JPS6238843A - Air-fuel ratio control method for engine - Google Patents

Air-fuel ratio control method for engine

Info

Publication number
JPS6238843A
JPS6238843A JP17921485A JP17921485A JPS6238843A JP S6238843 A JPS6238843 A JP S6238843A JP 17921485 A JP17921485 A JP 17921485A JP 17921485 A JP17921485 A JP 17921485A JP S6238843 A JPS6238843 A JP S6238843A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
negative pressure
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17921485A
Other languages
Japanese (ja)
Inventor
Nobuhiko Sato
信彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carburetor Co Ltd
Original Assignee
Nippon Carburetor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carburetor Co Ltd filed Critical Nippon Carburetor Co Ltd
Priority to JP17921485A priority Critical patent/JPS6238843A/en
Publication of JPS6238843A publication Critical patent/JPS6238843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To secure good acceleration performance, by continuing an operation at a theoretical air-fuel ratio for a preset time before the operation is shifted from a theoretical air-fuel ratio operation range to a thin air-fuel ratio operation range. CONSTITUTION:When a throttle valve 17 is opened in a state of idling in which a control valve 15 regulated to feed a mixture at a theretical air-fuel ratio, the control valve is driven on the basis of the output of an O2 sensor 22 to feed the mixture at the theoretical air-fuel ratio, in a theoretical air-fuel ratio operation range in which it is judged by a control unit 16 from the outputs of a pressure sensor 19 and a rotation speed sensor 20 that the intake negative pressure is not less than a prescribed value Po or the rotation speed is not more than a prescribed value No. When the operation is to be shifted, after the acceleration of an engine, from the theoretical air-fuel ratio operation range to a thin air-fuel ratio operation range in which it is judged that the intake negative pressure is not more than the value Po or the rotation speed is not less than the value No, the shifting is delayed for a preset time so that the operation at the theoretical air-fuel ratio is continued.

Description

【発明の詳細な説明】 本発明はエンジンの空燃比を制御する方法に関するもの
であり、自動車1作業車両、産業機械などの動力源に使
用されるエンジ/の空燃比制御に利用される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the air-fuel ratio of an engine, and is used for controlling the air-fuel ratio of an engine used as a power source for an automobile, a work vehicle, an industrial machine, or the like.

エンジンの運転状態を検出してフィードバック方式によ
り空燃比を制御する技術は広く知られており、吸入空気
量に応じて燃料の基本供給量を設定し、これに運転性能
、燃料経済性、排気対策などを考慮してエンジンの運転
状態に対応した補正を加え所定の空燃比とするものであ
る。空燃比は燃料、空気の少なくともいずれかをパルス
波形の駆動信号によって駆動される制御弁で制御し、駆
動信号はエンジンの運転状態が人力されその情報に基い
て最適の条件を計算する電子式の制御ユニットから出力
されるのが普通である。
The technology of detecting the operating state of the engine and controlling the air-fuel ratio using a feedback method is widely known, and the basic supply amount of fuel is set according to the amount of intake air. Taking these factors into consideration, corrections are made in accordance with the operating conditions of the engine to achieve a predetermined air-fuel ratio. The air-fuel ratio is controlled by a control valve that is driven by a pulse waveform drive signal for at least either fuel or air. It is usually output from the control unit.

ここで、高出力域を除(通常運転域において一定吸入負
圧以上にして成る回転速度以下では理論空燃比で運転し
てエミッションの低減、排気対策を計るが、一定吸入負
圧以下にして成る回転速度以上では稀薄空燃比で運転し
て燃料経済性を計るように制御システムを作ると、二つ
の運転領域の境界は一定であり且つこの境界を越えると
直ちに空燃比補正が行なわれる。従って、運転状態が二
つの運転領域を越えたことを吸入負圧によって検知し空
燃比の切換えを行なわせるようにすると。
Here, excluding the high output range (in the normal operating range, when the rotation speed is lower than the constant suction negative pressure, the engine is operated at the stoichiometric air-fuel ratio to reduce emissions and take measures against exhaust emissions, but the rotation speed is lower than the constant suction negative pressure). If a control system is created to measure fuel economy by operating at a lean air-fuel ratio above the rotational speed, the boundary between the two operating ranges will be constant, and as soon as this boundary is crossed, air-fuel ratio correction will be performed. When the operating state exceeds two operating ranges, it is detected by the suction negative pressure and the air-fuel ratio is switched.

加速の度合いによっては直ちに稀薄空燃比運転域に移行
して加速性を損うという欠点があさせることにより前記
問題点を解決するためり、そのために加速補正手段を別
途に設けなければならないので制御システムが複雑にな
るという問題がある。
In order to solve the above problem by aggravating the drawback that depending on the degree of acceleration, the system immediately shifts to a lean air-fuel ratio operating range and impairs acceleration performance, an acceleration correction means must be provided separately, so control is required. The problem is that the system becomes complicated.

本発明は、パルス波形の駆動信号により燃料、空気の少
な(ともいずれかを制御する制御弁を駆動して空燃比を
制御するにあたり。
The present invention controls the air-fuel ratio by driving a control valve that controls either fuel or air flow using a pulse waveform drive signal.

通常運転域において一定吸入負圧以下ヒでは理論空燃比
の混合気で運転し一定吸入負圧以下では稀薄空燃比の混
合気で運転するように運転領域を設定した場合、簡単な
制御システムで良好な加速性能が得られるようにしたも
のであって、理論空燃比運転領域から稀薄空燃比運転領
域へ向って運転状態が移行するときに吸入負圧が前記一
定値を越えた後も予め設定した時間だけ理論空燃比によ
る運転を継続路14が設けられ、この通路14には電磁
駆動のの手段とした。
If the operating range is set so that when the suction negative pressure is below a certain level in the normal operating range, the air-fuel mixture is operated at a stoichiometric air-fuel ratio, and when the suction negative pressure is below a certain level, the air-fuel mixture is operated at a lean air-fuel ratio, then a simple control system can be used. The system is designed to provide acceleration performance that is set in advance even after the suction negative pressure exceeds the above-mentioned constant value when the operating state shifts from the stoichiometric air-fuel ratio operating region to the lean air-fuel ratio operating region. A passage 14 was provided to continue operation at the stoichiometric air-fuel ratio for a certain period of time, and this passage 14 was provided with electromagnetic drive means.

実施例 本発明の実施例を図面に基いて説明する。Example Embodiments of the present invention will be described based on the drawings.

第1図はLPGを燃料に使用したエンジ/に本発明を実
施した場合を示しており、耐圧容器1のLPGはベーパ
ライザ2で大気圧程度に減圧され、ジェット3を有する
主燃料通路4を通りぺ/チュリ6に沿って形成された環
状室7に入り、スリット状の主ノズ/L/8から吸気路
9に吸出され空気と混合して吸気マニホルド10よりエ
ンジン11に供給される。排気は排気管12の三元触媒
コンバータ13で浄化されて大気中に放出される。
FIG. 1 shows a case where the present invention is implemented in an engine using LPG as fuel. LPG in a pressure container 1 is reduced in pressure to about atmospheric pressure in a vaporizer 2, and passes through a main fuel passage 4 having a jet 3. The air enters the annular chamber 7 formed along the petulary 6, is sucked out through the slit-shaped main nozzle L/8 into the intake passage 9, mixes with air, and is supplied to the engine 11 through the intake manifold 10. The exhaust gas is purified by a three-way catalytic converter 13 in an exhaust pipe 12 and released into the atmosphere.

主燃料通路4のジェット3よりも上流側から分岐して環
状室7に接続された増量燃料通制御弁15が設けられて
いて、電子式の制御ユニット16から送られるパルス波
形の駆動信号のデユーティ値に従って前記制御弁15を
開閉し所要の空燃比となるように増量燃料を制御するの
である。
An increase fuel flow control valve 15 is provided which branches from the upstream side of the jet 3 in the main fuel passage 4 and is connected to the annular chamber 7, and controls the duty of a pulse waveform drive signal sent from an electronic control unit 16. According to the value, the control valve 15 is opened and closed to control the increased amount of fuel so that the required air-fuel ratio is achieved.

ここで、混合器5に設置された絞り弁17の位置センサ
18.吸気マニホルド10に設けられた圧カセ/す19
.工/シフ11の回転速度センサ20および温度センサ
21.排気管12に設けられた酸素センサ22.更に図
示しない吸入空気温度、イグニッションスイッチ、ブレ
ーキその他エンジン11の運転状態を検知するセンサが
必要に応じて設けられており、これらのセンサからの電
気信号が制御ユニット16に送られ、制御ユニット16
においてこれらの情報に基いて最適の条件を計算し制御
弁15を所定のデユーティ比で開閉駆動する駆動信号を
発するかまたは閉弁状態或いは開弁状態を保持させ、更
に駆動信号のデユーティ値を変化させる。
Here, the position sensor 18 of the throttle valve 17 installed in the mixer 5. Pressure cassette 19 provided in the intake manifold 10
.. rotational speed sensor 20 and temperature sensor 21 of the mechanical/shifter 11. Oxygen sensor 22 provided in the exhaust pipe 12. Furthermore, sensors (not shown) for detecting intake air temperature, ignition switch, brake, and other operating conditions of the engine 11 are provided as necessary, and electrical signals from these sensors are sent to the control unit 16.
calculates the optimum conditions based on this information, issues a drive signal to open and close the control valve 15 at a predetermined duty ratio, or maintains the valve closed state or open state, and further changes the duty value of the drive signal. let

また、第2図の制御マツプのように、高出力運転域を除
いた通常運転域をエンジン11の回転速度が一定値No
以下で且つ吸入負圧が一定値Po以下の運転領域(Al
と1回転速度が一定値No以上で且つ吸入負圧が一定値
Po以下の運転領域(Blとに分け、前者の運転領域(
Alは理論空燃比の混合気で運転し後者の運転領域(B
lは稀薄空燃比の混合気で運転するように設定し。
Further, as shown in the control map in Fig. 2, the rotational speed of the engine 11 is kept at a constant value No. 1 in the normal operating range excluding the high output operating range.
and below and the suction negative pressure is below the constant value Po (Al
and an operating region (Bl) in which the 1-rotation speed is above a certain value No and the suction negative pressure is below a certain value Po, and the former operating region (
Al operates with a mixture at the stoichiometric air-fuel ratio and operates in the latter operating region (B
l is set to operate with a lean air-fuel mixture.

更に高出力運転域(C1は出力空燃比の混合気で運転す
るように設定する。理論空燃比運転領域(Nと稀薄空燃
比運転領域(Blとにまたがって運転状態が移行したこ
とは、圧力セ/す19が検出する吸入負圧によって識別
される。
Furthermore, the high output operating range (C1 is set to operate with the air-fuel mixture at the output air-fuel ratio.The shift in operating state across the stoichiometric air-fuel ratio operating range (N) and lean air-fuel ratio operating range (Bl) indicates that It is identified by the suction negative pressure detected by the cell/cell 19.

このような構成の本冥施例において、アイドリンク時に
は位置上ンサ18からの電気信号即ちアイドル信号によ
って絞り弁17がアイドル位置にあることを検知するの
で、温度セ/す21からの電気信号でエンジン温度が低
いことを検知したとき以外は理論空燃比の混合気を供給
するように制御弁15を駆動する。
In the present embodiment having such a configuration, during idle linking, the electric signal from the position sensor 18, that is, the idle signal, detects that the throttle valve 17 is at the idle position, so the electric signal from the temperature sensor 21 detects that the throttle valve 17 is in the idle position. The control valve 15 is driven to supply the air-fuel mixture at the stoichiometric air-fuel ratio except when it is detected that the engine temperature is low.

アイドリンクが終って絞り弁17が開いたときは、圧力
センサ19と回転速度センナ20からの電気信号によっ
てエンジ/11の吸入負圧が一定値Po以下であり或い
は回転速度が一定値No以下であると判定される理論空
燃比運転領域(Atにおいて酸素センサ22からの電気
信号に基き理論空燃比の混合気が供給されるよ5に制御
弁15を駆動する。このため1例えば自動車において通
常の市内走行速度範囲で理論空燃比にフィードバック制
御されるように運転領域(Alを設定することにより、
三元触媒コンバータ13による排気浄化効率が最大の状
態で走行することができる。
When the idle link ends and the throttle valve 17 opens, the electrical signals from the pressure sensor 19 and rotation speed sensor 20 indicate that the suction negative pressure of the engine/11 is below a certain value Po or the rotation speed is below a certain value No. The control valve 15 is driven so that a mixture of the stoichiometric air-fuel ratio is supplied based on the electric signal from the oxygen sensor 22 in the stoichiometric air-fuel ratio operating region (At). By setting the operating range (Al) so that the air-fuel ratio is feedback-controlled to the stoichiometric air-fuel ratio within the city running speed range,
It is possible to drive in a state where the exhaust gas purification efficiency by the three-way catalytic converter 13 is maximized.

吸入負圧が一定値Po以下または回転速度が一定値No
以上と判定される稀薄空燃比運転領域(B)においては
酸素セ/す22その他のセンサからの電気信号に基くフ
ィードバック制御を解除して制御弁15を閉弁状態に保
持し、ジェット3で計量される基本供給量のLPGのみ
を混合器5に送り稀薄空燃比の混合気をエンジン11に
供給して燃料経済性を計る。
The suction negative pressure is below a certain value Po or the rotation speed is a certain value No.
In the lean air-fuel ratio operating region (B) determined as above, feedback control based on electrical signals from the oxygen sensor 22 and other sensors is canceled, the control valve 15 is held in a closed state, and the jet 3 is used to measure the air-fuel ratio. Only the basic supply amount of LPG is sent to the mixer 5, and a mixture with a lean air-fuel ratio is supplied to the engine 11 to measure fuel economy.

位置セ/す18からの電気信号によって高出力運転域(
C1に移行したこと1例えば絞り弁17が開度60度以
上となったことを検知したときは、高濃度の出力空燃比
の混合気が供給されるように制御弁15を大きなデユー
ティ値で駆動するか或いは開弁位置に保持する。
The high output operating range (
Transition to C1 1 For example, when it is detected that the throttle valve 17 has opened at 60 degrees or more, the control valve 15 is driven at a large duty value so that a mixture with a high concentration output air-fuel ratio is supplied. or hold the valve in the open position.

稀薄空燃比運転領域(Blから減速して理論空燃比運転
領域(Alに移行したことを負圧信号または回転速度信
号が検知したときは、酸素センサ22かもの電気信号に
基くフィードバック制御を再開して理論空燃比の混合気
が供給されるように制御弁15を駆動する。
When the negative pressure signal or rotational speed signal detects that the engine has decelerated from the lean air-fuel ratio operating region (Bl) to the stoichiometric air-fuel ratio operating region (Al), the feedback control based on the electrical signal from the oxygen sensor 22 is resumed. The control valve 15 is driven so that the air-fuel mixture at the stoichiometric air-fuel ratio is supplied.

理論空燃比運転領域で運転されているエンジンが加速し
て稀薄空燃比運転域(B)へ向って移行するとき吸入負
圧が低下して加速運転中であるにかかわらず一定値Po
以下となる。このように吸入負圧が一定値Po以上から
以下になったとき、制御ユニット16に内蔵したタイマ
が作動して予め設定した一定の時間または加速の度合い
に応じて設定された任意の時間だけ運転領域の切換えを
遅延させ、理論空燃比による運転を継続させるのである
。前記時間が経過したとき稀薄空燃比運転域[Blに移
行する。
When the engine operating in the stoichiometric air-fuel ratio operating region accelerates and moves toward the lean air-fuel ratio operating region (B), the suction negative pressure decreases and becomes a constant value Po regardless of whether the engine is accelerating.
The following is true. In this way, when the suction negative pressure goes from above a certain value Po to below, the timer built into the control unit 16 is activated and the operation starts for a preset period of time or an arbitrary period of time set according to the degree of acceleration. This delays the region switching and continues operation at the stoichiometric air-fuel ratio. When the above-mentioned time has elapsed, the operation shifts to the lean air-fuel ratio operating range [Bl].

以上は空燃比の基本的な制御方法の説明であって2例え
ばオフアイドル時にエンジン。
The above is an explanation of the basic method of controlling the air-fuel ratio.2 For example, when the engine is off-idle.

吸入空気が低温の場合に制御弁15による必要な燃料増
量が行なわれることは言うまでもな〜1゜ 尚1本発明はLPGのような気体燃料に限らず、液体燃
料を気化器方式または燃料噴射方式によって供給するも
のにも適用され、気化器方式では燃料とブリード空気の
少な(ともいずれかが制御弁で制御され、燃料噴射方式
11・・・・・・エンジン、14・・・・・・増量燃料
通路、15では噴射弁が制御弁を構成する。
It goes without saying that when the intake air is at a low temperature, the necessary fuel amount is increased by the control valve 15. It is also applied to the supply of fuel, and in the carburetor method, there is a small amount of fuel and bleed air (either of which is controlled by a control valve, and the fuel injection method 11... Engine, 14... Increased fuel In the channel 15, the injection valve constitutes a control valve.

本発明によると、エンジンの通常運転域を吸入負圧に応
じて理論空燃比運転領域と稀薄空燃比運転領域とに分け
たので運転領域に応じて排気対策と運転性、燃料経済性
とをそれぞれ計ることができるばかりか、特に理論空燃
比運転域から稀薄空燃比運転域へ向って運転状態が移行
する加速時に吸入負圧が境界に設定した一定値を越えた
後も予め設定した時間は理論空燃比による運転を継続さ
せるので簡単な制御システムで加速性能を低下させるこ
とがないのである。
According to the present invention, the normal operating range of the engine is divided into the stoichiometric air-fuel ratio operating range and the lean air-fuel ratio operating range depending on the suction negative pressure, so that emission measures, drivability, and fuel economy can be adjusted according to the operating range. Not only can it be measured, but also the preset time can be theoretically measured even after the suction negative pressure exceeds a certain value set as a boundary, especially during acceleration when the operating state shifts from the stoichiometric air-fuel ratio operating range to the lean air-fuel ratio operating range. Since operation is continued based on the air-fuel ratio, a simple control system does not reduce acceleration performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の笑施例の配置図、第2図は制御マツプ
図である。 ・・・・・・制御弁、16・・・・・・制御ユニット、
19・・・・・・圧カセ/す、22・・・・・・酸素セ
フV、。 第1図
FIG. 1 is a layout diagram of an embodiment of the present invention, and FIG. 2 is a control map diagram. ... Control valve, 16 ... Control unit,
19... Pressure case/su, 22... Oxygen cell V. Figure 1

Claims (1)

【特許請求の範囲】 パルス波形の駆動信号により燃料、空気の 少なくともいずれかを制御する制御弁を駆動して空燃比
を制御するにあたり、通常運転域において一定吸入負圧
以上では理論空燃比の混合気で運転し一定吸入負圧以下
では稀薄空燃比の混合気で運転するように運転領域を設
定し、理論空燃比運転領域から稀薄空燃比運転領域へ向
つて運転状態が移行するときに吸入負圧が前記一定値を
越えた後も予め設定した時間だけ理論空燃比による運転
を継続させることを特徴とするエンジンの空燃比制御方
法。
[Claims] In controlling the air-fuel ratio by driving a control valve that controls at least one of fuel and air using a pulse waveform drive signal, the mixture of the stoichiometric air-fuel ratio is achieved at a constant suction negative pressure or higher in the normal operating range. The operating range is set so that the air-fuel mixture is operated with a lean air-fuel ratio below a certain suction negative pressure, and when the operating state shifts from the stoichiometric air-fuel ratio operating range to the lean air-fuel ratio operating range, the intake negative pressure is A method for controlling an air-fuel ratio of an engine, comprising continuing operation at a stoichiometric air-fuel ratio for a preset time even after the pressure exceeds the certain value.
JP17921485A 1985-08-14 1985-08-14 Air-fuel ratio control method for engine Pending JPS6238843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17921485A JPS6238843A (en) 1985-08-14 1985-08-14 Air-fuel ratio control method for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17921485A JPS6238843A (en) 1985-08-14 1985-08-14 Air-fuel ratio control method for engine

Publications (1)

Publication Number Publication Date
JPS6238843A true JPS6238843A (en) 1987-02-19

Family

ID=16061928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17921485A Pending JPS6238843A (en) 1985-08-14 1985-08-14 Air-fuel ratio control method for engine

Country Status (1)

Country Link
JP (1) JPS6238843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146859A (en) * 2010-02-04 2011-08-10 铃木株式会社 Gas fuel injection control device of engine for vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190451A (en) * 1983-04-12 1984-10-29 Toyota Motor Corp Air-fuel ratio control method and device for internal- combustion engine
JPS6098136A (en) * 1983-11-04 1985-06-01 Toyota Motor Corp Air-fuel ratio control method of internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190451A (en) * 1983-04-12 1984-10-29 Toyota Motor Corp Air-fuel ratio control method and device for internal- combustion engine
JPS6098136A (en) * 1983-11-04 1985-06-01 Toyota Motor Corp Air-fuel ratio control method of internal-combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146859A (en) * 2010-02-04 2011-08-10 铃木株式会社 Gas fuel injection control device of engine for vehicle

Similar Documents

Publication Publication Date Title
US4651699A (en) Air-fuel ratio control system
JPS6238843A (en) Air-fuel ratio control method for engine
GB2092335A (en) Air-fuel ratio control system
JPH09112308A (en) Air-fuel ratio controller for internal combustion engine
US4558677A (en) Air-fuel ratio control system
JPS61286546A (en) Air-fuel ratio control method for engine
JPS61252860A (en) Air-fuel ratio controller for gas fuel engine
JPS6238846A (en) Air-fuel ratio control method for engine
JPS62178738A (en) Air-fuel ratio control method for engine
GB2168178A (en) Air-fuel ratio control system
JP2584970B2 (en) Engine air-fuel ratio control method
JPS61291740A (en) Control method for air-fuel ratio of engine
JPS6241945A (en) Method for controlling air-fuel ratio of engine
JPS62174545A (en) Air-fuel ratio control for engine
JPS61255241A (en) Air-fuel ratio control for engine
JPS62174546A (en) Air-fuel ratio control for engine
JPS61255240A (en) Air-fuel ratio control for engine
JPH0636266Y2 (en) Exhaust gas purification device for internal combustion engine
JPH0513963Y2 (en)
JP2627882B2 (en) Engine control device
JPS61247842A (en) Secondary air control system
JPS62129553A (en) Air-fuel ratio controller
JPH0660603B2 (en) Air-fuel ratio controller for internal combustion engine
JPS59150942A (en) Air-fuel ratio controlling apparatus for internal-combustion engine
JPS6278466A (en) Suction secondary air feeding device for internal combustion engine mounted on car