JPS6238846A - Air-fuel ratio control method for engine - Google Patents

Air-fuel ratio control method for engine

Info

Publication number
JPS6238846A
JPS6238846A JP17921385A JP17921385A JPS6238846A JP S6238846 A JPS6238846 A JP S6238846A JP 17921385 A JP17921385 A JP 17921385A JP 17921385 A JP17921385 A JP 17921385A JP S6238846 A JPS6238846 A JP S6238846A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
engine
control valve
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17921385A
Other languages
Japanese (ja)
Inventor
Nobuhiko Sato
信彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carburetor Co Ltd
Original Assignee
Nippon Carburetor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carburetor Co Ltd filed Critical Nippon Carburetor Co Ltd
Priority to JP17921385A priority Critical patent/JPS6238846A/en
Publication of JPS6238846A publication Critical patent/JPS6238846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the fall in acceleration performance, by temporarily suspending theoretical air-fuel ratio control at the shifting of an engine from idling to non-idling when the engine is set to operate with a mixture at a theoretical air fuel ratio below a prescribed rotation speed. CONSTITUTION:When a throttle valve 17 is opened in idling in which a control valve 15 is regulated to feed a mixture at a theoretical air-fuel ratio, it is judged by a control unit 16 from an electric signal or non-idling signal from a position sensor 18 that an accelerating operation is under way. At that time, theoretical air-fuel ratio control based on an electric signal from an O2 sensor 22 is suspended, and the duty factor of a control valve drive signal is fixed to an optional value for a preset optional time to regulate the control valve 15. When the preset optional time has elapsed, the theoretical air-fuel ratio control is resumed. The air-fuel ratio is thus prevented from temporarily becoming thin at the accelerating operation. This results in enhancing acceleration performance.

Description

【発明の詳細な説明】 本発明はエンジンの空燃比を制御する方法に関するもの
であり、自動車1作業車両、産業機械などの動力源に使
用される工/ジ/の空燃比制御に利用される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the air-fuel ratio of an engine, and is used for controlling the air-fuel ratio of an engine used as a power source for an automobile, a work vehicle, an industrial machine, etc. .

エンジンの運転状態を検出してフィードバック方式によ
り空燃比を制御する技術は広く知られており、吸入空気
量に応じて燃料の基本供給量を設定し、これに運転性能
、燃料経済性、排気対策などを考慮してエンジンの運転
状態に対応した補正を加え所定の空燃比とするものであ
る。空燃比は燃料、空気の少な(ともいずれかをパルス
波形の駆動信号によって駆動される制御弁で制御し、駆
動信号はエンジンの運転状態が入力されその情報に基い
て最適の条件を計算する電子式の制御ユニットから出力
されるのが普通である。
The technology of detecting the operating state of the engine and controlling the air-fuel ratio using a feedback method is widely known, and the basic supply amount of fuel is set according to the amount of intake air. Taking these factors into consideration, corrections are made in accordance with the operating conditions of the engine to achieve a predetermined air-fuel ratio. The air-fuel ratio is controlled by a control valve that is driven by a pulse waveform drive signal for either fuel or air. Normally, the output is from a control unit of a type.

ここで、高出力域を除(通常運転域において或る回転速
度以下、吸入負圧以上では理論空燃比で運転してエミッ
ションの低減、排気対策を計るが、或る回転速度以上、
吸入負圧以下では稀薄空燃比で運転して燃料経済性を計
るように制御システムを作ると、アイドル状態から加速
したときも理論空燃比で運転するように制御が行なわれ
るので加速の度合いによっては空気量増加に燃料増加が
対応できず一時的に稀薄空燃比となり、加速性能が低下
することがあるという欠点があり、そのために加速補正
手段を別途に設けなければならないので制御システムが
複雑になるという問題がある。
Here, excluding the high output range (in the normal operating range, below a certain rotation speed and above the suction negative pressure, operation is performed at the stoichiometric air-fuel ratio to reduce emissions and take measures against exhaust gas, but above a certain rotation speed,
If you create a control system that measures fuel economy by operating at a lean air-fuel ratio below the suction negative pressure, the control will operate at the stoichiometric air-fuel ratio even when accelerating from an idle state, so depending on the degree of acceleration, The disadvantage is that the increase in fuel cannot correspond to the increase in air volume, resulting in a temporary lean air-fuel ratio, which may reduce acceleration performance.For this reason, a separate acceleration correction means must be provided, which complicates the control system. There is a problem.

問題点を解決するための手段 本発明は、パルス波形の駆動信号により燃料、空気の少
なくともいずれかを制御する制御弁を駆動して空燃比を
制御するにあたり。
Means for Solving the Problems The present invention controls an air-fuel ratio by driving a control valve that controls at least one of fuel and air using a pulse waveform drive signal.

或る回転速度以下または吸入負圧以上では理論空燃比の
混合気で運転するように設定するとともに、アイドルと
オフアイドルとを識別検知する絞り弁の位置センサを用
い、アイドルからオフアイドルに移行したとき任意時間
だけフィードバック方式による理論空燃比制御を解除し
、前記駆動信号のデユーティ値を任意の値に固定して制
御弁を駆動することにより前記問題点を解決するための
手段とした。
The engine is set to operate at a stoichiometric air-fuel mixture below a certain rotational speed or above a negative suction pressure, and uses a throttle valve position sensor to distinguish between idle and off-idle to shift from idle to off-idle. The above-mentioned problem is solved by canceling the stoichiometric air-fuel ratio control based on the feedback method for an arbitrary period of time, fixing the duty value of the drive signal at an arbitrary value, and driving the control valve.

実施例 本発明の実施例を図面に基いて説明する。Example Embodiments of the present invention will be described based on the drawings.

第1図はLPGを燃料に使用したエンジンに本発明を実
施した場合を示しており、耐圧容器lのLPGはベーパ
ライザ2で大気圧程度に減圧され、ジェット3を有する
主燃料通路4を通りベンチュリ6に沿って形成された環
状室7に入り、スリット状の主ノズル8から吸気路9に
吸出され空気と混合して吸気マニホルドlOよりエンジ
ン11に供給される。排気は排気管12の三元触媒コン
バータ13で浄化されて大気中に放出される。
FIG. 1 shows a case where the present invention is implemented in an engine using LPG as fuel. LPG in a pressure-resistant container 1 is reduced in pressure to about atmospheric pressure in a vaporizer 2, passes through a main fuel passage 4 having a jet 3, and enters a venturi. The air enters an annular chamber 7 formed along the line 6, is sucked out through a slit-shaped main nozzle 8 into an intake passage 9, mixes with air, and is supplied to the engine 11 through an intake manifold IO. The exhaust gas is purified by a three-way catalytic converter 13 in an exhaust pipe 12 and released into the atmosphere.

主燃料通路4のジェット3よりも上流側から分岐して環
状室7に接続された増量燃料通路14が設けられ、この
通路14には電磁駆動の制御弁15が設けられていて、
電子式の制御ユニツ)16から送られるパルス波形の駆
動信号のデユーティ値に従って前記制御弁15を開閉し
所要の空燃比となるように増量燃料を制御するのである
An increase fuel passage 14 is provided which branches from the upstream side of the jet 3 in the main fuel passage 4 and is connected to the annular chamber 7, and this passage 14 is provided with an electromagnetically driven control valve 15.
The control valve 15 is opened and closed according to the duty value of the pulse waveform drive signal sent from the electronic control unit 16 to control the increased amount of fuel so that the required air-fuel ratio is achieved.

ここで、混合器5に設置された絞り弁17の位置センサ
1B、吸気マニホルドlOに設けられた圧力センナ19
.エンジン11の回転速度センサ20および温度センサ
21.排気管12に設けられた酸素センサ22.更に図
示しない吸入空気温度、イグニッションスイッチ、ブレ
ーキその他エンジン11の運転状態を検知するセ/すが
必要に応じて設けられており、これらのセ/すからの電
気信号が制御ユニッ)16に送られ、制御ユニット16
においてこれらの情報に基いて最適の条件を計算し制御
弁15を所定のデユーティ比で開閉駆動する駆動信号を
発するかまたは閉弁状態或いは開弁状態を保持させ、更
に駆動信号のデユーティ値を変化させる。ここで9位置
センサ18は絞り弁17のアイドル状態とオフアイドル
状態とを識別しその切換え信号を発する機能をもったも
のが使用されている。
Here, the position sensor 1B of the throttle valve 17 installed in the mixer 5, the pressure sensor 19 installed in the intake manifold IO
.. Engine 11 rotational speed sensor 20 and temperature sensor 21. Oxygen sensor 22 provided in the exhaust pipe 12. Further, there are provided, as necessary, units (not shown) for detecting the intake air temperature, ignition switch, brake, and other operating conditions of the engine 11, and electrical signals from these units are sent to the control unit 16. , control unit 16
calculates the optimum conditions based on this information, issues a drive signal to open and close the control valve 15 at a predetermined duty ratio, or maintains the valve closed state or open state, and further changes the duty value of the drive signal. let Here, the 9-position sensor 18 used has the function of distinguishing between the idle state and the off-idle state of the throttle valve 17 and issuing a switching signal.

また、第2図の制御マツプのように、高出力運転域を除
いた通常運転域をエンジン11の回転速度が一定値No
以下で且つ吸入負圧が一定値Po以下の運転領域(Al
と2回転速度が一定値No以上で且つ吸入負圧が一定値
Po以下の運転領域(Blとに分け、前者の運転領域(
Alは理論空燃比の混合気で運転し後者の運転領域(B
lは稀薄空燃比の混合気で運転するように設定し。
Further, as shown in the control map in Fig. 2, the rotational speed of the engine 11 is kept at a constant value No. 1 in the normal operating range excluding the high output operating range.
and below and the suction negative pressure is below the constant value Po (Al
and 2 the operating region (Bl) where the rotational speed is above a certain value No and the suction negative pressure is below a certain value Po, and the former operating region (
Al operates with a mixture at the stoichiometric air-fuel ratio and operates in the latter operating region (B
l is set to operate with a lean air-fuel mixture.

更に高出力運転域(C)は出力空燃比の混合気で運転す
るように設定する。
Further, the high output operating range (C) is set to operate with a mixture having an output air-fuel ratio.

このような構成の本実施例において、アイドリンク時に
は位置センサ18からの電気信号即ちアイドル信号によ
って絞り弁17がアイドル位置にあることを検知するの
で、温度センサ21からの電気信号でエンジン温度が低
いことを検知したとき以外は理論空燃比の混合気を供給
するように制御弁15を駆動する。
In this embodiment with such a configuration, during idle linking, it is detected that the throttle valve 17 is at the idle position based on the electric signal from the position sensor 18, that is, the idle signal, so the electric signal from the temperature sensor 21 detects that the engine temperature is low. Except when this is detected, the control valve 15 is driven so as to supply the air-fuel mixture at the stoichiometric air-fuel ratio.

アイドリンクが終って絞り弁17が開いたときは2位置
セ/す18からの電気信号即ちオフアイドル信号によっ
て加速運転であると判定される。このとき酸素セ/す2
2かもの電気信号に基く理論空燃比制御が解除され、予
め設定した任意時間だけ駆動信号のデユーティ値を任意
の値に固定して制御弁15を駆動する。
When the idle link ends and the throttle valve 17 opens, it is determined that acceleration operation is in progress based on the electric signal from the 2-position sensor 18, that is, the off-idle signal. At this time, oxygen
The stoichiometric air-fuel ratio control based on the two electric signals is canceled, and the duty value of the drive signal is fixed at an arbitrary value for a preset arbitrary time to drive the control valve 15.

前記時間が経過したとき理論空燃比制御を再開するもの
であり、固定デユーティ値による加速時の運転領域の一
例は第2図にDの範囲で示されている。
The stoichiometric air-fuel ratio control is restarted when the above-mentioned time has elapsed, and an example of the operating range during acceleration with a fixed duty value is shown in range D in FIG.

第3図は空燃比制御用駆動信号の波形図の一例であって
1位置センナ18がアイドル信号を発しているときは理
論空燃比制御を行なう波形aが制御弁15に送られてい
る。位置センサ18がオフアイドル信号を発したとき制
御弁15を全開に保持する固定値の波形すが送られ。
FIG. 3 is an example of a waveform diagram of a drive signal for air-fuel ratio control, and when the 1-position sensor 18 is generating an idle signal, waveform a for controlling the stoichiometric air-fuel ratio is sent to the control valve 15. When the position sensor 18 issues an off-idle signal, a fixed value waveform is sent to keep the control valve 15 fully open.

設定時間経過後に再び理論空燃比制御を行なう波形Cが
制御弁15に送られる。固定値の波形すは波形aよりも
デユーティ値を大きくするものであればよ(2図示の波
形に限定されない。
After the set time has elapsed, waveform C is sent to the control valve 15 for controlling the stoichiometric air-fuel ratio again. The fixed value waveform may have a duty value larger than that of waveform a (it is not limited to the waveform shown in FIG. 2).

吸入負圧が一定値Po以下または回転速度が一定値No
以上と判定される稀薄空燃比運転領域(Blにおいては
酸素センサ22その他のセンサからの電気信号に基(フ
ィードバック制御を解除して制御弁15を閉弁状態に保
持し、ジェット3で計量される基本供給量の■、PGの
みを混合器5に送り稀薄空燃比の混合気をエンジン11
に供給して燃料経済性を計る。
The suction negative pressure is below a certain value Po or the rotation speed is a certain value No.
In the lean air-fuel ratio operating region determined as above (in Bl, based on electrical signals from the oxygen sensor 22 and other sensors (feedback control is canceled and the control valve 15 is held in the closed state, the jet 3 is metered) ■ of the basic supply amount, only PG is sent to the mixer 5, and the mixture with a lean air-fuel ratio is sent to the engine 11.
to measure fuel economy.

位置セ/す18からの電気信号によって高出力運転域(
C1に移行したこと1例えば絞り弁17が開度60度以
上となったことを検知したときは、高濃度の出力空燃比
の混合気が供給されるように制御弁15を大きなデユー
ティ値で駆動するか或いは開弁位置に保持する。
The high output operating range (
Transition to C1 1 For example, when it is detected that the throttle valve 17 has opened at 60 degrees or more, the control valve 15 is driven at a large duty value so that a mixture with a high concentration output air-fuel ratio is supplied. or hold the valve in the open position.

以上は空燃比の基本的な制御方法の説明であって1例え
ばオフアイドル時にエンジン。
The above is an explanation of the basic method of controlling the air-fuel ratio.1 For example, when the engine is off-idle.

吸入空気が低温の場合に制御弁15による必要な燃料増
量が行なわれることは言うまでもな尚9本発明はLPG
のような気体燃料に限らず、液体燃料を気化器方式また
は燃料噴射方式によって供給するものにも適用され、気
化器方式では燃料とブリード空気の少なくともいずれか
が制御弁で制御され、燃料噴射方式では噴射弁が制御弁
を、構成する。
It goes without saying that when the intake air is at a low temperature, the control valve 15 increases the amount of fuel necessary.
It is applied not only to gaseous fuels such as but also to those that supply liquid fuel by a vaporizer method or a fuel injection method.In a vaporizer method, at least one of the fuel and bleed air is controlled by a control valve, In this case, the injection valve constitutes the control valve.

本発明によると、エンジンの或る回転速度以下または吸
入負圧以上で理論空燃比の混合気で運転するように設定
したとき、アイドルからオフアイドルに移行した場合一
時的に理論空燃比制御を解除して制御弁駆動信号のデユ
ーティ値を任意に固定するようにしたので。
According to the present invention, when the engine is set to operate with a mixture at a stoichiometric air-fuel ratio below a certain rotational speed or above a certain suction negative pressure, the stoichiometric air-fuel ratio control is temporarily canceled when transitioning from idle to off-idle. Therefore, the duty value of the control valve drive signal can be arbitrarily fixed.

空気量増加に燃料増加を対応させて理論空燃比附近の混
合気を保持しながら加速を行なう仁とができ、加速性能
を低下させないばかりか、加速補正手段を別途に設ける
必要がなく簡単な制御システムで目的を達成できるもの
である。
It is possible to accelerate while maintaining the air-fuel mixture near the stoichiometric air-fuel ratio by increasing the amount of fuel in response to the increase in the amount of air, which not only does not reduce acceleration performance, but also eliminates the need for a separate acceleration correction means, resulting in simple control. A system can achieve a goal.

【図面の簡単な説明】[Brief explanation of drawings]

11・・・・・・エンジン、14・・・・°°増量燃料
通路、15・・・・・・制御弁、16・・・・・・制御
ユニッ)、18・・・・・・位置セ/す、22・旧・・
酸素センナ。
11...engine, 14...°° increase fuel passage, 15...control valve, 16...control unit), 18...position setting /su, 22・old...
oxygen senna.

Claims (1)

【特許請求の範囲】 パルス波形の駆動信号により燃料、空気の 少なくともいずれかを制御する制御弁を駆動して空燃比
を制御するにあたり、或る回転速度以下または吸入負圧
以上では理論空燃比の混合気で運転するように設定する
とともに、アイドルとオフアイドルとを識別検知する絞
り弁の位置センサを用い、アイドルからオフアイドルに
移行したとき任意時間だけフィードバック方式による理
論空燃比制御を解除し、前記駆動信号のデューティ値を
任意の値に固定して制御弁を駆動することを特徴とする
エンジンの空燃比制御方法。
[Claims] When controlling the air-fuel ratio by driving a control valve that controls at least one of fuel and air using a pulse waveform drive signal, the air-fuel ratio is lower than the stoichiometric air-fuel ratio below a certain rotational speed or above a negative suction pressure. In addition to setting the engine to operate with an air-fuel mixture, a throttle valve position sensor that detects and distinguishes between idle and off-idle is used to cancel stoichiometric air-fuel ratio control using a feedback method for an arbitrary period of time when transitioning from idle to off-idle. A method for controlling an air-fuel ratio of an engine, comprising driving a control valve while fixing a duty value of the drive signal to an arbitrary value.
JP17921385A 1985-08-14 1985-08-14 Air-fuel ratio control method for engine Pending JPS6238846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17921385A JPS6238846A (en) 1985-08-14 1985-08-14 Air-fuel ratio control method for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17921385A JPS6238846A (en) 1985-08-14 1985-08-14 Air-fuel ratio control method for engine

Publications (1)

Publication Number Publication Date
JPS6238846A true JPS6238846A (en) 1987-02-19

Family

ID=16061909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17921385A Pending JPS6238846A (en) 1985-08-14 1985-08-14 Air-fuel ratio control method for engine

Country Status (1)

Country Link
JP (1) JPS6238846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8763798B2 (en) 2007-01-25 2014-07-01 Fresenius Medical Care Deutschland Gmbh Closure for filling and sealing receptacles containing medicinal fluids and method for filling a receptacle with a medicinal fluid and sealing the receptacle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928027A (en) * 1982-08-06 1984-02-14 Hitachi Ltd Fuel injection device for internal combustion engine
JPS59190451A (en) * 1983-04-12 1984-10-29 Toyota Motor Corp Air-fuel ratio control method and device for internal- combustion engine
JPS6098136A (en) * 1983-11-04 1985-06-01 Toyota Motor Corp Air-fuel ratio control method of internal-combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928027A (en) * 1982-08-06 1984-02-14 Hitachi Ltd Fuel injection device for internal combustion engine
JPS59190451A (en) * 1983-04-12 1984-10-29 Toyota Motor Corp Air-fuel ratio control method and device for internal- combustion engine
JPS6098136A (en) * 1983-11-04 1985-06-01 Toyota Motor Corp Air-fuel ratio control method of internal-combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8763798B2 (en) 2007-01-25 2014-07-01 Fresenius Medical Care Deutschland Gmbh Closure for filling and sealing receptacles containing medicinal fluids and method for filling a receptacle with a medicinal fluid and sealing the receptacle

Similar Documents

Publication Publication Date Title
US5400591A (en) Means for preventing exhaust emission from being deteriorated in case of trouble of secondary air supply system
US4430979A (en) Air-fuel ratio control system
US4419975A (en) Air-fuel ratio control system
US4364357A (en) Air-fuel ratio control system
US4651699A (en) Air-fuel ratio control system
US4452209A (en) Air-fuel ratio control system for an internal combustion engine
JPS6238846A (en) Air-fuel ratio control method for engine
US4558677A (en) Air-fuel ratio control system
US4501243A (en) Air-fuel ratio control apparatus
US4655181A (en) Air-fuel ratio control system
JPS61252860A (en) Air-fuel ratio controller for gas fuel engine
JPS6238843A (en) Air-fuel ratio control method for engine
US4671238A (en) Air-fuel ratio control system
JPS6241945A (en) Method for controlling air-fuel ratio of engine
JPS61286546A (en) Air-fuel ratio control method for engine
JPH0220452Y2 (en)
JPS62170770A (en) Fuel supply device for engine
JP2584970B2 (en) Engine air-fuel ratio control method
JPS61255240A (en) Air-fuel ratio control for engine
JPS61255241A (en) Air-fuel ratio control for engine
JPS61247842A (en) Secondary air control system
JPH0513963Y2 (en)
JPS61291740A (en) Control method for air-fuel ratio of engine
JPS62178738A (en) Air-fuel ratio control method for engine
JPH05106431A (en) Secondary air feeding control device for catalyst converter