第11図はそれぞれ本発明に
よる超音波探傷検出装置の他の実施例を示す構成図であ
る。 1はレーザビーム、2はレンズ、4は超音波ビーム、7
は磁化コイル、8は磁束、9は検出コイル、11は磁心
、12,13は磁化コイル、14は磁束、16は磁心、
20は超電導磁化コイル、21は冷却材、22は容器、
23.24は超電導磁化コイル、25.26は冷却材、
27.28は゛容器、30はパルスレーザビーム発生器
、31は同期回路、32は磁化用電源装置、33は増幅
器。 34は表示装置、35は冷却材供給装置である。 第1図 第2図 第 3 図 第 4 図
FIG. 1 is a block diagram showing a first embodiment of an ultrasonic flaw detection device according to the present invention, and FIGS. 2 to 11 are block diagrams showing other embodiments of the ultrasonic flaw detection device according to the present invention. . 1 is a laser beam, 2 is a lens, 4 is an ultrasonic beam, 7
is a magnetizing coil, 8 is a magnetic flux, 9 is a detection coil, 11 is a magnetic core, 12 and 13 are magnetizing coils, 14 is a magnetic flux, 16 is a magnetic core,
20 is a superconducting magnetization coil, 21 is a coolant, 22 is a container,
23.24 is a superconducting magnetizing coil, 25.26 is a coolant,
27 and 28 are containers, 30 is a pulsed laser beam generator, 31 is a synchronous circuit, 32 is a magnetization power supply device, and 33 is an amplifier. 34 is a display device, and 35 is a coolant supply device. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、被検体の一面にレーザビームを照射するレーザビー
ム発生装置と、前記レーザビームの周囲に配置され前記
レーザビーム照射面近傍の被検体に磁束を発生させる磁
化コイルと、前記レーザビームの周囲に配置され前記被
検体からのエコー信号により発生する電流を検出する検
出コイルと、から構成されることを特徴とする超音波探
傷検出装置。 2、請求項第1記載において、被検体面上に平行方向に
巻回した磁化コイル及び検出コイルを設け、これらのコ
イルのの空間にレーザビームを導入した超音波探傷検出
装置。 3、請求項第2記載において、磁束の通路部に磁心を設
けた超音波探傷検出装置。 4、請求項第1記載において、被検体面上に、該面に直
交した面内に巻回した複数の磁化コイル及び該面に平行
方向に巻回した検出コイルを設けてなる超音波探傷検出
装置。 5、請求項第4記載において、磁束の通路部に磁心を設
けた超音波探傷検出装置。 6、請求項第1ないし第5記載において、磁化コイルを
超電導磁化コイルとした超音波探傷検出装置。
[Scope of Claims] 1. A laser beam generator that irradiates one surface of a subject with a laser beam; a magnetization coil that is arranged around the laser beam and generates magnetic flux in the subject near the laser beam irradiation surface; An ultrasonic flaw detection detection device comprising: a detection coil arranged around the laser beam and detecting a current generated by an echo signal from the object to be inspected. 2. The ultrasonic flaw detection apparatus according to claim 1, wherein a magnetizing coil and a detection coil are provided on the surface of the object to be inspected and are wound in parallel directions, and a laser beam is introduced into the space between these coils. 3. The ultrasonic flaw detection device according to claim 2, wherein a magnetic core is provided in the magnetic flux path. 4. Ultrasonic flaw detection according to claim 1, comprising: a plurality of magnetization coils wound in a plane perpendicular to the surface of the object to be inspected, and a detection coil wound in a direction parallel to the surface. Device. 5. The ultrasonic flaw detection device according to claim 4, wherein a magnetic core is provided in the magnetic flux path. 6. An ultrasonic flaw detection device according to any one of claims 1 to 5, wherein the magnetizing coil is a superconducting magnetizing coil.
JP63245190A 1988-09-29 1988-09-29 Ultrasonic flaw detector Pending JPH0291562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63245190A JPH0291562A (en) 1988-09-29 1988-09-29 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245190A JPH0291562A (en) 1988-09-29 1988-09-29 Ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
JPH0291562A true JPH0291562A (en) 1990-03-30

Family

ID=17129955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245190A Pending JPH0291562A (en) 1988-09-29 1988-09-29 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPH0291562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040962A (en) * 2008-08-08 2010-02-18 Sumitomo Electric Ind Ltd Superconducting coil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198863A (en) * 1981-05-30 1982-12-06 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198863A (en) * 1981-05-30 1982-12-06 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040962A (en) * 2008-08-08 2010-02-18 Sumitomo Electric Ind Ltd Superconducting coil

Similar Documents

Publication Publication Date Title
JP4392129B2 (en) Method and apparatus for long range inspection of plate-type ferromagnetic structures
US6920792B2 (en) Transducer guided wave electromagnetic acoustic
Nakamura et al. Mode conversion and total reflection of torsional waves for pipe inspection
US4344030A (en) Remote detector of flaws in surfaces using micro-waves
JPH06324021A (en) Non-destructive inspection device
US6377040B1 (en) Eddy current probe and process for checking the edges of metal articles
Shi et al. Application of chirp pulse compression technique to a high-temperature EMAT with a large lift-off
JP4911489B2 (en) Flaw detector
Yamada et al. Phase-sensitive detection of acoustically stimulated electromagnetic response in steel
JPH0291562A (en) Ultrasonic flaw detector
CN210626394U (en) Nondestructive testing system for magneto-optical imaging of composite magnetic field
US5936162A (en) Method for the production of ultrasound waves for nondestructive materials testing and an ultrasound test instrument
WO2004106913A1 (en) Guided wave electromagnetic acoustic transducer
JP2938950B2 (en) Deterioration damage detection device for metal materials
CN113740441B (en) Integrated laser acousto-magnetic metal defect flaw detection device and method
JPS62191758A (en) Flaw detector
CN107967911B (en) Optical transducer and method for generating single ultrasonic transverse wave
JPH05264508A (en) Method and apparatus for nondestructive measurement of quenched and hardened range
JP2001013118A (en) Electromagnetic ultrasonic probe
JPH0257267B2 (en)
JPS57144456A (en) Non-destructive inspecting device
Lee et al. Application of magneto-optical method for inspection of the internal surface of a tube
JPS6333658A (en) Non-contact ultrasonic flaw detection
JPS6261884B2 (en)
JPS5977352A (en) Electromagnetic ultrasonic measuring apparatus