JP2627882B2 - Engine control device - Google Patents

Engine control device

Info

Publication number
JP2627882B2
JP2627882B2 JP60182785A JP18278585A JP2627882B2 JP 2627882 B2 JP2627882 B2 JP 2627882B2 JP 60182785 A JP60182785 A JP 60182785A JP 18278585 A JP18278585 A JP 18278585A JP 2627882 B2 JP2627882 B2 JP 2627882B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
exhaust gas
engine
operating state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60182785A
Other languages
Japanese (ja)
Other versions
JPS6241941A (en
Inventor
正法 三角
英樹 田中
彰士 長尾
正志 丸原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60182785A priority Critical patent/JP2627882B2/en
Publication of JPS6241941A publication Critical patent/JPS6241941A/en
Application granted granted Critical
Publication of JP2627882B2 publication Critical patent/JP2627882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの定常運転のように要求出力が低
い第1運転においては空燃比をリーン化するエンジンの
制御装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a control device for an engine that makes an air-fuel ratio lean in a first operation with a low required output such as a steady operation of the engine.

(従来技術) 従来より、エンジンの制御、特に空燃比制御におい
て、定常運転時等の出力が要求されない所定運転状態に
おいては、空燃比をリーン化して燃費性能を向上するよ
うにした技術が公知である(例えば、特開昭57−210137
号公報参照)。
(Prior Art) Conventionally, in engine control, in particular, in air-fuel ratio control, in a predetermined operation state in which output is not required during steady operation or the like, a technology is known in which an air-fuel ratio is made lean to improve fuel efficiency. (For example, see JP-A-57-210137)
Reference).

上記のように空燃比制御においては、加速運転時のよ
うに出力が要求される運転状態においては、リーン化を
行うと出力が不足することから、空燃比をリッチ側に移
行して運転するものである。そして、このように空燃比
をリッチ化して運転する場合にはNOXの排出量が増大す
ることから、空燃比をリッチ化するとともに排気ガスの
一部を吸気系に還流してNOXの排出を抑制することが考
えられる。
In the air-fuel ratio control, as described above, in an operating state where output is required, such as during an acceleration operation, the operation is performed by shifting the air-fuel ratio to the rich side because the output becomes insufficient when leaning is performed. It is. The discharge thus the air-fuel ratio from the emissions of the NO X is increased in the case of operation by rich, refluxing the air-fuel ratio to the intake system part of the exhaust gas as well as enrichment of the NO X Can be suppressed.

しかるに、エンジンの運転状態が加速状態から定常状
態に移行する場合に、空燃比のリーン移行は比較的速や
かに行われが、排気ガスの還流停止に遅れが生じて燃焼
性を低下する恐れがある。すなわち、排気ガスの還流を
停止するべく還流制御弁を閉状態に作動しても、この還
流制御弁の作動遅れがあるとともに、排気ガス還流通路
および吸気通路に排気ガスが残留しており、この残留排
気ガスの供給による燃焼性の低下と、空燃比がリーン化
することにより燃焼性の低下とが重複して生起し、燃焼
性が非常に悪化して運転性に影響を及ぼすものである。
However, when the operating state of the engine shifts from an acceleration state to a steady state, the lean transition of the air-fuel ratio is performed relatively quickly, but there is a risk that the recirculation stop of the exhaust gas is delayed and the combustibility is reduced. . That is, even when the recirculation control valve is operated to close the recirculation control valve to stop the recirculation of the exhaust gas, there is a delay in the operation of the recirculation control valve and the exhaust gas remains in the exhaust gas recirculation passage and the intake passage. The decrease in flammability due to the supply of residual exhaust gas and the decrease in flammability due to the lean air-fuel ratio occur, and the flammability is extremely deteriorated to affect drivability.

(発明の目的) 本発明は上記事情に鑑み、定常運転時のような第1運
転時には空燃比のリーン化によって燃費性を向上すると
ともに、加速運転時のような第2運転時には排気ガスの
還流によってNOXの排出量を低減し、かつ、第2運転状
態から第1運転状態に移行する際の燃焼性の低下を抑制
するようにしたエンジンの制御装置を提供することを目
的とするものである。
(Objects of the Invention) In view of the above circumstances, the present invention improves the fuel efficiency by making the air-fuel ratio lean during the first operation such as during a steady operation, and recirculates exhaust gas during the second operation such as during an acceleration operation. It is an object of the present invention to provide an engine control device that reduces the emission of NO X and suppresses a decrease in flammability when shifting from the second operating state to the first operating state. is there.

(発明の構成) 第1図は本発明の構成を明示するための全体構成図で
ある。エンジン1の吸気通路2には例えば燃料噴射ノズ
ル3への噴射パルスを制御することによって供給空燃比
を調整する空燃比制御手段4を設け、この空燃比制御手
段4は、エンジンの運転状態を検出する運転状態検出手
段5からの検出信号を受け、エンジン1の定常運転時の
ように出力が要求されない第1運転時には混合気の空燃
比を比較的リーンな第1空燃比に制御する一方、エンジ
ンの加速運転時のように出力が要求される第2運転時に
は上記第1空燃比よりリッチな第2空燃比に切換制御す
るものである。
(Configuration of the Invention) FIG. 1 is an overall configuration diagram for clearly showing the configuration of the present invention. The intake passage 2 of the engine 1 is provided with air-fuel ratio control means 4 for adjusting a supply air-fuel ratio by controlling, for example, an injection pulse to a fuel injection nozzle 3, and the air-fuel ratio control means 4 detects an operating state of the engine. Receiving the detection signal from the operating state detecting means 5 to control the air-fuel ratio of the air-fuel mixture to the relatively lean first air-fuel ratio during the first operation in which no output is required as in the steady operation of the engine 1, In the second operation in which an output is required as in the acceleration operation, the switching control is performed to the second air-fuel ratio which is richer than the first air-fuel ratio.

また、エンジン1の排気通路6に排気ガスの一部を前
記吸気通路2のスロットルバルブ19下流でかつ燃料噴射
ノズル3より上流のサージタンク20に還流するEGR通路
7が接続され、該EGR通路7には排気ガスの還流を制御
する排気ガス還流手段8を設ける。該排気ガス還流手段
8は、前記運転状態検出手段5からの検出信号を受け、
空燃比がリーンな第1空燃比に制御される第1運転時に
は排気ガスの還流を停止し、空燃比がリッチな第2空燃
比に制御される第2運転時には排気ガスの還流を行うよ
うに制御するものである。
An EGR passage 7 is connected to the exhaust passage 6 of the engine 1 to recirculate a part of the exhaust gas to a surge tank 20 downstream of the throttle valve 19 of the intake passage 2 and upstream of the fuel injection nozzle 3. Is provided with exhaust gas recirculation means 8 for controlling the recirculation of exhaust gas. The exhaust gas recirculation means 8 receives a detection signal from the operating state detection means 5,
During the first operation in which the air-fuel ratio is controlled to the lean first air-fuel ratio, the recirculation of the exhaust gas is stopped, and in the second operation in which the air-fuel ratio is controlled to the rich second air-fuel ratio, the exhaust gas is recirculated. To control.

そして、前記空燃比制御手段4に対し、エンジンの運
転状態が第2運転から第1運転に移行するときに、空燃
比を第2空燃比から第1空燃比へ切換えてリーン化する
時期を所定時間遅延する遅延手段9を設けてなるもので
ある。この遅延時間は、EGR通路7およびスロットルバ
ルブ19下流の吸気通路2に残留する残留排気ガスの供給
が終了するのに十分な時間に設定している。
When the operating state of the engine shifts from the second operation to the first operation, the air-fuel ratio control means 4 determines a time for switching the air-fuel ratio from the second air-fuel ratio to the first air-fuel ratio to make the engine lean. It is provided with delay means 9 for delaying time. The delay time is set to a time sufficient for terminating the supply of the residual exhaust gas remaining in the intake passage 2 downstream of the EGR passage 7 and the throttle valve 19.

上記運転状態検出手段5の検出に基づき、エンジン1
の運転状態が第2運転から第1運転に移行した時には、
まず、排気ガス還流手段8によって排気ガスの還流を停
止し、遅延手段9によって設定された所定時間が経過し
て残留排気ガスの供給が終了した後に、空燃比制御手段
4によって空燃比を第2空燃比から第1空燃比に切換え
てリーン化するものである。
Based on the detection of the operating state detecting means 5, the engine 1
When the operating state of the vehicle has shifted from the second operation to the first operation,
First, the recirculation of the exhaust gas is stopped by the exhaust gas recirculation means 8, and after the predetermined time set by the delay means 9 has elapsed and the supply of the residual exhaust gas has been completed, the air-fuel ratio control means 4 sets the air-fuel ratio to the second value. The air-fuel ratio is switched from the air-fuel ratio to the first air-fuel ratio to make the air-fuel ratio lean.

(発明の効果) 本発明によれば、エンジン運転状態が第2運転状態か
ら第1運転状態に移行し、空燃比をリーンな第1空燃比
に切換えるのに伴って排気ガスの還流を停止するについ
て、排気ガスの還流停止から所定時間が経過して残留排
気ガスの供給が終了した後に空燃比を切換えるようにし
たことにより、残留排気ガスによる燃焼性の低下と空燃
比のリーン化による空燃比の低下とが重複するのを回避
し、良好な運転性を確保することができるものである。
(Effects of the Invention) According to the present invention, the engine operating state shifts from the second operating state to the first operating state, and the recirculation of exhaust gas is stopped as the air-fuel ratio is switched to the lean first air-fuel ratio. The air-fuel ratio is switched after the predetermined time has elapsed from the stoppage of the recirculation of the exhaust gas and the supply of the residual exhaust gas has been completed, thereby reducing the combustibility due to the residual exhaust gas and the air-fuel ratio due to the lean air-fuel ratio. It is possible to avoid overlapping with the decrease in the vehicle speed, and to ensure good driving performance.

(実施例) 以下、図面により本発明の実施例を説明する。第2図
は全体構成図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 2 is an overall configuration diagram.

シリンダブロック11、シリンダヘッド12、ピストン1
3、吸気弁14、排気弁15等を備えたエンジン1の燃焼室1
6に吸気を供給する吸気通路2には、上流側からエアク
リーナ17、吸気量を計測するエアフローセンサ18、吸気
量を制御するスロットルバルブ19、サージタンク20、各
気筒への分岐通路にそれぞれ燃料を噴射する燃料噴射ノ
ズル3が介装されている。また、燃焼室16近傍の吸気通
路2はメインポート2aと通路面積の狭いスワールポート
2bとに形成され、メインポート2aにスワールバルブ21が
配設されている。
Cylinder block 11, cylinder head 12, piston 1
3. Combustion chamber 1 of engine 1 equipped with intake valve 14, exhaust valve 15, etc.
In the intake passage 2 for supplying intake air to the 6, an air cleaner 17 from the upstream side, an air flow sensor 18 for measuring the amount of intake air, a throttle valve 19 for controlling the amount of intake air, a surge tank 20, and a fuel for branch passage to each cylinder. A fuel injection nozzle 3 for injection is interposed. The intake passage 2 near the combustion chamber 16 is connected to the main port 2a and a swirl port having a small passage area.
2b, and a swirl valve 21 is provided in the main port 2a.

燃焼室16からの排気ガスを排出する排出通路6には触
媒コンバータ22が介装されるとともに、触媒コンバータ
22下流の排気通路6から排気ガスの一部を吸気通路2の
スロットルバルブ19下流でかつ燃料噴射ノズル3より上
流のサージタンク20に還流するEGR通路7が設けられ、
このEGR通路7の途中には還流排気ガス量を制御する還
流制御弁23が介装されている。上記還流制御弁23は、負
圧室23aに負圧導入通路24によって導入される吸気負圧
を開作動源とし、この負圧導入通路24には背圧と負荷に
応じて大気への負圧リーク量を調整して圧力調整を行う
公知の圧力調整弁25が接続され、エンジン1の運転状態
に応じて排気ガス還流量が調整される。また、上記負圧
導入通路24には該負圧導入通路24を開閉するEGRバルブ2
6(電磁弁)が介装され、該EGRバルブ26は、還流制御弁
23への負圧の導入をカットして負圧室23aを圧力調整弁2
5によって大気開放し、還流制御弁23を閉状態にして排
気ガスの還流を停止するものである。
A catalytic converter 22 is interposed in the exhaust passage 6 for exhausting the exhaust gas from the combustion chamber 16, and the catalytic converter
An EGR passage 7 is provided to recirculate part of the exhaust gas from the exhaust passage 6 downstream of 22 to the surge tank 20 downstream of the throttle valve 19 of the intake passage 2 and upstream of the fuel injection nozzle 3.
A recirculation control valve 23 for controlling the amount of recirculated exhaust gas is interposed in the EGR passage 7. The recirculation control valve 23 uses an intake negative pressure introduced into the negative pressure chamber 23a by the negative pressure introduction passage 24 as an opening operation source, and the negative pressure introduction passage 24 supplies a negative pressure to the atmosphere according to the back pressure and the load. A known pressure adjusting valve 25 for adjusting the pressure by adjusting the leak amount is connected, and the amount of exhaust gas recirculation is adjusted according to the operating state of the engine 1. An EGR valve 2 for opening and closing the negative pressure introduction passage 24 is provided in the negative pressure introduction passage 24.
6 (electromagnetic valve) is interposed. The EGR valve 26 is a reflux control valve.
The introduction of negative pressure to 23 is cut and negative pressure chamber 23a is
The air is released to the atmosphere by 5, and the recirculation control valve 23 is closed to stop the recirculation of the exhaust gas.

上記燃料噴射ノズル3の燃料噴射量によってエンジン
1に供給する空燃比を調整するものであり、この燃料噴
射ノズル3による燃料噴射および前記EGRバルブ26によ
る排気ガスの還流・停止は、コントローラ27から出力さ
れる制御信号によって制御される。このコントローラ27
にはエンジン1の運転状態を検出するために、前記エア
フローセンサ18からの吸気量信号、スロットルバルブ19
の開度を検出するスロットル開度センサ28からの検出信
号、回転センサ29からのエンジン回転数信号、触媒コン
バータ22上流の排気通路6に設けたO2センサ30からの空
燃比検出信号をそれぞれ受け、エンジンの運転状態に応
じて供給空燃比および排気ガスの還流を制御するもので
ある。
The air-fuel ratio supplied to the engine 1 is adjusted according to the fuel injection amount of the fuel injection nozzle 3. The fuel injection by the fuel injection nozzle 3 and the recirculation / stop of the exhaust gas by the EGR valve 26 are output from the controller 27. Is controlled by a control signal. This controller 27
In order to detect the operating state of the engine 1, an intake air amount signal from the air flow sensor 18 and a throttle valve 19 are provided.
, An engine speed signal from a rotation sensor 29, and an air-fuel ratio detection signal from an O 2 sensor 30 provided in the exhaust passage 6 upstream of the catalytic converter 22. This controls the supply air-fuel ratio and the recirculation of exhaust gas according to the operating state of the engine.

そして、空燃比は、要求出力の低い第1運転状態この
実施例では定常運転状態においては比較的リーンな第1
空燃比に制御し、要求出力の高い第2運転状態この実施
例では加速運転状態においてはO2センサ30の信号に基づ
いて前記第1空燃比よりリッチな第2空燃比(例えば理
論空燃比)にフィードバック制御するものである。ま
た、加速運転状態においてはEGRバルブ26を開いて還流
制御弁23によって所定量の排気ガスの還流を行い、定常
運転状態においてはEGRバルブ26を閉じて排気ガスの還
流は停止するように制御するものである。さらに、加速
運転状態から定常状態に運転状態が移行した際には、ま
ず、排気ガスの還流を停止すべくEGRバルブ26に閉信号
を出力した後、所定時間だけ遅延して供給空燃比を第2
空燃比から第1空燃比に切換えてリーン化を行うもので
ある。
The air-fuel ratio is in the first operating state where the required output is low. In this embodiment, the first operating state is relatively lean in the steady operating state.
Controlled air-fuel ratio, the required output high second operating state the second air-fuel ratio rich than the first air-fuel ratio based on a signal from the O 2 sensor 30 in the accelerating operation state in this embodiment (e.g. stoichiometric air-fuel ratio) Feedback control. Further, in the acceleration operation state, the EGR valve 26 is opened, and a predetermined amount of exhaust gas is recirculated by the recirculation control valve 23. In the steady operation state, the EGR valve 26 is closed to control the exhaust gas recirculation to be stopped. Things. Further, when the operation state shifts from the acceleration operation state to the steady state, first, a close signal is output to the EGR valve 26 to stop the recirculation of exhaust gas, and then the supply air-fuel ratio is delayed by a predetermined time to reduce the supply air-fuel ratio to the second state. 2
The leaning is performed by switching from the air-fuel ratio to the first air-fuel ratio.

すなわち、上記移行運転時のタイムチャートを第3図
に示す。スロットル開度はAに示すように、a点で開作
動して定常状態から加速状態に移行し、b点でスロット
開度が閉じて定常運転に移行する運転状態の変化があっ
た場合に、空燃比はBに示すように、定常状態から加速
状態に移行するa点で、リーンな第1空燃比からリッチ
な第2空燃比に移行し、加速状態から定常状態に移行す
るb点では、所定時間Tだけ遅延してリッチな第2空燃
比からリーンな第1空燃比に移行するように制御する。
これに対し、排気ガス還流制御(EGRバルブ26の開閉)
はCに示すように、定常状態から加速状態に移行するa
点で、EGRバルブ26を開作動して排気ガスの還流を開始
し、加速状態から定常状態に移行するb点では、EGRバ
ルブ26を閉作動して排気ガスの還流を停止するように制
御するものである。前記所定時間Tは、EGR通路7およ
びスロットルバルブ19下流の吸気通路2に残留する残留
排気ガスの供給が終了するのに十分な時間に設定してい
る。
That is, FIG. 3 shows a time chart during the transition operation. As shown in A, the throttle opening is operated at a point a to shift from a steady state to an acceleration state, and at a point b, the slot opening is closed and there is a change in the operating state to shift to a steady state operation. As shown in B, the air-fuel ratio shifts from the lean first air-fuel ratio to the rich second air-fuel ratio at the point a where the steady state shifts to the acceleration state, and at the point b where the air-fuel ratio shifts from the acceleration state to the steady state, The control is performed so as to delay from the rich second air-fuel ratio to the lean first air-fuel ratio with a delay of a predetermined time T.
On the other hand, exhaust gas recirculation control (opening and closing of EGR valve 26)
Shifts from the steady state to the accelerated state as shown in C
At this point, the EGR valve 26 is opened to start the recirculation of the exhaust gas, and at the point b where the state changes from the acceleration state to the steady state, the EGR valve 26 is closed to control the recirculation of the exhaust gas to stop. Things. The predetermined time T is set to a time sufficient for terminating the supply of residual exhaust gas remaining in the EGR passage 7 and the intake passage 2 downstream of the throttle valve 19.

前記吸気通路2のスワールバルブ21は、図示しないア
クチュエータによって開閉操作され、定常運転時(リー
ン運転時)あるいは低負荷運転時に閉じて、スワールポ
ート2bから流速の大きい吸気を燃焼室16に供給して強い
スワールを生起させ、リーン運転の燃焼性を向上してさ
らに運転性を確保するようにしている。
The swirl valve 21 of the intake passage 2 is opened and closed by an actuator (not shown), closed during a steady operation (during a lean operation) or during a low-load operation, and supplies intake air having a high flow velocity to the combustion chamber 16 from the swirl port 2b. A strong swirl is generated to improve the flammability of the lean operation to ensure more drivability.

上記コントローラ27の作動を第4図のフローチャート
に基づいて説明する。スタート後、ステップS1で後述の
フラッグFおよびタイマ値tをクリアして初期設定を行
い、ステップS2でエアフローセンス18による吸入空気量
出力、スロットル開度センサ28によるスロットル開度出
力、回転センサ29によるエンジン回転数出力等の各種運
転状態信号を読み込む。
The operation of the controller 27 will be described with reference to the flowchart of FIG. After the start, a flag F and a timer value t, which will be described later, are cleared in step S1 to perform an initial setting. In step S2, an intake air amount output by the airflow sense 18, a throttle opening output by the throttle opening sensor 28, and a rotation sensor 29 by Reads various operating state signals such as engine speed output.

続いて、ステップS3で上記検出信号に基づいて現在の
運転状態が加速ゾーンか否か判定し、YESで加速ゾーン
にある場合には、ステップS4で空燃比をO2センサ出力に
基づいてフィードバック制御して第2空燃比にリッチ移
行するとともに、ステップS5でEGRバルブ26を開作動し
て排気ガスの還流を開始し、ステップS6でフラッグFを
0にクリアする。
Subsequently, the current operating condition is determined whether the acceleration zone based on the detection signal in step S3, when in the acceleration zone at YES, the feedback control based on the air-fuel ratio to the O 2 sensor output in step S4 Then, the air-fuel ratio is shifted to the second air-fuel ratio richly, and at step S5, the EGR valve 26 is opened to start the recirculation of exhaust gas, and the flag F is cleared to 0 at step S6.

運転状態が定常状態で前記ステップS3の判定がNOの時
には、ステップS7でフラッグFが1にセットされている
か否か判定し、初めて定常状態に移行したクリア時には
NOの判定により、ステップS8に進んでEGRバルブ26を閉
作動して排気ガス還流を停止した後、ステップS9でフラ
ッグFを1セットするものである。
When the operating state is in the steady state and the determination in step S3 is NO, it is determined in step S7 whether or not the flag F is set to 1;
If the determination is NO, the process proceeds to step S8 to close the EGR valve 26 to stop the exhaust gas recirculation, and then sets one flag F in step S9.

上記フラッグFのセットにより、ステップS7の判定が
YESとなってステップS10でタイマのカウント値tが設定
値Tに達したか否か判定し、達していないNOの時にはス
テップS11でタイマtのカウントを行う。タイマtが所
定時間Tに達するとステップS10の判定がYESとなって、
ステップS12で空燃比を比較的リーンな第1空燃比に移
行するものである。
By setting the flag F, the determination in step S7
If YES, it is determined in step S10 whether or not the count value t of the timer has reached the set value T. If NO, the timer t is counted in step S11. When the timer t reaches the predetermined time T, the determination in step S10 becomes YES,
In step S12, the air-fuel ratio is shifted to the relatively lean first air-fuel ratio.

上記構成により、運転状態が加速状態から定常状態に
移行することをフラッグFによって判定し、まず、運転
状態で還流していた排気ガスをカットした後、残留排気
ガスの供給が終了するのに十分な設定時間Tが経過して
から、加速時にリッチ化していた空燃比をリーン移行し
て燃費性の向上を図るとともに、上記移行時の燃焼性の
大幅な低下を阻止して良好な運転性を確保するものであ
る。
With the above configuration, it is determined by the flag F that the operating state shifts from the acceleration state to the steady state. First, after exhaust gas that has recirculated in the operating state is cut, sufficient supply of the residual exhaust gas is completed. After the elapse of a predetermined set time T, the air-fuel ratio, which was enriched during acceleration, is shifted to lean to improve fuel efficiency, and a significant decrease in combustibility at the time of the shift is prevented to improve good drivability. To ensure.

なお、上記実施例において、空燃比はリーンな第1空
燃比とリッチな第2空燃比とに切換えるようにしている
が、リーン領域およびリッチ領域内においてそれぞれの
運転状態に対応して空燃比を変化させ、運転状態に合致
した空燃比を供給するようにしている。
In the above embodiment, the air-fuel ratio is switched between the lean first air-fuel ratio and the rich second air-fuel ratio. However, in the lean region and the rich region, the air-fuel ratio is changed in accordance with each operating state. By changing the air-fuel ratio, the air-fuel ratio that matches the operating condition is supplied.

また、上記実施例においては、還流制御弁23に対する
負圧導入通路24を開閉するEGRバルブ26をコントローラ2
7によって制御するようにしているが、還流制御弁を電
磁弁にて構成し、これを直接コントローラによって制御
するようにしてもよい。
In the above embodiment, the EGR valve 26 that opens and closes the negative pressure introduction passage 24 for the recirculation control valve 23 is connected to the controller 2.
Although the control is performed by the control unit 7, the recirculation control valve may be configured by an electromagnetic valve, and may be directly controlled by the controller.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の構成を明示するための全体構成図、 第2図は具体例の全体構成図、 第3図は運転状態の変化と空燃比制御および排気ガス還
流制御の関係を示すタイムチャート図、 第4図はコントローラの作動を説明するためのフローチ
ャート図である。 1……エンジン、2……吸気通路 4……空燃比制御手段 5……運転状態検出手段 6……排気通路、7……EGR通路 8……排気ガス還流手段 9……遅延手段、26……EGRバルブ 27……コントローラ
FIG. 1 is an overall configuration diagram for clearly showing the configuration of the present invention, FIG. 2 is an overall configuration diagram of a specific example, and FIG. 3 is a time chart showing the relationship between a change in operating state and air-fuel ratio control and exhaust gas recirculation control. FIG. 4 is a flowchart for explaining the operation of the controller. DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Intake passage 4 ... Air-fuel ratio control means 5 ... Operating condition detection means 6 ... Exhaust passage 7 ... EGR passage 8 ... Exhaust gas recirculation means 9 ... Delay means 26 ... … EGR valve 27 …… Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸原 正志 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (56)参考文献 特開 昭53−88414(JP,A) 特開 昭59−10760(JP,A) 特公 昭57−32737(JP,B2) 特公 昭58−10760(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masashi Maruhara 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Inside Mazda Corporation (56) References JP-A-53-88414 (JP, A) 59-10760 (JP, A) JP-B-57-32737 (JP, B2) JP-B-58-10760 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エンジンの運転状態を検出する運転状態検
出手段と、該運転状態検出手段の出力を受け、エンジン
の第1運転時に混合気の空燃比を比較的リーンな第1空
燃比に制御する一方、エンジンの第2運転時に上記第1
空燃比よりリッチな第2空燃比に制御する空燃比制御手
段と、上記運転状態検出手段の出力を受け、空燃比が第
2空燃比に制御される第2運転時に排気ガスの一部をス
ロットルバルブ下流のサージタンクに還流する一方、空
燃比が第1空燃比に制御される第1運転時に排気ガスの
還流を停止する排気ガス還流手段と、エンジンの第2運
転から第1運転への移行に伴う上記空燃比制御手段によ
る第2空燃比から第1空燃比への切換えを所定時間遅延
するとともに該所定時間を排気ガス還流通路およびスロ
ットルバルブ下流の吸気通路に残留する残留排気ガスの
供給が終了するのに十分な時間に設定した遅延手段とを
備えることを特徴とするエンジンの制御装置。
1. An operating state detecting means for detecting an operating state of an engine, and receiving an output of the operating state detecting means to control an air-fuel ratio of an air-fuel mixture to a relatively lean first air-fuel ratio during a first operation of the engine. On the other hand, during the second operation of the engine, the first
An air-fuel ratio control unit that controls the air-fuel ratio to a second air-fuel ratio richer than the air-fuel ratio, and a part of the exhaust gas is throttled during the second operation in which the air-fuel ratio is controlled to the second air-fuel ratio by receiving the output of the operating state detection unit. Exhaust gas recirculation means for stopping exhaust gas recirculation during the first operation in which the air-fuel ratio is controlled to the first air-fuel ratio while returning to the surge tank downstream of the valve, and transition of the engine from the second operation to the first operation The switching of the second air-fuel ratio from the second air-fuel ratio to the first air-fuel ratio by the air-fuel ratio control means is delayed for a predetermined time and the supply of the residual exhaust gas remaining in the exhaust gas recirculation passage and the intake passage downstream of the throttle valve is delayed. A delay means set to a time sufficient to end the engine.
JP60182785A 1985-08-20 1985-08-20 Engine control device Expired - Fee Related JP2627882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60182785A JP2627882B2 (en) 1985-08-20 1985-08-20 Engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60182785A JP2627882B2 (en) 1985-08-20 1985-08-20 Engine control device

Publications (2)

Publication Number Publication Date
JPS6241941A JPS6241941A (en) 1987-02-23
JP2627882B2 true JP2627882B2 (en) 1997-07-09

Family

ID=16124374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60182785A Expired - Fee Related JP2627882B2 (en) 1985-08-20 1985-08-20 Engine control device

Country Status (1)

Country Link
JP (1) JP2627882B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914952A1 (en) * 2007-04-10 2008-10-17 Renault Sas Exhaust gas recirculation rate adaptation device i.e. three-way valve, for oil engine, has deflector favoring exhaust gas circulation towards exhaust pipe in certain blocking positions of blocking units

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388414A (en) * 1977-01-14 1978-08-03 Hitachi Ltd Combustion controlling for internal combustion engine
JPS5732737A (en) * 1980-08-06 1982-02-22 Iseki Agricult Mach Change-over device for mixed rice in rice huller
JPS5840028A (en) * 1981-09-04 1983-03-08 福島 寿蔵 Cattlefish hook
US4428354A (en) * 1982-06-21 1984-01-31 General Motors Corp. Diesel engine fuel limiting system

Also Published As

Publication number Publication date
JPS6241941A (en) 1987-02-23

Similar Documents

Publication Publication Date Title
CA1147829A (en) Internal combustion engine
JPS60237140A (en) Controller for internal-combustion engine
JPH1193731A (en) Fuel injection control device for cylinder injection internal combustion engine
JPH0433381Y2 (en)
JP2627882B2 (en) Engine control device
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JP2002188522A (en) Egr control device for engine with turbocharger
JPH09324672A (en) Fuel injection timing control device of lean-burn engine
JP2001263119A (en) Control device for internal combustion engine
JPH07253052A (en) Exhaust gas recirculation controller of engine
JP2002188524A (en) Egr control device for engine with turbocharger
JPS6038526A (en) Controller of air-fuel ratio
JPS6241942A (en) Engine control device
JP3691078B2 (en) Air-fuel ratio switching control device for internal combustion engine
KR100302705B1 (en) Method for controlling idle state of vehicle
JP2724717B2 (en) Engine fuel control device
JPH0727003A (en) Air-fuel ratio controller of engine
JP2000205004A (en) Control device for cylinder injection type engine
JPH0586933A (en) Fuel injection controller for internal combustion engine
JPH09324705A (en) Exhaust gas recirculation controller of veritable intake engine
JPS60219434A (en) Fuel injection controlling device for engine
JPH10339247A (en) Intake device for internal combustion engine
JPS6088859A (en) Exhaust gas recirculating device in engine
JPS6238843A (en) Air-fuel ratio control method for engine
JPS59188051A (en) Fuel-feed controller for engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees