JPH05264508A - Method and apparatus for nondestructive measurement of quenched and hardened range - Google Patents

Method and apparatus for nondestructive measurement of quenched and hardened range

Info

Publication number
JPH05264508A
JPH05264508A JP8150592A JP8150592A JPH05264508A JP H05264508 A JPH05264508 A JP H05264508A JP 8150592 A JP8150592 A JP 8150592A JP 8150592 A JP8150592 A JP 8150592A JP H05264508 A JPH05264508 A JP H05264508A
Authority
JP
Japan
Prior art keywords
signal
quenched
voltage
quench
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8150592A
Other languages
Japanese (ja)
Inventor
Shigeru Kitagawa
茂 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HIHAKAI KEISOKU KENKYUSHO KK
Original Assignee
NIPPON HIHAKAI KEISOKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HIHAKAI KEISOKU KENKYUSHO KK filed Critical NIPPON HIHAKAI KEISOKU KENKYUSHO KK
Priority to JP8150592A priority Critical patent/JPH05264508A/en
Publication of JPH05264508A publication Critical patent/JPH05264508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure the quenched and hardened range of a ferromagnetic-substance material with good sensitivity, clearly and in a nondestructive manner by a method wherein the average signal level of a Barkhausen effect noise in a quenched part and a non-quenched part at a partially quenched material is compared with a reference voltage. CONSTITUTION:A secondary-voltage signal which is generated across both ends of a detection coil 2 is passed through a bypass amplifier 6. Only a BN signal as a high- frequency component is amplified (a voltage V1); after that, it is inputted to a detection and rectification circuit 7; the positive component of the BN signal is smoothed. The obtained signal level (a voltage signal V2) of the BN signal is compared with a reference voltage VS by means of a comparison circuit 8. When the signal V2 is larger than the voltage VS, the output voltage signal V3 of the circuit 8 is set to a high level. In the opposite case, the signal is set to a low level. When the signal V3 is at the low level, a quenched part (a) is detected. When it is at the high level, a non- quenched part (b) is detected. A position where the V2 is changed from the low level to the high level or in an opposite case indicates the quenching boundary between the quenched part (a) and the non-quenched part (b).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、部分焼入れした強磁性
体材料の焼入硬化範囲を非破壊で測定することが可能な
焼入硬化範囲の非破壊測定方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-destructive method for measuring a quench-hardening range and a device therefor capable of non-destructively measuring the quench-hardening range of a partially hardened ferromagnetic material.

【0002】[0002]

【従来の技術】従来、部分焼入れした強磁性体材料の焼
入硬化範囲を測定することが可能な効率的な測定方法及
び装置は存在しなかった。ただ、交番磁界を発生する電
磁石によって強磁性体材料の表面に渦電流を誘起し、こ
の渦電流によって誘導される磁界を検出コイルで測定す
る渦電流法は公知であり、材料の電気的特性によって渦
電流の発生状況が異なることを利用して焼入状況を検出
することは不可能ではない。しかし、この渦電流法で
は、焼入部と非焼入部とで測定される信号の差はあまり
大きくはなく、そのため焼入硬化範囲を明確に同定し、
その境界をも特定することは不可能である。
2. Description of the Related Art Heretofore, there has been no efficient measuring method and apparatus capable of measuring the quench-hardening range of a partially quenched ferromagnetic material. However, an eddy current method is known in which an eddy current is induced on the surface of a ferromagnetic material by an electromagnet that generates an alternating magnetic field, and the magnetic field induced by this eddy current is measured by a detection coil. It is not impossible to detect the quenching situation by utilizing the different eddy current generation situations. However, in this eddy current method, the difference between the signals measured in the hardened part and the non-hardened part is not so large, so the quench hardening range is clearly identified,
It is impossible to specify that boundary as well.

【0003】一方、表面のみ硬化する高周波焼入れやビ
ーム焼入れにおいて、その焼入効果を検討するうえにも
その硬化範囲(表面の範囲と硬化深さ)を非破壊で測定
する要望が多い。
On the other hand, in induction hardening or beam hardening in which only the surface is hardened, there are many demands for nondestructive measurement of the hardening range (surface range and hardening depth) in order to study the hardening effect.

【0004】[0004]

【発明が解決しようとする課題】本発明が前述の状況に
鑑み、解決しようとするところは、部分焼入れした強磁
性体材料の焼入硬化範囲を感度よく明確にしかも非破壊
で測定することが可能な焼入硬化範囲の非破壊測定方法
及びその装置を提供する点にある。
SUMMARY OF THE INVENTION In view of the above-mentioned situation, the present invention is to solve the problem by measuring the quench-hardening range of a partially hardened ferromagnetic material with high sensitivity and clearly and nondestructively. It is another object of the present invention to provide a nondestructive measurement method and an apparatus for the possible quench hardening range.

【0005】[0005]

【課題を解決するための手段】本発明は、前述の課題解
決のために、強磁性体材料の焼入硬化範囲を測定するも
のであって、材料を交番磁化するときに生じるバルクハ
ウゼン効果雑音が焼入れにより変化することを用いて、
部分焼入れした材料の焼入部と非焼入部のバルクハウゼ
ン効果雑音の平均信号レベルを基準電圧と比較すること
により焼入境界を測定してなる焼入硬化範囲の非破壊測
定方法を確立した。
In order to solve the above-mentioned problems, the present invention is to measure the quench-hardening range of a ferromagnetic material, and the Barkhausen effect noise generated when the material is subjected to alternating magnetization. Using the fact that changes due to quenching,
A non-destructive measurement method for the quench-hardening range was established by measuring the quenching boundary by comparing the average signal level of Barkhausen effect noise of the quenched and non-quenched parts of the partially quenched material with the reference voltage.

【0006】また、強磁性体材料の焼入硬化範囲を測定
するものであって、材料を交番磁化させるヨーク型電磁
石と、該電磁石の間に配し且つ材料の表面上を電磁石と
相対的に移動可能な検出コイルと、該検出コイルに生じ
る二次電圧信号からバルクハウゼン効果雑音信号のみ取
り出す検波整流回路と、該検波整流回路による信号を基
準電圧と比較する比較回路とよりなる焼入硬化範囲の非
破壊測定装置を構成した。
Further, it is intended to measure the quench-hardening range of a ferromagnetic material, which is a yoke type electromagnet for alternately magnetizing the material, and is arranged between the electromagnets, and the surface of the material is relative to the electromagnet. A quench-hardening range including a movable detection coil, a detection rectification circuit that extracts only a Barkhausen effect noise signal from a secondary voltage signal generated in the detection coil, and a comparison circuit that compares the signal from the detection rectification circuit with a reference voltage. A non-destructive measuring device was constructed.

【0007】[0007]

【作用】以上の如き内容からなる本発明の焼入硬化範囲
の非破壊測定方法及びその装置は、強磁性体材料を焼入
れした場合、焼入硬化した範囲は圧縮残留応力を生じ、
その周辺では引張り残留応力を生じており、この状態の
材料を交番磁化した際に発生するバルクハウゼン効果雑
音の大きさが圧縮応力で小さく、引張り応力で大きくな
る特性を利用している。そして、強磁性体材料を電磁石
で測定範囲をカバーするように交番磁化し、検出コイル
を電磁石に対して相対的に移動させながらバルクハウゼ
ン効果雑音信号を検出して、引張り応力から圧縮応力に
変わる部分をその平均信号レベルがある基準電圧より大
から小に変わることを比較回路で検知して、測定範囲の
焼入部と非焼入部との境界を精度よく検出し、もって焼
入硬化範囲を測定するものである。
The nondestructive measurement method and apparatus for the quench-hardening range of the present invention having the above-mentioned contents are such that when a ferromagnetic material is quenched, the quench-hardened range causes a compressive residual stress,
A tensile residual stress is generated in the periphery of the material, and the characteristics of the Barkhausen effect noise generated when the material in this state is subjected to alternating magnetization are small in compressive stress and large in tensile stress. Then, the ferromagnetic material is alternately magnetized so as to cover the measurement range with an electromagnet, the Barkhausen effect noise signal is detected while moving the detection coil relative to the electromagnet, and the tensile stress is changed to the compressive stress. A comparison circuit detects that the average signal level of a part changes from a certain reference voltage to a value smaller than a certain reference voltage, accurately detects the boundary between the hardened part and the non-hardened part of the measurement range, and measures the quench-hardened range accordingly. To do.

【0008】[0008]

【実施例】次に添付図面に示した実施例に基づき更に本
発明の詳細を説明する。図1は焼入硬化範囲の測定状態
を示したプローブ部の簡略配置図であり、図2はその測
定回路を示し、図中Wは部分焼入れした強磁性体材料、
1は電磁石、2は検出コイルを示している。ここで、材
料Wの表面において、aは焼入部、bは非焼入部をそれ
ぞれ示し、焼入部aは高周波焼入れやレーザーによるビ
ーム焼入れによって形成している。
The present invention will be further described in detail with reference to the embodiments shown in the accompanying drawings. FIG. 1 is a simplified layout diagram of a probe portion showing a measurement state of a quench hardening range, FIG. 2 shows a measurement circuit thereof, and W in the figure is a partially quenched ferromagnetic material,
Reference numeral 1 is an electromagnet, and 2 is a detection coil. Here, on the surface of the material W, a indicates a quenched portion and b indicates a non-quenched portion, and the quenched portion a is formed by induction hardening or laser beam hardening.

【0009】強磁性体材料Wを交番磁化するための電磁
石1は、コ字形のヨーク芯3の両端部に励磁用コイル4
を巻回し、図示しない電源から電流を供給して交番磁界
を発生するものである。両励磁用コイル4,4の間隔
は、材料Wの測定範囲を十分にカバーし得るように設定
されている。ここで、交番磁界の周波数(電源の周波
数)は、10Hz〜1kHz程度の範囲が利用できる。
周波数が高くなるに従い、また電流が大きくなるに従
い、バルクハウゼン効果雑音信号(以下、これを「BN
信号」と称する。)は大きくなる傾向があるが、電流を
あまり大きくしてもBN信号が飽和するとともに、電磁
石1の発熱量が多くなるので好ましくない。また、周波
数が10Hz以下ではBN信号が小さく、1kHz以上
では交番磁界が材料Wの内部にあまり浸透しないので、
前述の周波数範囲内にとどめることが好ましい。本実施
例では、交番磁界の周波数を150Hzに設定してい
る。
An electromagnet 1 for alternately magnetizing a ferromagnetic material W has an excitation coil 4 at both ends of a U-shaped yoke core 3.
Is wound and a current is supplied from a power source (not shown) to generate an alternating magnetic field. The distance between the two exciting coils 4 and 4 is set so as to sufficiently cover the measurement range of the material W. Here, the frequency of the alternating magnetic field (frequency of the power supply) can be used in the range of about 10 Hz to 1 kHz.
As the frequency increases and the current increases, the Barkhausen effect noise signal (hereinafter referred to as “BN
Signal ”. ) Tends to increase, but it is not preferable because the BN signal is saturated and the amount of heat generated by the electromagnet 1 increases even if the current is increased too much. Further, when the frequency is 10 Hz or less, the BN signal is small, and when the frequency is 1 kHz or more, the alternating magnetic field does not penetrate much into the material W,
It is preferable to stay within the aforementioned frequency range. In this embodiment, the frequency of the alternating magnetic field is set to 150 Hz.

【0010】そして、前記電磁石1の両励磁用コイル
4,4間に配する検出コイル2は、BN信号の検出効率
を上げるためフェライトコア5に巻回され、フェライト
コア5の先端を材料Wの表面上に接触させながら走査す
るのである。ここで、前記電磁石1の励磁用コイル4,
4を結ぶ方向をX軸とし、それに直交する材料Wの表面
に沿った方向をY軸とすると、前記検出コイル2は、電
磁石1に対して適宜な治具によってX−Y平面を自由に
相対的に移動可能となしている。また、検出コイル2の
フェライトコア5を細くすれば、容易に0.5mm程度
の精度を出すことが可能である。
The detection coil 2 arranged between the excitation coils 4 and 4 of the electromagnet 1 is wound around the ferrite core 5 in order to improve the detection efficiency of the BN signal, and the tip of the ferrite core 5 is made of the material W. The scanning is performed while contacting the surface. Here, the exciting coils 4 of the electromagnet 1 are
Assuming that the direction connecting the four is the X axis and the direction along the surface of the material W orthogonal to the X axis is the Y axis, the detection coil 2 can freely move the XY plane relative to the electromagnet 1 by an appropriate jig. It is said that it can be moved. Further, if the ferrite core 5 of the detection coil 2 is made thin, an accuracy of about 0.5 mm can be easily obtained.

【0011】図2は測定回路を示し、検出コイル2の両
端間に生じるBN信号を含む二次電圧信号をハイパス増
幅器6を通して、高周波成分(100kHz程度)であ
るBN信号のみ増幅した後(電圧信号V1 )、検波整流
回路7に入力してBN信号の正成分を平滑化し、そして
それによって得られたBN信号の平均信号レベル(電圧
信号V2 )を比較回路8で基準電圧Vsと比較して、電
圧信号V2 が基準電圧Vsより大きい場合に比較回路8
の出力電圧信号V3 は高レベルとなり、逆の場合には電
圧信号V3 は低レベルとなる。ここで、ハイパス増幅器
6は、ハイパスフィルターと1000倍程度の高周波増
幅器から構成され、また検波整流回路7は、ダイオード
DとコンデンサCとで構成され、更に比較回路8は、コ
ンパレータで構成されている。焼入部aのBN信号より
非焼入部bのBN信号の振幅は大きいので、電圧信号V
3 が低レベルの場合には焼入部aを検出し、高レベルの
場合には非焼入部bを検出したことになる。そして、電
圧信号V3 が低レベルから高レベルに変わる位置又は高
レベルから低レベルに変わる位置が焼入部aと非焼入部
bの焼入境界を示すのである。非焼入部bは引張り残留
応力を生じており、焼入部aは圧縮残留応力となってい
るから、その境界は鮮明に判る。
FIG. 2 shows a measuring circuit, in which a secondary voltage signal including a BN signal generated between both ends of the detection coil 2 is passed through a high-pass amplifier 6 to amplify only a BN signal which is a high frequency component (about 100 kHz) (voltage signal). V 1 ), the positive component of the BN signal is smoothed by inputting to the detection rectification circuit 7, and the average signal level (voltage signal V 2 ) of the BN signal obtained thereby is compared with the reference voltage Vs by the comparison circuit 8. If the voltage signal V 2 is larger than the reference voltage Vs, the comparison circuit 8
Of the output voltage signal V 3 becomes high level, and in the opposite case, the voltage signal V 3 becomes low level. Here, the high-pass amplifier 6 is composed of a high-pass filter and a high-frequency amplifier of about 1000 times, the detection rectification circuit 7 is composed of a diode D and a capacitor C, and the comparison circuit 8 is composed of a comparator. .. Since the BN signal of the non-quenched portion b has a larger amplitude than the BN signal of the quenched portion a, the voltage signal V
When 3 is at a low level, the hardened portion a is detected, and when it is at a high level, the non-hardened portion b is detected. The position where the voltage signal V 3 changes from the low level to the high level or the position where the voltage signal V 3 changes from the high level to the low level indicates the hardening boundary between the hardened part a and the non-hardened part b. Since the non-quenched part b has a tensile residual stress and the hardened part a has a compressive residual stress, the boundary can be clearly seen.

【0012】次に、強磁性体材料を交番磁化するときバ
ルクハウゼン効果雑音が発生するメカニズムについて簡
単に説明する。強磁性体である鉄やニッケル等の遷移金
属では電子雲の外側に位置する3d軌道の電子が過剰と
なっており、それぞれの原子が磁子として作用し、その
磁子が同じ向きに配列して巨視的な磁石を構成する。こ
の磁石は自発磁化と呼ばれるかなり大きな磁区を構成
し、各磁区ごとに磁化している方向は異なり、エネルギ
ー的になるべる低くなるように隣接する磁区の磁化の方
向は互いに連ねて閉じている。このような状況のもとで
は、外部に対して磁性的中性を保っている。ここで、外
部から磁界を与えると、磁界と同じ方向若しくはそれに
近い方向に自発磁化した磁区の領域が広くなって、全体
として磁化し、大部分の磁区が磁界に近い方向を向いた
後、更に磁界を強くすると、自発磁化の向きが磁界の方
向を向くように磁区が回転する。この磁化過程で磁区と
磁区との境界の磁壁は移動する。もし、磁壁がスムース
に運動するなら磁化もスムースに進行し、不規則信号電
圧は生じないはずであるが、材料の結晶内の不純物や欠
陥によって磁壁の運動はスムースでなくなり、あるいは
多結晶では結晶方位が不規則であるから、結晶粒ごとに
磁化(磁壁の移動)を始める時期(磁界の強さ)が異な
り、磁化に不連続又は緩急を生じ、不規則信号即ちBN
信号が発生する。BN信号は、材料の表面近傍で磁壁を
またいで隣の磁区との間に生じた漏れ磁束を捕らえたも
のである。このように、BN信号の大きさは材料中の不
純物及び欠陥の多少によって変化し、またBN信号は応
力によっても変わる性質があり、引張り応力では磁化が
容易となり磁壁の移動は速くなってBN信号は大きくな
る。他方、圧縮応力では逆に磁化が困難に(磁化率が小
さく)なり、磁壁の移動は遅く、BN信号は小さくな
る。一般的に焼入れすることによって、圧縮残留応力を
生じるため、BN信号は小さくなる。また、BN信号は
交番磁界の変化が大きいときにも大きく発生する。
Next, the mechanism by which the Barkhausen effect noise is generated when the ferromagnetic material is alternately magnetized will be briefly described. In transition metals such as iron and nickel, which are ferromagnetic materials, the electrons in the 3d orbit located outside the electron cloud are excessive, and each atom acts as a magnet, and the magnets are arranged in the same direction. Form a macroscopic magnet. This magnet forms a fairly large magnetic domain called spontaneous magnetization, and the direction of magnetization is different for each magnetic domain, and the magnetization directions of adjacent magnetic domains are closed in series so as to be as low as possible in terms of energy. .. Under these circumstances, magnetic neutrality is maintained with respect to the outside. Here, when a magnetic field is applied from the outside, the area of the magnetic domain that is spontaneously magnetized in the same direction as the magnetic field or a direction close to the magnetic field is widened, and is magnetized as a whole, and most of the magnetic domains are oriented in the direction close to the magnetic field, and then further. When the magnetic field is strengthened, the magnetic domain rotates so that the direction of spontaneous magnetization faces the direction of the magnetic field. During this magnetization process, the domain wall at the boundary between magnetic domains moves. If the domain wall moves smoothly, the magnetization should also proceed smoothly and an irregular signal voltage should not occur, but the impurities or defects in the crystal of the material cause the domain wall to move smoothly, or the polycrystalline Since the orientation is irregular, the timing of starting the magnetization (movement of the domain wall) (the strength of the magnetic field) is different for each crystal grain, and the magnetization is discontinuous or abrupt, which causes an irregular signal, that is, BN.
A signal is generated. The BN signal is obtained by capturing the leakage magnetic flux generated between the adjacent magnetic domain across the domain wall in the vicinity of the surface of the material. As described above, the magnitude of the BN signal changes depending on the amount of impurities and defects in the material, and the BN signal also has the property of changing depending on the stress. When the tensile stress is applied, the magnetization is facilitated and the movement of the domain wall is accelerated, resulting in the BN signal. Grows. On the other hand, with compressive stress, on the contrary, the magnetization becomes difficult (the magnetic susceptibility is small), the domain wall moves slowly, and the BN signal becomes small. Quenching generally produces a compressive residual stress, which reduces the BN signal. Further, the BN signal is also greatly generated when the change in the alternating magnetic field is large.

【0013】図3及び図4に、実際に測定したBN信号
の例を示す。図3は焼入部aを測定した信号であり、高
周波信号がBN信号であり、低周波信号は電磁石1の励
磁電流である。図4は非焼入部bを測定した同様な信号
である。これらBN信号はハイパス増幅器6を通した後
の電圧信号V1 である。
3 and 4 show examples of actually measured BN signals. FIG. 3 shows a signal obtained by measuring the hardened portion a, the high frequency signal is a BN signal, and the low frequency signal is an exciting current of the electromagnet 1. FIG. 4 shows a similar signal obtained by measuring the non-quenched portion b. These BN signals are the voltage signal V 1 after passing through the high pass amplifier 6.

【0014】図5は、部分焼入れした強磁性体材料Wの
焼入硬化した境界を挟んだ位置に電磁石1を配し、その
電磁石1の励磁用コイル4,4間で検出コイル2を往復
移動させた場合の電圧信号V2 を示している。この結
果、焼入硬化した境界部で平均信号レベルは1/2以下
に急激に変化し、この信号変化部の立上り又は立下りは
検出コイル2の走査速度及びタイムスケールを考慮すれ
ば約1mmである。本発明は、このように焼入硬化した
境界を約1mm以内の高精度で測定することが可能であ
る。
In FIG. 5, the electromagnet 1 is arranged at a position sandwiching the quench-hardened boundary of the partially hardened ferromagnetic material W, and the detection coil 2 is reciprocally moved between the exciting coils 4 and 4 of the electromagnet 1. The voltage signal V 2 is shown when the voltage signal is applied. As a result, the average signal level rapidly changes to 1/2 or less at the quench-hardened boundary, and the rising or falling of this signal changing portion is about 1 mm when the scanning speed and time scale of the detection coil 2 are taken into consideration. is there. According to the present invention, it is possible to measure the quench-hardened boundary with high accuracy within about 1 mm.

【0015】また、図6に示したチャートは、図1に示
した配置で、検出コイル2を移動した場合における測定
回路の各部の電圧信号を示している。平均信号レベルV
2 を基準電圧Vsと比較することによって、焼入部aと
非焼入部bの境界をシャープに検出することができ、ま
たその電圧信号V3 が低レベルの場合には測定点が焼入
部aであることが判り、逆に高レベルの場合には測定点
が非焼入部bであることが判るのである。更に、電磁石
1の位置を特定した状態で、検出コイル2の変位をエン
コーダーで測定しながら出力電圧信号V3 をモニター
し、それを二値化して記憶装置に入力し、マイクロコン
ピュータによってデータ処理し、材料表面の焼入部a及
び非焼入部bの範囲を特定したマップを作成することも
可能である。
The chart shown in FIG. 6 shows the voltage signal of each part of the measurement circuit when the detection coil 2 is moved in the arrangement shown in FIG. Average signal level V
By comparing 2 with the reference voltage Vs, the boundary between the hardened portion a and the non-hardened portion b can be sharply detected, and when the voltage signal V 3 is at a low level, the measurement point is the hardened portion a. It can be seen that there is some, and conversely, at a high level, the measurement point is the non-quenched portion b. Furthermore, while the position of the electromagnet 1 is specified, the output voltage signal V 3 is monitored while measuring the displacement of the detection coil 2 with an encoder, and the output voltage signal V 3 is binarized and input to a storage device, and data is processed by a microcomputer. It is also possible to create a map that specifies the range of the hardened portion a and the non-hardened portion b of the material surface.

【0016】本実施例では、以上述べたように部分焼入
れした強磁性体材料Wの焼入硬化範囲を精度よく非破壊
で測定することができるが、歯車のように外周部を焼入
れした部品においては、その側面の焼入硬化範囲を測定
することによって焼入れ深さもかなり精度よく非破壊で
測定可能である。更に、BN信号を完全焼入れした同一
材料のBN信号と比較することによって、焼入れの良否
を判断することも可能である。
In the present embodiment, the quench hardening range of the partially hardened ferromagnetic material W as described above can be measured accurately and nondestructively. However, in parts such as gears whose outer peripheral portion is hardened. By measuring the quench-hardening range on the side surface, the quenching depth can be measured very accurately and nondestructively. Further, by comparing the BN signal with the BN signal of the completely hardened same material, it is possible to judge the quality of the hardening.

【0017】[0017]

【発明の効果】以上にしてなる本発明の焼入硬化範囲の
非破壊測定方法及びその装置によれば、部分焼入れした
強磁性体材料の焼入部と非焼入部の境界、即ち焼入硬化
範囲を1mm程度又はそれ以下の高精度で、しかも非破
壊で簡単に測定することができ、またその測定において
は、電磁石及び検出コイルを被検査体から0.2〜0.
3mm程度浮かせて測定することもできるので電磁石と
検出コイルを一体化して100mm/秒以上の高速で全
数検査(1個/30秒以内)もでき、生産ラインにおけ
る自動検査にも用いることができる。
According to the nondestructive measurement method and apparatus for the quench hardening range of the present invention as described above, the boundary between the quenching portion and the non-quenching portion of the partially quenched ferromagnetic material, that is, the quenching hardening range. Can be easily measured with high accuracy of about 1 mm or less and non-destructively. In the measurement, the electromagnet and the detection coil are 0.2 to 0.
Since it can be floated for about 3 mm for measurement, the electromagnet and the detection coil can be integrated to perform 100% / sec or higher high-speed 100% inspection (1 piece / 30 seconds or less), and it can also be used for automatic inspection in a production line.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる装置のプローブ部を示す簡略断
面図である。
FIG. 1 is a simplified cross-sectional view showing a probe unit of an apparatus according to the present invention.

【図2】その測定回路を示す簡略回路図である。FIG. 2 is a simplified circuit diagram showing the measuring circuit.

【図3】焼入部のBN信号を示すオシログラフである。FIG. 3 is an oscillograph showing a BN signal of a hardened part.

【図4】非焼入部のBN信号を示すオシログラフであ
る。
FIG. 4 is an oscillograph showing a BN signal of a non-quenched portion.

【図5】焼入部と非焼入部の境界をまたいで検出コイル
を往復させて測定したBN信号の平均信号レベルのオシ
ログラフである。
FIG. 5 is an oscillograph of the average signal level of the BN signal measured by reciprocating the detection coil across the boundary between the hardened part and the non-hardened part.

【図6】図2に示した測定回路の各部の電圧信号を示す
簡略チャートである。
FIG. 6 is a simplified chart showing voltage signals of respective parts of the measurement circuit shown in FIG.

【符号の説明】[Explanation of symbols]

W 材料 a 焼入部 b 非焼入部 1 電磁石 2 検出コイル 3 ヨーク芯 4 励磁用コイル 5 フェライトコア 6 ハイパス増幅器 7 検波整流回路 8 比較回路 W Material a Hardened part b Non-hardened part 1 Electromagnet 2 Detection coil 3 Yoke core 4 Excitation coil 5 Ferrite core 6 High-pass amplifier 7 Detection rectifier circuit 8 Comparison circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 強磁性体材料の焼入硬化範囲を測定する
ものであって、材料を交番磁化するときに生じるバルク
ハウゼン効果雑音が焼入れにより変化することを用い
て、部分焼入れした材料の焼入部と非焼入部のバルクハ
ウゼン効果雑音の平均信号レベルを基準電圧と比較する
ことにより焼入境界を測定することを特徴とする焼入硬
化範囲の非破壊測定方法。
1. A method for measuring the quench-hardening range of a ferromagnetic material, wherein the Barkhausen effect noise generated when the material is subjected to alternating magnetization changes by quenching. A non-destructive measurement method for a quench hardening range, which comprises measuring a quenching boundary by comparing an average signal level of Barkhausen effect noise of a quenching portion and a non-quenching portion with a reference voltage.
【請求項2】 強磁性体材料の焼入硬化範囲を測定する
ものであって、材料を交番磁化させるヨーク型電磁石
と、該電磁石の間に配し且つ材料の表面上を電磁石と相
対的に移動可能な検出コイルと、該検出コイルに生じる
二次電圧信号からバルクハウゼン効果雑音信号のみ取り
出す検波整流回路と、該検波整流回路による信号を基準
電圧と比較する比較回路とよりなることを特徴とする焼
入硬化範囲の非破壊測定装置。
2. A method for measuring a quench-hardening range of a ferromagnetic material, comprising a yoke-type electromagnet for alternately magnetizing the material, and a yoke-shaped electromagnet disposed between the electromagnets and having a surface of the material relatively to the electromagnet. A movable detection coil, a detection rectification circuit for extracting only a Barkhausen effect noise signal from a secondary voltage signal generated in the detection coil, and a comparison circuit for comparing the signal by the detection rectification circuit with a reference voltage. Non-destructive measuring device for quench hardening range.
JP8150592A 1992-03-02 1992-03-02 Method and apparatus for nondestructive measurement of quenched and hardened range Pending JPH05264508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8150592A JPH05264508A (en) 1992-03-02 1992-03-02 Method and apparatus for nondestructive measurement of quenched and hardened range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8150592A JPH05264508A (en) 1992-03-02 1992-03-02 Method and apparatus for nondestructive measurement of quenched and hardened range

Publications (1)

Publication Number Publication Date
JPH05264508A true JPH05264508A (en) 1993-10-12

Family

ID=13748221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8150592A Pending JPH05264508A (en) 1992-03-02 1992-03-02 Method and apparatus for nondestructive measurement of quenched and hardened range

Country Status (1)

Country Link
JP (1) JPH05264508A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170233A (en) * 2007-01-10 2008-07-24 Toyota Motor Corp Hardening depth measuring instrument and method
JP2009507220A (en) * 2005-09-05 2009-02-19 スカニア シーブイ アクチボラグ(パブル) Method of processing cast iron components based on hardness estimation by magnetic Barkhausen noise
JP2009109358A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Method for measuring hardening pattern
JP2012132870A (en) * 2010-12-24 2012-07-12 Neturen Co Ltd Method for detecting hardened range and method for inspecting hardened range
JP2016164537A (en) * 2015-03-06 2016-09-08 高周波熱錬株式会社 Hardened layer depth measurement device
US10816414B2 (en) 2018-10-11 2020-10-27 Ford Motor Company Methods of non-destructive residual stress measurement using Barkhausen Noise and use of such methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507220A (en) * 2005-09-05 2009-02-19 スカニア シーブイ アクチボラグ(パブル) Method of processing cast iron components based on hardness estimation by magnetic Barkhausen noise
JP2008170233A (en) * 2007-01-10 2008-07-24 Toyota Motor Corp Hardening depth measuring instrument and method
JP2009109358A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Method for measuring hardening pattern
JP2012132870A (en) * 2010-12-24 2012-07-12 Neturen Co Ltd Method for detecting hardened range and method for inspecting hardened range
JP2016164537A (en) * 2015-03-06 2016-09-08 高周波熱錬株式会社 Hardened layer depth measurement device
US10458775B2 (en) 2015-03-06 2019-10-29 Neturen Co., Ltd. Hardened layer depth measuring apparatus
US10816414B2 (en) 2018-10-11 2020-10-27 Ford Motor Company Methods of non-destructive residual stress measurement using Barkhausen Noise and use of such methods

Similar Documents

Publication Publication Date Title
US4931730A (en) Method and apparatus for non-destructive materials testing and magnetostructural materials investigations
KR100671630B1 (en) On-line flaw detection method of magnetic leak detector and strip of magnetic flaw detector
US5565773A (en) Arrangement of excitation and detection heads for detecting the magnetic properties of an object
JP2001141701A (en) Method for measuring coercive force
JPH01245149A (en) Deterioration inspection instrument for metallic material
CN112444219B (en) Non-contact ultrasonic electromagnetic coating thickness measuring method and detection device thereof
JPH05264508A (en) Method and apparatus for nondestructive measurement of quenched and hardened range
JPS6352345B2 (en)
JP6607242B2 (en) Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
JP2617571B2 (en) Magnetic measuring device
JPH01147360A (en) Method and device for detecting deterioration
JP2938950B2 (en) Deterioration damage detection device for metal materials
JP4344072B2 (en) Coil device for wire eddy current testing
JP2005106602A (en) Magnetic flaw detection sensor
Crouch et al. In-line stress measurement by the continuous Barkhausen method
US20230018264A1 (en) Method for determining a materials characteristic value of magnetizable metal bodies by means of a micromagnetic sensor assembly, and corresponding sensor assembly
JPH0264450A (en) Apparatus for inspecting deterioration of material
JP2713171B2 (en) Metal material deterioration inspection device
JPH01269049A (en) Method of inspecting deterioration of metallic material
JPS6011493Y2 (en) Electromagnetic induction detection device
US6850056B2 (en) Flaw detection device for steel bar
RU2672978C1 (en) Method for detecting defects in a long-dimensional ferromagnetic object
JPS6315153A (en) Magnetizing device for magnetically recording and inspectingarticle
OKA et al. Examination of the inductance method for non-destructive testing in structural metallic material by means of the pancake-type coil
Zhang et al. Crack Detection Method Based on the Poly-Magnetic Probe Structure