JPS62174546A - Air-fuel ratio control for engine - Google Patents

Air-fuel ratio control for engine

Info

Publication number
JPS62174546A
JPS62174546A JP1716986A JP1716986A JPS62174546A JP S62174546 A JPS62174546 A JP S62174546A JP 1716986 A JP1716986 A JP 1716986A JP 1716986 A JP1716986 A JP 1716986A JP S62174546 A JPS62174546 A JP S62174546A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
engine
operation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1716986A
Other languages
Japanese (ja)
Inventor
Nobuhiko Sato
信彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carburetor Co Ltd
Original Assignee
Nippon Carburetor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carburetor Co Ltd filed Critical Nippon Carburetor Co Ltd
Priority to JP1716986A priority Critical patent/JPS62174546A/en
Publication of JPS62174546A publication Critical patent/JPS62174546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the fuel economic efficiency by dividing the normal operation region of an engine into the theoretical air-fuel ratio operation region having a relatively low speed and the lean air-fuel ratio operation region having a relatively high speed, thus securing the superior acceleration performance. CONSTITUTION:A control valve 15 is driven so that the mixed gas in the theoretical air-fuel ratio is supplied on the basis of the electric signal supplied from an oxygen sensor 22 in the theoretical air-fuel ratio operation region. In the lean air-fuel ratio operation region, the control valve 15 is opened and closed with a small duty value or kept in the valve closed state, and the fuel in the fundamental feed quantity metered mainly by a jet 3 is sent into a mixer 5, and the mixed gas in the lean air-fuel ratio is supplied into an engine 11, and thus the fuel economic efficiency is improved. Thus, the fuel economic efficiency can be improved, securing the superior acceleration performance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はエンジンの空燃比を制御する方法に関するもの
であり、自動車0作業車両、産業機械などの動力源に使
用される工ンジ/の空燃比制御に利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for controlling the air-fuel ratio of an engine, and the present invention relates to a method for controlling the air-fuel ratio of an engine, which is used as a power source for automobiles, work vehicles, industrial machinery, etc. used for.

エンジンの運転状態を検出してフィードバック方式によ
り空燃比を制@する技術は広(仰られており、吸入空気
量に応じて燃料の基本供給量を設定し、これに運転性能
、@料経済性、排気対策などを考慮してエンジンの運転
状態に対応した補正を710え所定の空燃比とするもの
である。空燃比は燃料、空気の少な(ともいずれかをパ
ルス波形の鳴動信号によって駆動される制御弁で制御し
、#A動倍信号エンジンの運転状態が人力されその情報
に基いて最適の条件を計算する電子式の制御ユニットか
ら出力されるのがtAである。
The technology to control the air-fuel ratio using a feedback method by detecting the operating state of the engine is widely used (as mentioned above).The basic supply amount of fuel is set according to the amount of intake air, and this is used to improve operating performance and fuel economy. The air-fuel ratio is set to a predetermined air-fuel ratio by making corrections corresponding to the operating conditions of the engine in consideration of exhaust countermeasures, etc. tA is controlled by a control valve, and is output from an electronic control unit that manually calculates the operating state of the #A dynamic signal engine and calculates optimal conditions based on that information.

ここで、高出力域を除(通常運転域において或る回転速
度以下または吸入負圧以上では理論窓・燃比で運転し主
としてエミッションの低減を計るが、或る回転速度以上
または吸入負圧以下では稀薄空燃比で運転し王として燃
料会済性を計るように制御システムを作ると。
Here, we exclude the high output range (in the normal operating range, below a certain rotational speed or above the suction negative pressure, we operate at the stoichiometric window/fuel ratio to mainly reduce emissions, but above a certain rotational speed or below the suction negative pressure) If you create a control system that operates at a lean air-fuel ratio and measures the fuel efficiency as a king.

二つの運転領域の境界は一定であり且つこの境界を越え
ると直ちに空燃比補正が行なわれる。従って、理論空燃
比運転領域を小さく設定して燃料経ガ性の向上を計ると
、二つの運転領域にまたがる加速時にぽちに稀薄全燃比
運転領域に移行して加速性を損うという欠点がある。そ
のために運転領域を越えた後も或る時間は理論空燃比で
加速が行なわれるよ5に空燃比切換えを遅延させること
が考えられているが、加速度合いに関係なく一定の遅延
時間を設定しているので、急加速時に加速終了後も理論
空燃比運転が行なわれ、或いは緩加速時にその初期で空
燃比切換えが行なわれることがあり、そのために燃料経
σ性やJ転性を頃5という問題がある。
The boundary between the two operating ranges is constant, and as soon as this boundary is crossed, air-fuel ratio correction is performed. Therefore, if you aim to improve fuel efficiency by setting the stoichiometric air-fuel ratio operating range small, there is a drawback that when accelerating across two operating ranges, you will gradually shift to the lean full-fuel ratio operating range, impairing acceleration performance. . For this reason, it has been considered to delay the air-fuel ratio switching so that acceleration is performed at the stoichiometric air-fuel ratio for a certain period of time even after the operating range is exceeded, but it is possible to set a constant delay time regardless of the degree of acceleration. Therefore, during rapid acceleration, stoichiometric air-fuel ratio operation may be performed even after the end of acceleration, or during slow acceleration, air-fuel ratio switching may occur at the beginning. There's a problem.

本発明は前述のような問題点を解決し、加速度合いに応
じて遅延時間を変化させて燃料経済性および運転性にす
ぐれた空燃比制御方法を提供することを目的としている
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an air-fuel ratio control method that improves fuel economy and drivability by changing the delay time depending on the degree of acceleration.

発明の構成 本発明に係るエンジンの空燃比制御方法は。Composition of the invention An engine air-fuel ratio control method according to the present invention.

エンジンの通常運転域を或る回転速度以下の理論空燃比
運転領域と或る回転速度以上の稀薄空燃比運転域とに分
け、且つ前記二つの運転領域にまたがる加速時にその境
界を越えた後も理論空燃比運転を行なわせるように空燃
比切換えを遅延させるにあたり、加速度合いに応じて遅
延時間を設定するとともに遅延時間経過時の回転速度を
算出し、遅延時間内に前記回転速度に違したとぎは稀薄
空燃比運転に切換える1成とした。
The normal operating range of the engine is divided into a stoichiometric air-fuel ratio operating range below a certain rotational speed and a lean air-fuel ratio operating range above a certain rotational speed, and even after the boundary is crossed during acceleration across the two operating ranges. In order to delay air-fuel ratio switching so as to perform stoichiometric air-fuel ratio operation, a delay time is set according to the degree of acceleration, the rotational speed at the time the delay time elapses is calculated, and if the rotational speed is changed to the above-mentioned rotational speed within the delay time. is set to 1, which switches to lean air-fuel ratio operation.

実  施  例 本発明の実施例を図面に暴いて説明する。Example Embodiments of the present invention will be explained with reference to the drawings.

第1図はLPGのような気体燃料を使用したエンジンに
本発明を実施した場合を示しており、耐圧容器1の気体
燃料はベーパライザ2で大気圧程度に減圧され、基本流
愈を設定するジェット3を■する燃料通路4を通り混合
器5のベンチュリ6に沿って形成された環状室7に入り
、スリット状の主ノズル8から吸気路9に吸出され空気
と混合して吸気マニホルド10より工/シフ11に供給
される。排気は排気管12の三元触媒コンバータ13で
浄化されて大気中に放出される。
Figure 1 shows the case where the present invention is implemented in an engine using gaseous fuel such as LPG, in which the gaseous fuel in a pressure vessel 1 is reduced to about atmospheric pressure in a vaporizer 2, and a jet is used to set the basic flow rate. The fuel enters the annular chamber 7 formed along the venturi 6 of the mixer 5 through the fuel passage 4 (3), is sucked out from the slit-shaped main nozzle 8 into the intake passage 9, mixes with air, and is passed through the intake manifold 10. /Shiff 11. The exhaust gas is purified by a three-way catalytic converter 13 in an exhaust pipe 12 and released into the atmosphere.

燃料通路4のジェット3よりも上流側から分岐して環状
室7に接続された補正燃料通路14が設けられ、この通
路14にはt占躯動の制御弁15が設げられていて、を
子犬の制御二二ッ)16から送られろパルス波形の駆動
信号のデユーティ値に従って前記匍制御弁15を開閉し
所要の空燃比となるように補正燃料を制御するのである
A correction fuel passage 14 is provided which branches from the upstream side of the jet 3 of the fuel passage 4 and is connected to the annular chamber 7, and this passage 14 is provided with a control valve 15 of t-occupying motion. The control valve 15 is opened and closed in accordance with the duty value of the pulse waveform drive signal sent from the control valve 16 to control the correction fuel so that the required air-fuel ratio is achieved.

ここで、混合器5に設置さnたでプリ417の開度セン
サ18.吸気マニホルド10に設げられた圧力センサ1
9.工/ジン11の回転速度セ/サ20および温度セン
サ21.排気管12に設けられた酸素センサ22.更に
図示しない吸入空気温度、イグニッションスイッチ、ブ
レーキその他エンジン11の運転状態を検知するセンナ
が必要に応じて設げられており、これらのセンサからの
電気信号が制御ユニット16に送られ、制御二二ツH6
においてこれらの情報に基いて最適の条件を計算し制御
弁15を所定のデユーティ比で開閉ibする駆動信号を
発するかまたは閉弁状態或いは開弁状態を保持させ、央
に駆動信号のデユーティ値を変化させる。
Here, the opening sensor 18. Pressure sensor 1 provided in intake manifold 10
9. Rotational speed sensor 20 and temperature sensor 21 of engine/engine 11. Oxygen sensor 22 provided in the exhaust pipe 12. Furthermore, sensors (not shown) for detecting the intake air temperature, ignition switch, brake, and other operating conditions of the engine 11 are provided as necessary, and electrical signals from these sensors are sent to the control unit 16 to control the control unit 16. Tsu H6
The optimum conditions are calculated based on this information and a drive signal is generated to open and close the control valve 15 at a predetermined duty ratio, or the valve is kept in the closed or open state, and the duty value of the drive signal is set in the center. change.

また、第2図の制御マツプのように、高出力運転域を除
いた通常運転域をエンジンIIQ回転速度が一定値NQ
以下で且つ吸入負圧が一定値pg以上の運転領域(Nと
1回転速度が一定MNa以上で且つ吸入負圧が一定1[
Po以下の運転領域(B)とに分け、前者の運転領域(
A)は理論空燃比の混合2で運転し後者の運転領域(B
)は稀薄空燃比の混合気で運転するように設定し。
In addition, as shown in the control map in Fig. 2, in the normal operating range excluding the high output operating range, the engine IIQ rotation speed is set to a constant value NQ.
In the operating range where the suction negative pressure is equal to or higher than the constant value pg (N and 1), the rotational speed is equal to or higher than the constant MNa and the suction negative pressure is constant 1[
It is divided into the operating region below Po (B) and the former operating region (B).
A) is operated at the stoichiometric air-fuel ratio mixture 2, and the latter operating region (B
) is set to operate with a lean air/fuel mixture.

更に高出力運転域(C)は出力空燃比の混合気で運転す
るように設定する。
Further, the high output operating range (C) is set to operate with a mixture having an output air-fuel ratio.

このような構成の本実施例において、アイドリング時に
は開度センサ18からのtILz信号によって絞り弁1
7がアイドル位置にあることを検知するので、理論空燃
比の混合気または温度センサ21からの電気信号で二/
ジン温度が低いことを検知したときは理論空燃比よりも
少し濃い混合気を供給するよ5に制御弁15を駆動する
In this embodiment having such a configuration, during idling, the throttle valve 1 is activated by the tILz signal from the opening sensor 18.
7 is in the idle position, the air-fuel mixture at the stoichiometric air-fuel ratio or the electric signal from the temperature sensor 21 is used to detect the
When it is detected that the engine temperature is low, the control valve 15 is actuated to supply a mixture slightly richer than the stoichiometric air-fuel ratio.

アイドリングが終って絞り弁17が開いたときは、圧力
上ン?19と回転速度虫ンサ20からの電気信号によっ
てエンジン11の吸入負圧が一定値PQ以上であり或い
は回転速度が一定値N、以下であると判定される理論空
燃比運転領域(A)において酸素センサ22からの電気
信号に基ぎ理論空燃比の混合気が供給されるように:i
?II IIQI弁15弁部5する。このため2例えば
自動車において通常の市内走行速度範囲で理論空燃比に
フィードバック制御されろように運転領域(蜀を設定す
ることにより、三元触媒コンバータ13による排気浄化
効率が最大の状態で走行することができろ。
When the throttle valve 17 opens after idling, does the pressure rise? In the stoichiometric air-fuel ratio operating region (A) where it is determined that the intake negative pressure of the engine 11 is above a certain value PQ or the rotation speed is below a certain value N, based on electrical signals from the engine 19 and the rotational speed sensor 20. So that the air-fuel mixture at the stoichiometric air-fuel ratio is supplied based on the electrical signal from the sensor 22: i
? II IIQI valve 15 valve part 5. For this reason, for example, in a car, by setting the driving range (shu) so that the feedback control is performed to the stoichiometric air-fuel ratio within the normal city driving speed range, the vehicle runs in a state where the exhaust purification efficiency by the three-way catalytic converter 13 is maximized. Be able to do that.

吸入負圧が一定値PQ以下または回転速度が一定値NQ
以上と同定されろ稀薄空燃比運転領域(B)においては
酸素センサ22からのML電気信号基くフィードバック
制御を解除して制御弁15を小さいデユーティ値で開閉
させろかまたは閉弁状態に保持し、王にジェット3で計
量され、る基本供給量の燃料を混合器5に送り稀薄空燃
比の混合気をエンジン11に供給して燃料経済性を計る
Suction negative pressure is below a certain value PQ or rotation speed is a certain value NQ
In the lean air-fuel ratio operating region (B) identified as above, the feedback control based on the ML electric signal from the oxygen sensor 22 should be canceled and the control valve 15 should be opened and closed at a small duty value, or the control valve 15 should be kept in the closed state and the control valve 15 should be kept closed. The basic supply amount of fuel metered by the jet 3 is sent to the mixer 5, and a mixture with a lean air-fuel ratio is supplied to the engine 11 to measure fuel economy.

位置センナ18からの電気信号によって高出力運転域(
C)に移行したこと9例えば絞り弁17が開度60度以
上となったことを検知したときは、高濃度の出力混合気
が供給されるように制御弁15を大きいデユーティ値で
駆動するかまたは開弁状[有]に保持する。
The high output operating range (
Shifting to C) 9 For example, when it is detected that the throttle valve 17 has opened at 60 degrees or more, the control valve 15 is driven at a large duty value so that a high concentration output air-fuel mixture is supplied. Or keep it in an open position.

理論空燃比運転領域(囚から稀薄空燃比運転領域(B)
にまたがって7JO速運転が行なわれろとぎ、開度セン
サ18によって絞り弁17の開き速度が検知され、その
電気信号により制御ユニット16において刀口速匿合い
が識別される。
Stoichiometric air-fuel ratio operating region (from high to lean air-fuel ratio operating region (B)
The opening speed of the throttle valve 17 is detected by the opening sensor 18, and the control unit 16 identifies the opening speed of the throttle valve 17 based on the electric signal.

ここで、二つの運転領域(A) CB)にまたがって加
速運転が行なわれるとき、運転領域(Blに移行した後
も継続して或る時間だげ理論空燃比運転を行なうように
空燃比切換えを遅延させる。この遅延時間および遅延時
間経過時の回転速度N1を例えば平均的な或いは小さい
加速度合いを基準として予め算出設定しておぎ。
Here, when acceleration operation is performed across two operating ranges (A) and CB), the air-fuel ratio is switched so that the stoichiometric air-fuel ratio operation continues for a certain period of time even after shifting to the operating range (Bl). This delay time and the rotational speed N1 at the end of the delay time are calculated and set in advance based on, for example, an average or small degree of acceleration.

この遅延解除回転速度N1以下を加速時の最大遅延領域
(DIとする。
The area below this delay release rotational speed N1 is defined as the maximum delay area (DI) during acceleration.

加速度合いが大きい急加速時に設定された遅延時間内に
遅延解除回転速度N1に達したときは9回転速度セン?
20からの電気信号によって稀薄空燃比運転に切換えら
れる。カロ速度合いが小さい緩加速時には遅延解除回転
速度N1に達しないうちに遅延時間か経過し、そのとき
に稀薄空燃比運転に切換えられる。従って、小さい加速
度合いを基準とし遅延時間をなるべ(長く設定しておく
のが好ましい。
When the delay release rotation speed N1 is reached within the set delay time during sudden acceleration with a large degree of acceleration, 9 rotation speed sen?
The electric signal from 20 switches to lean air-fuel ratio operation. During slow acceleration where the caro speed is small, the delay time elapses before the delay release rotational speed N1 is reached, and at that time the operation is switched to lean air-fuel ratio operation. Therefore, it is preferable to set the delay time as long as possible based on a small acceleration degree.

尚2本発明は気体燃料に限らず液体燃料を気化器方式ま
たは噴射方式によって供給するものにも適用され、気化
器方式では燃料とブリード空気の少な(ともいずれかが
制御弁で制御され、噴射方式では噴射弁が制御片?溝成
する。
2. The present invention is applicable not only to gaseous fuel but also to those that supply liquid fuel by a vaporizer method or an injection method. In this method, the injection valve consists of a control piece or groove.

本発明によると、エンジンの通常運転域を比較的低速度
の理論空燃比運転領域と比較的高速度の稀薄空燃比運転
領域とに分けたので運fii領域に応じて徘ス対策と運
転性、燃料経陽性とをそれぞれ計ることができろばかり
か。
According to the present invention, since the normal operating range of the engine is divided into a relatively low-speed stoichiometric air-fuel ratio operating range and a relatively high-speed lean air-fuel ratio operating range, anti-wandering measures and drivability can be improved depending on the operating range. Isn't it just possible to measure the positive and positive fuel meridians?

特に理論空燃比運転領域から稀薄空燃比運転領域へ移行
する加速時に境界を越えた後もある時間は理論空燃比運
転を行なわせ、且つ設定された遅延解除回転速度に達し
たときは設定されている遅延時間内であっても稀薄空燃
比運転に切換えるようにしたので、簡単な制御システム
で急加速時にも適切な空燃比切換えが行なわれ、燃料経
済性や運転性を損うことなくフロ速時の空燃比制御が行
なえ、更に理論空燃比運転領域を小さく設定して良好な
加速性能を保証しながら燃料@隣性を高めることができ
るものである。
In particular, during acceleration when transitioning from the stoichiometric air-fuel ratio operation region to the lean air-fuel ratio operation region, the stoichiometric air-fuel ratio operation is performed for a certain period of time even after the boundary is crossed, and when the set delay release rotational speed is reached, the set Since the system switches to lean air-fuel ratio operation even within the delay time, a simple control system can switch the air-fuel ratio appropriately even during sudden acceleration, and the flow rate can be maintained without impairing fuel economy or drivability. In addition, by setting the stoichiometric air-fuel ratio operating range small, it is possible to improve fuel@adjacency while ensuring good acceleration performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の配置図、第2図は制御マツプ
図である。 11・・・・・・エンジン、14・・・・・・補正燃料
通路、15・・・・・・制御卸弁、16・・・・・・I
III御ユニツユニット・・・・・・開度センサ、19
・・・・・・圧力センサ、20・・・・・・回転速度セ
ン?122・・・・・・酸素セ/す。 第1図
FIG. 1 is a layout diagram of an embodiment of the present invention, and FIG. 2 is a control map diagram. 11...Engine, 14...Correction fuel passage, 15...Control outlet valve, 16...I
III control unit...Opening sensor, 19
......Pressure sensor, 20...Rotation speed sensor? 122...Oxygen ce/su. Figure 1

Claims (1)

【特許請求の範囲】 エンジンの通常運転域を或る回転速度以下 の理論空燃比運転領域と或る回転速度以上の稀薄空燃比
運転領域とに分け、且つ前記二つの運転領域にまたがる
加速時にその境界を越えた後も理論空燃比運転を行なわ
せるように空燃比切換えを遅延させるにあたり、遅延時
間および遅延解除回転速度を設定し、加速度合いによつ
て遅延時間内に前記遅延解除回転速度に達したときは稀
薄空燃比運転に切換えることを特徴とするエンジンの空
燃比制御方法。
[Scope of Claims] The normal operating range of the engine is divided into a stoichiometric air-fuel ratio operating range below a certain rotational speed and a lean air-fuel ratio operating range above a certain rotating speed, and when accelerating across the two operating ranges, In order to delay air-fuel ratio switching so that stoichiometric air-fuel ratio operation is performed even after the boundary has been crossed, a delay time and a delay release rotational speed are set, and the delay release rotational speed is reached within the delay time depending on the degree of acceleration. An engine air-fuel ratio control method characterized by switching to lean air-fuel ratio operation when this occurs.
JP1716986A 1986-01-29 1986-01-29 Air-fuel ratio control for engine Pending JPS62174546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1716986A JPS62174546A (en) 1986-01-29 1986-01-29 Air-fuel ratio control for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1716986A JPS62174546A (en) 1986-01-29 1986-01-29 Air-fuel ratio control for engine

Publications (1)

Publication Number Publication Date
JPS62174546A true JPS62174546A (en) 1987-07-31

Family

ID=11936452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1716986A Pending JPS62174546A (en) 1986-01-29 1986-01-29 Air-fuel ratio control for engine

Country Status (1)

Country Link
JP (1) JPS62174546A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724435A (en) * 1980-07-18 1982-02-09 Nippon Denso Co Ltd Control method of air-fuel ratio in internal combustion engine with output increasing function
JPS58220940A (en) * 1982-06-15 1983-12-22 Honda Motor Co Ltd Fuel feed controlling method of internal-combustion engine
JPS59539A (en) * 1982-06-25 1984-01-05 Honda Motor Co Ltd Air-fuel ratio control of air-fuel mixture for internal- combustion engine of vehicle
JPS5934440A (en) * 1982-08-19 1984-02-24 Honda Motor Co Ltd Control method of air-fuel ratio of mixture for internal conbustion engine for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724435A (en) * 1980-07-18 1982-02-09 Nippon Denso Co Ltd Control method of air-fuel ratio in internal combustion engine with output increasing function
JPS58220940A (en) * 1982-06-15 1983-12-22 Honda Motor Co Ltd Fuel feed controlling method of internal-combustion engine
JPS59539A (en) * 1982-06-25 1984-01-05 Honda Motor Co Ltd Air-fuel ratio control of air-fuel mixture for internal- combustion engine of vehicle
JPS5934440A (en) * 1982-08-19 1984-02-24 Honda Motor Co Ltd Control method of air-fuel ratio of mixture for internal conbustion engine for vehicle

Similar Documents

Publication Publication Date Title
JPS62174546A (en) Air-fuel ratio control for engine
JPH0232853Y2 (en)
US4651699A (en) Air-fuel ratio control system
JPH0220453Y2 (en)
JPS6238843A (en) Air-fuel ratio control method for engine
JPS61252860A (en) Air-fuel ratio controller for gas fuel engine
JPS61286546A (en) Air-fuel ratio control method for engine
JPS62174545A (en) Air-fuel ratio control for engine
JPS62178738A (en) Air-fuel ratio control method for engine
JPH0513963Y2 (en)
JPS61291740A (en) Control method for air-fuel ratio of engine
JPS61255241A (en) Air-fuel ratio control for engine
JP2584970B2 (en) Engine air-fuel ratio control method
JPS6341553Y2 (en)
JPS61255240A (en) Air-fuel ratio control for engine
JPH0636266Y2 (en) Exhaust gas purification device for internal combustion engine
JPS6238846A (en) Air-fuel ratio control method for engine
JPH0623551B2 (en) Air-fuel ratio controller for vehicle engine
JPH033936A (en) Fuel injection quantity control system for internal combustion engine
JPS61247842A (en) Secondary air control system
JP2557516B2 (en) Afterburn prevention device
JPS6312846A (en) Air-fuel ratio control device for internal combustion engine
JPS62129553A (en) Air-fuel ratio controller
JPH0660603B2 (en) Air-fuel ratio controller for internal combustion engine
JPS6278466A (en) Suction secondary air feeding device for internal combustion engine mounted on car