JPS62178738A - Air-fuel ratio control method for engine - Google Patents

Air-fuel ratio control method for engine

Info

Publication number
JPS62178738A
JPS62178738A JP61019771A JP1977186A JPS62178738A JP S62178738 A JPS62178738 A JP S62178738A JP 61019771 A JP61019771 A JP 61019771A JP 1977186 A JP1977186 A JP 1977186A JP S62178738 A JPS62178738 A JP S62178738A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
engine
operation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61019771A
Other languages
Japanese (ja)
Inventor
Nobuhiko Sato
信彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carburetor Co Ltd
Original Assignee
Nippon Carburetor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carburetor Co Ltd filed Critical Nippon Carburetor Co Ltd
Priority to JP61019771A priority Critical patent/JPS62178738A/en
Publication of JPS62178738A publication Critical patent/JPS62178738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the economical efficiency of fuel without spoiling operating properties, by a method wherein an air-fuel ratio switching delay time after transfer of a low speed operation region to a high speed operation region is set according to a rotation speed during shifting to the high speed side. CONSTITUTION:In a control unit 16, in a high speed operation region where a suction negative pressure is below a specified value or a rotation speed exceeds a specified value, feedback control based on an electric signal from an oxygen sensor 22 is released to operate a control valve 15 by means of a low duty value or hold the control valve in a closed state. With this constitution, fuel in a fundamental feed amount weighed mainly by a jet 3 is fed to a mixer 5 to feed air-fuel mixture, having a lean air-fuel ratio, to an engine 11 to improve the economical efficiency of fuel. In which case, a delay time, by which acceleration operation is effected in a theoretical air-fuel ratio even after an engine is transferred from a low speed operation region to a high speed operation region, is increased when a rotation speed, shifted to the high speed side in the low speed operation region, is decreased, and is decreased when the rotation speed is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はエンジンの空燃比を制御する方法に関するもの
であり、自l!!Ig、作業車両、産業機械などの動力
源に使用されるエンジンの空燃比制御に利用されろ。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for controlling the air-fuel ratio of an engine, and relates to a method for controlling the air-fuel ratio of an engine. ! It can be used to control the air-fuel ratio of engines used as power sources for Ig, work vehicles, industrial machinery, etc.

エンジンの運転状態を検出してフィードバック方式によ
り空燃比を制御する技術は広(知られており、吸入空気
量に応じて燃料の基本供給量を設定し、これに4転性能
、燃料姪断性、排気対°策などを考慮してエンジンの運
転状態に対応した補正を加え所定の空燃比とするもので
ある。空・燃比は燃料、空気の少な(ともいずれかをパ
ルス波形の駆動信号によって駆動される閣J岬弁で制御
し、駆動信号はエンジンの運転状帳が入力されその情報
に基いて最適の条件を計算する電子式の制御ユニットか
ら出力されるのが普通である。
The technology that detects the operating state of the engine and controls the air-fuel ratio using a feedback method is widely known. The air-fuel ratio is adjusted to a predetermined air-fuel ratio by making corrections corresponding to engine operating conditions in consideration of exhaust gas countermeasures, etc.The air-fuel ratio is determined by adjusting whether there is fuel or low air (either of which is determined by a pulse waveform drive signal). It is controlled by the driven KakuJ Misaki valve, and the drive signal is normally output from an electronic control unit that receives the engine's operating record and calculates optimal conditions based on that information.

ここで、高出力域を除(通常運転域において成る回転速
度以下または吸入負圧以上では埋神空啓比で運転し王と
してエミッションの低減を計るが、成る回転速度以上ま
たは吸入負圧以下では稀薄空燃比で運転し王として燃料
経済性を計るように制御システムを作ると。
Here, excluding the high output range (below the rotational speed or above the suction negative pressure in the normal operating range, the engine is operated at a low-speed, air-to-air ratio to reduce emissions, but above the rotational speed or below the suction negative pressure) If you create a control system that operates at a lean air-fuel ratio and measures fuel economy as a king.

二つの運転領域の境界は一足であり且つこの境界を越え
ると直ちに空黙比補正が行なわれろ。従って、理論空燃
比による低速運転領域ケ小さく設定して燃料経済性の向
上を計ると。
The boundary between the two operating regions is one foot, and as soon as this boundary is crossed, air-to-silver ratio correction is performed. Therefore, it is possible to improve fuel economy by setting the low-speed operating range based on the stoichiometric air-fuel ratio small.

二つの運転領域にまたがる加速時に直ちに稀薄空黙比に
よる低速運転領域に移行して加速性を損うという欠点が
ある。そのために運転領域を越えた後も成る時間は理論
空燃比で刀口速が行なわれろように空燃比切換えを遅延
させることが考えられているが、一定の遅延時間を設定
したのでは加速の状況によって燃料経済性や運転性を却
って偵5場合がある。
There is a drawback that when accelerating across two operating ranges, the engine immediately shifts to a low-speed operating range due to a lean air-to-air ratio, impairing acceleration performance. For this reason, it has been considered to delay the air-fuel ratio switching so that the stoichiometric air-fuel ratio is maintained for the time that continues after the operating range is exceeded, but setting a fixed delay time is not possible because it depends on the acceleration situation. In some cases, fuel economy and drivability may be compromised.

本発明は前述のような間1点な解決し、7i。The present invention solves the above problems and 7i.

速時に加速度合いにより遅延時間を適宜に変更して運転
性を損うことなく燃料経済性を計ることができる空燃比
制御方法を提供することを目的としている。
It is an object of the present invention to provide an air-fuel ratio control method that can measure fuel economy without impairing drivability by appropriately changing the delay time depending on the degree of acceleration at high speeds.

本発明に係ろエンジンの空燃比制御方法は。A method for controlling the air-fuel ratio of an engine according to the present invention is as follows.

エンジンの通常運転域を理論空然比による低速運転領域
と稀薄空燃比による高速運転領域とに分け、且つ前記低
速運転領域から高速運転領域に移行するときにその境界
を越えた後も理論空燃比運転を行なうように空燃比切換
えを遅延させるにあたり、トランスミッション位置が高
速側にシフトしたときこのシフト時の回転速度に応じて
遅延時間を設定する構成とした。
The engine's normal operating range is divided into a low-speed operating range based on the stoichiometric air-fuel ratio and a high-speed operating range based on the lean air-fuel ratio, and the stoichiometric air-fuel ratio is maintained even after the boundary is crossed when transitioning from the low-speed operating range to the high-speed operating range. In delaying the air-fuel ratio switching during operation, when the transmission position is shifted to the high speed side, the delay time is set according to the rotational speed at the time of this shift.

実  施  例 本発明の実施例を図面に基いて説明する。Example Embodiments of the present invention will be described based on the drawings.

第1図はLPGのような気体燃料を使用したエンジンに
本発明を実施した場合を示しており、耐圧容器1の気体
燃料はベーパライザ2で大気圧程度に威圧され、哉本流
猾を設定するジェット3を有する燃料通路4を通り混合
器5のベンチュリ6に沿って形成された環状室7に入り
、スリット状の主ノズル8から吸気路9に吸出され空気
と混合して吸気マニホルドlOよりエンジン11に供給
される。排気は排気W12の三元触媒コンバータ13で
浄化されて大気中に放出される。
Fig. 1 shows the case where the present invention is implemented in an engine using gaseous fuel such as LPG. 3, enters the annular chamber 7 formed along the venturi 6 of the mixer 5, is sucked out from the slit-shaped main nozzle 8 into the intake passage 9, mixes with air, and is sent to the engine 11 from the intake manifold lO. supplied to The exhaust gas is purified by the three-way catalytic converter 13 of the exhaust gas W12 and released into the atmosphere.

燃料通路4のジェット3よりも上流側から分岐して環状
室7に接続された補正恭料通路14が設げられ、この通
路14には電磁駆動の制御弁15が設けられていて、電
子式の制御ユニット16から送られろパルス波形の駆動
信号のデユーティ値に従って帥記制御@弁15を開閉し
所要の空燃比となるように補正燃料を制御するのである
A correction feed passage 14 is provided which branches from the upstream side of the jet 3 of the fuel passage 4 and is connected to the annular chamber 7. This passage 14 is provided with an electromagnetically driven control valve 15. According to the duty value of the pulse waveform drive signal sent from the control unit 16, the manual control valve 15 is opened and closed to control the corrected fuel so that the required air-fuel ratio is achieved.

ここで、混合器5に設置された絞り弁17の位置セ/す
18.吸気マニホルドlOに設けられた圧カセ/す19
.エンジン11の回転速度センサ20および温度センサ
21.排気管12に設げらしf、ニー 酸Xセンサ22
.トランスミッションのシフト位置に応じて電気信号を
発する位置スイッチ23.更に図示しない吸入空気温度
、イグニッションスイッチ、ブレーキソノ他エンシフ1
1の運転状態を検知するセンナが必要に応じて設けられ
ており、これらのセンナ類からの電気信号が制御ユニッ
ト16に送られ、制御ユニット16においてこれらの情
報に基いて最適の条件を計算し制御弁15を所定のデユ
ーティ比で開閉駆動する駆動信号を発するかまたは閉弁
状態或いは開弁状態を保持させ、更に、I駆動信号のデ
ユーティ値を変化させる。
Here, the position of the throttle valve 17 installed in the mixer 5 is 18. Pressure case/slot 19 installed in the intake manifold lO
.. Engine 11 rotational speed sensor 20 and temperature sensor 21. Acid X sensor 22 installed in the exhaust pipe 12
.. A position switch 23 that emits an electrical signal depending on the shift position of the transmission. In addition, intake air temperature, ignition switch, brake solenoid, etc. (not shown)
Sensors for detecting the operating conditions of the motors are provided as necessary, and electrical signals from these sensors are sent to the control unit 16, which calculates optimal conditions based on this information. A drive signal is generated to open and close the control valve 15 at a predetermined duty ratio, or the control valve 15 is kept in the closed or open state, and the duty value of the I drive signal is changed.

また、第2図の制御マツプのように、高出力運転域を除
いた通常運転域をエンジン110回転速度が一定1[N
o以下で且つ吸入負圧が一定値Pa以上の低迷運転領域
(蜀と2回転速度が一定値Pa以上で且つ吸入負圧が一
定値Pa以上の高速運転゛煩域(B)とに分け、低速1
転領域(A)は理論空燃比の混合気で14.転し高速運
転領域(B)は稀薄空燃比の混合気で運転するように設
定し、更に高出力運転域(qは出力空恭比の混合気で運
転するように設定する。
In addition, as shown in the control map in Fig. 2, the engine 110 rotational speed is constant at 1 [N
divided into a sluggish operation region (B) where the rotational speed is below a certain value Pa and the suction negative pressure is above a certain value Pa, Low speed 1
The transition area (A) is a mixture with a stoichiometric air-fuel ratio of 14. The high speed operation region (B) is set to operate with a mixture having a lean air-fuel ratio, and the high output operation region (q is set to be operated with a mixture having an output air-fuel ratio).

このような構成の本実施例において、アイドリンク時に
は開度センサ18からの電気信号によって絞り弁17が
アイドル位置にあることを検知するので、理論空燃比の
混合気または温度セ/す21からの電気信号でエンジン
温度が低いことを検知したときは埋蘭空燃比よりも少し
濃い混合気を供給するよプに制御弁15を駆動す、る。
In this embodiment with such a configuration, during idle link, it is detected that the throttle valve 17 is at the idle position by the electric signal from the opening sensor 18, so that the air-fuel mixture at the stoichiometric air-fuel ratio or the temperature control valve 21 is detected. When the electric signal detects that the engine temperature is low, the control valve 15 is actuated to supply an air-fuel mixture slightly richer than the air-fuel ratio.

アイドリンクが終って絞り弁17が開〜、・たときは、
圧力センサ19と回転速度センサ20からの電気信号に
よってエンジン11の吸入負圧が一定値p、)以上であ
り或いは回転速度が一定値Pa以上であると判定される
低速運転領域(A)において酸素センサ22からの電気
信号に基き理論空燃比の混合気が供給されるように制御
弁15を電動する。このため9例えば自動車において通
常の市内走行速度範囲で理論空燃比にフィードバック制
御されるように低速4転領域(Nを設定することにより
、三元触婬コンバータ13による排気浄化効率が最大の
状態で走行することができる。
When the idle link ends and the throttle valve 17 opens,
In a low-speed operating region (A) where it is determined that the intake negative pressure of the engine 11 is at least a certain value p, ) or the rotational speed is at least a certain value Pa, based on electrical signals from the pressure sensor 19 and the rotational speed sensor 20, Based on the electrical signal from the sensor 22, the control valve 15 is electrically operated so that the air-fuel mixture at the stoichiometric air-fuel ratio is supplied. For this reason, for example, in a car, by setting the low-speed quadrature range (N) so that feedback control is performed to the stoichiometric air-fuel ratio in the normal city driving speed range, the exhaust purification efficiency by the three-way converter 13 is maximized. You can run on it.

吸入負圧が一定1:MPa以下または回転速度が一定碩
N、以上と判定されろ高速運転領域(B)においては酸
素センサ22からの電気信号に裁くフィードバック制御
を解除して制御91.5を小さいデユーティ値で開閉さ
せるかまたは閉弁状痩に保持し、主にジェット3で計量
される基本供給量の燃料を混合器5に送り14薄空燃比
の混合気をエンジン11に供給して燃料@優性を計る。
It is determined that the suction negative pressure is constant 1:MPa or less or the rotational speed is constant 1:MPa or higher.In the high-speed operation region (B), the feedback control based on the electric signal from the oxygen sensor 22 is canceled and control 91.5 is activated. The valve is opened and closed at a small duty value or kept in a closed state, and the basic supply amount of fuel, which is mainly measured by the jet 3, is sent to the mixer 5.14 A mixture with a lean air-fuel ratio is supplied to the engine 11, and the fuel is supplied to the engine 11. @Measuring dominance.

位置セ/?18からの電気信号によって高出力運転域(
qに移行したこと0例えば絞り弁17が開度60度以上
となったことを検知したときは、高濃度の出力空燃比の
混合気が供給され 。
Position/? High output operation range (
For example, when it is detected that the opening degree of the throttle valve 17 has reached 60 degrees or more, a mixture with a high concentration output air-fuel ratio is supplied.

るように制御弁15を大きいデユーティ値で駆動するか
或いは開弁位置に保持する。
The control valve 15 is driven at a large duty value or held at the open position so that the control valve 15 is opened.

低速運転′liI域(囚において加速運転を開始したと
き、第2図矢印Xのように高速運転領域或(B)にまた
がってカロ速するものとする。この刀口速運転時に低速
4転fA域(N内においてトランスミッションの位置が
高進側!曲ち4速または5速にシフトした場合、このシ
フトがこの領域fA)の内で低回転速度N1のときに行
なわれた場合は遅延時間T1を長く設定11.また高回
転速度N2のとぎに行なわれた場合は遅延時間T2を短
かく設定する。トランスミッションの位置スイッチ23
は高速側でオン、それ以外でオフとなる電気信号を発し
、一般に点火時期制御に用いられているものと同じであ
る。この位置スイッチ23がオンとなり、l!!延時I
J]Tt〜T2が設定されると、これより遅延時間T1
〜T2が経過するまでは理論空燃比による連転な行なう
Low speed operation 'liI region (When accelerating operation is started in the prisoner, it is assumed that the caro speed straddles the high speed operation region (B) as shown by the arrow (If the transmission position is shifted to the high speed side! curve 4th or 5th speed within N, and this shift is performed at low rotational speed N1 within this area fA), delay time T1 is Longer setting 11. Also, if the delay time T2 is set after high rotational speed N2, set the delay time T2 shorter. Transmission position switch 23
emits an electrical signal that is turned on at high speeds and turned off at other times, and is the same as that generally used for ignition timing control. This position switch 23 is turned on, and l! ! Extension of time I
J] When Tt~T2 is set, the delay time T1 is set from this
Continuous rotation is performed at the stoichiometric air-fuel ratio until T2 has elapsed.

セして、高速運転領域(B)に爆竹した後も理論空燃比
で7111速4転が行なわれ、遅延時間T1〜T2が経
過したとぎ4博空燃比運転に切換えられるのである。従
って、トランスミッションが高速側にシフトしたとき1
.!!延領領域CDは予め設定されている二つの運転領
域(A) (B)の境界を越えたときの遅延時間T1〜
T2の残り時間によって定まる範囲に変更されろ。ここ
で。
7111 speed 4 rotation is carried out at the stoichiometric air-fuel ratio even after the high-speed operation region (B) is set, and after the delay time T1 to T2 has elapsed, the operation is switched to the 4-speed air-fuel ratio operation. Therefore, when the transmission shifts to high speed, 1
.. ! ! The extension area CD is the delay time T1 when crossing the boundary between the two preset operating areas (A) and (B).
Change the range to be determined by the remaining time of T2. here.

トランスミッションのシフト時の回転速度によって設定
されろ遅延時間は第3図の実線のように回転速度に応じ
て直線的に変化させるほか、同図破線のように曲線的ま
たは段階的に変化させろことができ、エンジンの性能。
The delay time, which is set by the rotational speed at the time of shifting of the transmission, can be varied linearly according to the rotational speed as shown by the solid line in Figure 3, or it can be changed in a curved or stepwise manner as shown by the broken line in the same figure. and engine performance.

トランスミッションのギヤ比などに応じて適宜の特性を
選定する。
Select appropriate characteristics according to the gear ratio of the transmission, etc.

尚1本発明は気体燃料に限らず液体燃料を気化器方式ま
たは噴射方式によって供給するものにも適用され、気化
器方式では燃料とブリード空気の少なくともいずれかが
制御弁で制御され、噴射方式では噴射弁が制御弁を構成
する。
Note that the present invention is applicable not only to gaseous fuel but also to those that supply liquid fuel by a vaporizer method or an injection method. The injection valve constitutes a control valve.

発明の効果 本発明によると、エンジンの通常運転域を理論空燃比に
よる低速運転領域と稀薄空燃比による高速運転領域とに
分けたので運転領域に応じて排気対策と運転性、燃料経
済性とをそれぞれ計ることができるばかりか、特に低速
達転領域から高速運転領域へ移行する加速時に境界を越
えた鏝もある時間は理論空燃比による運転を行なわせろ
ようにした場合において、加速度合いをトランスミッシ
ョンの位置によって検知し高速側にシフトした急加速時
にシフト時の回転速度に応じて遅延時間を設定させるよ
うにしたので、急加速時に急速な回転速度増加に対応し
て短時間で稀薄空燃比運転に切換えることが可能となる
。このため簡単な制御7ステムで燃料経済性や運転性を
損うことな(加速時の空燃比f[tlllglが行なえ
Effects of the Invention According to the present invention, the normal operating range of the engine is divided into a low-speed operating range based on the stoichiometric air-fuel ratio and a high-speed operating range based on the lean air-fuel ratio, so that emission measures, drivability, and fuel economy can be adjusted according to the operating range. Not only can you measure each, but you can also adjust the degree of acceleration by controlling the speed of the transmission, especially if you want to operate at the stoichiometric air-fuel ratio for a certain period of time when accelerating from a low-speed transfer range to a high-speed range. The system detects the position and sets a delay time according to the rotational speed at the time of shifting when sudden acceleration shifts to the high speed side, so it can quickly achieve lean air-fuel ratio operation in response to the rapid increase in rotational speed during sudden acceleration. It becomes possible to switch. For this reason, a simple control system with 7 stems can control the air-fuel ratio f[tlllgl during acceleration without impairing fuel economy or drivability.

更に理論空燃比による低速運転領域を小さく設定して良
好な加速性能を保証しながら燃料経済性を高めろことが
できろものである。
Furthermore, it is possible to increase fuel economy while ensuring good acceleration performance by setting a small low-speed operating region based on the stoichiometric air-fuel ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の配置図、第2図は制御マツプ
図、第3図は遅延時間設定を説明する図である。 11・・・・・・エンジン、14・・・・・・補正燃料
通路、15・・・・・・制御卯、16・・・・・・ii
i制御ユニット、18・・・・・・開度センサ、19・
・・・・・圧力センサ、20・・・・・・回転速度セン
サ、22・・・・・・酸素センサ、23・・・・・・位
置スイッチ。
FIG. 1 is a layout diagram of an embodiment of the present invention, FIG. 2 is a control map diagram, and FIG. 3 is a diagram explaining delay time setting. 11...Engine, 14...Correction fuel passage, 15...Control rabbit, 16...ii
i control unit, 18...opening sensor, 19.
...Pressure sensor, 20 ... Rotation speed sensor, 22 ... Oxygen sensor, 23 ... Position switch.

Claims (2)

【特許請求の範囲】[Claims] (1)エンジンの通常運転域を理論空燃比による低速運
転領域と稀薄空燃比による高速運転 領域とに分け、且つ前記低速運転領域から 高速運転領域に移行するときにその境界を 越えた後も理論空燃比運転を行なうように 空燃比切換えを遅延させるにあたり、トラ ンスミッション位置が高速側にシフトした ときこのシフト時の回転速度に応じて遅延 時間を設定することを特徴とするエンジン の空燃比制御方法。
(1) The engine's normal operating range is divided into a low-speed operating range based on the stoichiometric air-fuel ratio and a high-speed operating range based on the lean air-fuel ratio, and when the engine transitions from the low-speed operating range to the high-speed operating range, even after the boundary is crossed, A method for controlling an air-fuel ratio of an engine, characterized in that, in delaying air-fuel ratio switching to perform air-fuel ratio operation, a delay time is set according to the rotational speed at the time of shifting when the transmission position is shifted to a high speed side.
(2)シフト時の回転速度が低いときは遅延時間を長く
設定し回転速度が高くなるに従つて 遅延時間を次第に短かく設定する特許請求 の範囲(1)に記載の空燃比制御方法。
(2) The air-fuel ratio control method according to claim (1), wherein the delay time is set long when the rotational speed at the time of shifting is low, and the delay time is gradually set short as the rotational speed increases.
JP61019771A 1986-01-31 1986-01-31 Air-fuel ratio control method for engine Pending JPS62178738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61019771A JPS62178738A (en) 1986-01-31 1986-01-31 Air-fuel ratio control method for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61019771A JPS62178738A (en) 1986-01-31 1986-01-31 Air-fuel ratio control method for engine

Publications (1)

Publication Number Publication Date
JPS62178738A true JPS62178738A (en) 1987-08-05

Family

ID=12008594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61019771A Pending JPS62178738A (en) 1986-01-31 1986-01-31 Air-fuel ratio control method for engine

Country Status (1)

Country Link
JP (1) JPS62178738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946562A (en) * 1996-07-24 1999-08-31 International Business Machines Corporation Polysilicon thin film transistors with laser-induced solid phase crystallized polysilicon channel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161924A (en) * 1979-06-04 1980-12-16 Nissan Motor Co Ltd Engine characteristic controller for engine with electron-control fuel injection device
JPS58124039A (en) * 1982-01-20 1983-07-23 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161924A (en) * 1979-06-04 1980-12-16 Nissan Motor Co Ltd Engine characteristic controller for engine with electron-control fuel injection device
JPS58124039A (en) * 1982-01-20 1983-07-23 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946562A (en) * 1996-07-24 1999-08-31 International Business Machines Corporation Polysilicon thin film transistors with laser-induced solid phase crystallized polysilicon channel

Similar Documents

Publication Publication Date Title
US4452209A (en) Air-fuel ratio control system for an internal combustion engine
JPS62178738A (en) Air-fuel ratio control method for engine
US4651699A (en) Air-fuel ratio control system
JPH09112308A (en) Air-fuel ratio controller for internal combustion engine
JPS6238843A (en) Air-fuel ratio control method for engine
JPS63176635A (en) Electronic type fuel injection controller
JPS61252860A (en) Air-fuel ratio controller for gas fuel engine
JPS61286546A (en) Air-fuel ratio control method for engine
JPS61291740A (en) Control method for air-fuel ratio of engine
JPS60192845A (en) Air-fuel ratio control device
JPS62174545A (en) Air-fuel ratio control for engine
JP3331418B2 (en) Engine air-fuel ratio control device
JPS62174546A (en) Air-fuel ratio control for engine
JPS5819331Y2 (en) Air fuel ratio control device
JP2584970B2 (en) Engine air-fuel ratio control method
JPS61255241A (en) Air-fuel ratio control for engine
JPH0513963Y2 (en)
JPS59150942A (en) Air-fuel ratio controlling apparatus for internal-combustion engine
JPS6238846A (en) Air-fuel ratio control method for engine
JPS62129553A (en) Air-fuel ratio controller
JPS6241945A (en) Method for controlling air-fuel ratio of engine
JPS5877153A (en) Air-fuel ratio controller in internal-combustion engine
JPS61255240A (en) Air-fuel ratio control for engine
JPS6278466A (en) Suction secondary air feeding device for internal combustion engine mounted on car
JPS6013963A (en) Air-fuel ratio control device for internal-combustion engine equipped with carburettor