JPS62172139A - Control device for defrosting of air-conditioning machine - Google Patents

Control device for defrosting of air-conditioning machine

Info

Publication number
JPS62172139A
JPS62172139A JP61014017A JP1401786A JPS62172139A JP S62172139 A JPS62172139 A JP S62172139A JP 61014017 A JP61014017 A JP 61014017A JP 1401786 A JP1401786 A JP 1401786A JP S62172139 A JPS62172139 A JP S62172139A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
defrosting
cycle
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61014017A
Other languages
Japanese (ja)
Other versions
JPH0566491B2 (en
Inventor
Akira Yokouchi
横内 朗
Makoto Kaihara
海原 誠
Katsumi Fukuda
克己 福田
Keiichi Kuriyama
栗山 啓一
Masahiro Watanabe
渡邉 雅洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61014017A priority Critical patent/JPS62172139A/en
Publication of JPS62172139A publication Critical patent/JPS62172139A/en
Publication of JPH0566491B2 publication Critical patent/JPH0566491B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a defrosting control device capable of being simplified by a method wherein heating operation is effected after the temporary stop of the operation of a compressor from the restarting of the operation to a time when a predetermined time has elapsed while defrosting operation is controlled by a comparison between a boundary temperature in accordance with the memorized frequency of an power source and a detected temperature after the predetermined time has elapsed. CONSTITUTION:When an outdoor side heat exchanger 5 has not frosted yet, both of the suction refrigerant temperature Ts of a compressor 1 and the inlet pipeline temperature (t) of an indoor side heat exchanger 3 are high, however, these temperatures are reduced gradually and when the outdoor side heat exchanger 5 is frosted, heating capacity is reduced remarkably and the inlet pipeline temperature (t) of the indoor side heat exchanger 3 is reduced extremely. When the inlet pipeline temperature (t) has become lower than a set pipeline temperature (t1), the heating capacity is reduced and frosting is advanced, therefore, the heat exchanger 3 is defrosted. Generally, the inlet pipeline temperature (t) of the indoor side heat exchanger 3 is different depending on whether the titled machine is operated under 50Hz or 60Hz, therefore, the decision of a defrosting should be effected only by switching in accordance with the operating frequency of 50Hz or 60Hz to realize the heating capacity sufficiently. Accordingly, the proper decision of defrosting operation may be effected with the inlet pipeline temperature of the indoor side heat exchanger 3 under the operating frequency of 50Hz or 60Hz.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートボシプ式空気調和機の除
霜制御装置に関するもので、特に室外側熱交換器の着:
i″iを室内側で回加し1!′7−るようにした空気調
和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat exchanger type air conditioner, and in particular to a defrosting control device for an outdoor heat exchanger.
The present invention relates to an air conditioner in which i''i is circulated indoors.

従来の技術 従来、特公昭59−34255号公報(て示されるよう
に、室内I′l1ll熱交換器の温度変化と室内監度の
変化の両者に基づいて室外+1111熱交換器への着′
Ajf状態を回動し、暖房運転と除?Vi運転を1li
11 @する技術が開発されている。
2. Related Art Conventionally, as shown in Japanese Patent Publication No. 59-34255 (1983), the temperature change to the outdoor +1111 heat exchanger is based on both the temperature change of the indoor heat exchanger and the change in the indoor humidity.
Rotate the Ajf state and remove heating operation? Vi driving 1li
11 The technology to @ has been developed.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、温度検出素子が複
数必要となり、自と回路が複雑化する問題がある。さら
に、空気調和機においては、室内側の送風量が任意に可
変設定されることが常であり、そのためにも従来の技術
に風量補正手段を加味させることは、一層回路を複雑化
にしてしまう。
Problems to be Solved by the Invention However, such a conventional configuration requires a plurality of temperature detection elements, complicating the circuit itself. Furthermore, in air conditioners, the amount of air blown inside the room is usually variably set arbitrarily, and for this reason, adding an air amount correction means to the conventional technology would further complicate the circuit. .

しかも、かかる構成は熱交換器を流れている途中の気液
混合冷媒温度を検出しているため、着霜時と未着’、f
jT時の湿度変(ヒが小さく、微小な範囲で着霜’I!
11定を行わなければならず、検出精度が安定しない問
題がある。
Moreover, since this configuration detects the temperature of the gas-liquid mixed refrigerant while it is flowing through the heat exchanger, it is possible to
j Humidity change at T (low temperature, frost formation in a minute range)
11 constants must be carried out, and there is a problem that the detection accuracy is unstable.

また、電源周波数により、50Hzと60 Hzにおり
で圧縮機能力が異なり、一般的に60Hzの方が高圧が
上かり、同じ室内側熱交換器温度においても、50 H
zと60 Hzでは、室外側だ\交換器の着′4)■状
態が異なり、適確な除霜11定ができ々かった。
In addition, the compression function power differs between 50 Hz and 60 Hz depending on the power supply frequency, and 60 Hz generally has a higher pressure, and even at the same indoor heat exchanger temperature, 50 Hz
At 60 Hz and 60 Hz, the condition of the exchanger outside the room was different, and it was not possible to defrost properly.

以上のように、従来の技8tlFには問題点が多々あり
、改善が留求されるものである。
As described above, the conventional technique 8tIF has many problems, and improvements are needed.

本発明は、上記従来の問題点に鑑み、従来技術の利点を
41」うことなく、構成の簡素化がはかれる除霜制御装
置を捉供するものである。
In view of the above-mentioned conventional problems, the present invention provides a defrosting control device that can be simplified in configuration without sacrificing the advantages of the prior art.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図に示すよ
うに冷凍サイクルを暖房サイクルから除霜サイクルに制
御する制御装置を、t’+rf記圧殺d機の一時運転停
止後、再運転開始からの時間を計6111する時間計測
手段と、あらかじめ設定された時間を記憶している設定
時間記憶手段と、ltn記時開時間計測手段り検出した
時iIJとrif7記設定時設定時間記憶手段された時
間の一致を検出し出力する第1の比較手段と、前記室内
側熱交換器の冷媒人口倶1jに連結された配管の温度を
検出する温度検出手段と、暖房サイクルを除霜サイクル
に切換える境界端温度を記憶した設定都度記憶手段と、
電源周波数を入力するクロック入力手段と、電源の異な
る周波数を゛開別する周波数゛[す別手段と、その周波
数判別手段からの出力信号により+3fi記設定温度記
憶手段の境界値温度を明換える設定温度切換手段と、前
記温度検出手段により検出した温度が前記設定温度記・
l:に手段に記憶された境界(h(X温度より低下した
ことを険出し出力する第2の比較手段と、前記第1の比
較手段による設定時間経過信号と前記第2の比較手段に
よる境界値低下信号により、暖房サイクルから除霜サイ
クルへの切換えを判定する′I’1定手段と、[]f1
記゛閂定手段の出力に応じて]][I記冷凍サイすルを
暖房運転から除:(jjJ転へ;■す御する選択出力手
段より+110戊したも○である。
Means for Solving the Problems In order to solve the above problems, the present invention provides a control device for controlling the refrigeration cycle from the heating cycle to the defrosting cycle, as shown in FIG. A time measuring means for totaling the time from the restart of operation after the temporary stop of operation, a set time storage means for storing a preset time, and an open time measuring means for detecting the time when the ltn is detected. a first comparing means for detecting and outputting a coincidence of the set times; and a temperature detecting means for detecting the temperature of the pipe connected to the refrigerant pipe 1j of the indoor heat exchanger. , storage means for storing a boundary temperature at which the heating cycle is switched to the defrosting cycle each time the setting is performed;
A clock input means for inputting the power supply frequency, a frequency discrimination means for distinguishing between different frequencies of the power supply, and a setting for changing the boundary value temperature of the set temperature storage means according to the output signal from the frequency discrimination means. The temperature detected by the temperature switching means and the temperature detection means is the set temperature record.
A second comparison means outputs a signal indicating that the temperature has fallen below h(X temperature), a set time elapsed signal from the first comparison means, and a boundary stored in the second comparison means. 'I'1 constant means for determining switching from the heating cycle to the defrosting cycle based on the value decrease signal;
゛According to the output of the adjustment means]] [Remove the refrigeration cycle from the heating operation described in I: (to jjJ rotation;

作   用 このF:t、戎により、圧紹i磯の一時運転停止後、1
■f運転開始から所定時間が経過するまでは暖弊運転が
61゛]:保され、その所定時[711経荷後だおいて
、1α定・L1i度、:山口手段に記]0された電源告
1波数に応じた境1・呈!:ft j!ll’1度と温
度1小出手段の(イ))出(:lI’1.度の比1咬に
より、除:+’+’i1運転が1b制御さhw #”)
 0実施例 以下、本発明の一実施例を第2図〜第5図を参照にして
説明する。
Effect This F: t, after the temporary suspension of operation of the pressure point, 1
■f Warming operation is maintained at 61゛] until a predetermined time elapses from the start of operation, and at the predetermined time [711 after loading, 1α constant, L1i degree: written in Yamaguchi Means] 0. Power supply notification 1 boundary 1 presentation according to the wave number! :ft j! (a) Output of the means for dispensing 1 degree and temperature 1 degree (by the ratio of 1 degree, division: +'+'i1 operation is controlled by 1b hw #")
Embodiment 0 An embodiment of the present invention will be described below with reference to FIGS. 2 to 5.

第2図は、本発明の一実施例を示す冷凍サイクル図であ
る。
FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention.

同図罠おいて、冷凍サイクルは圧縮機1、四方切換弁2
、室内側熱交換器3、減圧器4、室外側熱交換器5を順
次連結することにより構成されている。6は配管温度検
出素子であり、暖房時において室内側熱交換器3(凝縮
器)の冷媒入口側となる配管にJfiり付けられている
。この場合、冷房運転時は同図の実線矢印の方向に冷媒
が流れ、暖房運転時に1d四方切換弁2が切換わること
により同図の破線矢印の方向に冷媒が流れるようになっ
ている。
In the same trap, the refrigeration cycle consists of compressor 1 and four-way switching valve 2.
, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5 are connected in sequence. Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. In this case, during cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the 1d four-way switching valve 2 is switched, so that the refrigerant flows in the direction of the broken line arrow in the figure.

さらに、上記圧縮機1、四方切換弁2、減圧器4、室外
側熱交換器5および室外送風機8によって室外ユニノ)
Aが(11ζ成されている。また上記室内1lJII熱
交換器3および室内送風機7、さらに配管温度検出素子
6、温度調C市機能、可断機能などがプログラムされた
マイクロコンピュータ(以下、LSIと略称する)を有
する運転制御部(図示せず)は室内ユニツ)BK設けら
れている。ここで、配管温度検出素子6は、室内送風機
7の送風のξじg、Hを受けない風回路からはずれた箇
所に収11″けられている。また、室内ユニットBの近
辺でもよい。
In addition, the compressor 1, four-way switching valve 2, pressure reducer 4, outdoor heat exchanger 5, and outdoor blower 8
In addition, a microcomputer (hereinafter referred to as LSI) is programmed with the above-mentioned indoor JII heat exchanger 3 and indoor blower 7, as well as a pipe temperature detection element 6, a temperature control function, a breakable function, etc. An operation control section (not shown) having an indoor unit (BK) is provided. Here, the pipe temperature detection element 6 is placed 11" away from the wind circuit where it is not exposed to the air blown by the indoor blower 7. Alternatively, it may be placed near the indoor unit B.

次に第3図により、運転制御回路構成について説明する
。ここで、第2図と同じものについては同一の番号を付
して説明する。
Next, the operation control circuit configuration will be explained with reference to FIG. Here, the same parts as in FIG. 2 are given the same numbers and will be explained.

同図において、C−Dはそれぞれ運転IV11餌1部と
リモートコントロール部(以下操作部と称す)を示し、
運転制御部Cは、交流電源21を降圧するトランス22
と、交流を直流に変換するDCC電源相生部23、この
DCC電源相生部23らの直流をLSI24の入力電源
とするレギュレータ25と、基準電圧発生回路26と、
除霜を行うための動作温度を切換える除霜設定回路27
と、前記基/11電圧発生回路26と除霜設定回路27
の基準合成入力と配管温度検出素子6の入力をL較する
比較回路28と、lEE縮機1、四方切換弁2、室内送
風機7、室外送風機8の各運転を制御するリレー素子群
からなる出力回路29と、前記LSI’24の各種信り
″処理の基礎タイミングを作る発振回路30と、各種信
日処理を司るリセット回路31を具(+i!i してい
る。ここで、前記レギュレータ25はLSI24のボー
トP1に接続され、出力回路29はボートP11〜P1
6にそれぞれ接続され、また暖房運転から除′A11運
転へ切換える動作温度点を決定する除霜設定回路27は
ボートP21に接続され、比1咬回路2Ell−tボー
トP3iに接続され、さらに発振回路30、リセット回
路31はボー)P41・P42・P51にそれぞれ接続
されている。
In the same figure, C-D respectively indicate one part of operation IV11 bait and a remote control part (hereinafter referred to as the operation part),
The operation control unit C includes a transformer 22 that steps down the AC power supply 21.
, a DCC power supply reciprocating section 23 that converts alternating current into direct current, a regulator 25 that uses the direct current from the DCC power reciprocating section 23 as input power to the LSI 24, and a reference voltage generation circuit 26.
Defrost setting circuit 27 that switches the operating temperature for defrosting
, the base/11 voltage generation circuit 26 and the defrost setting circuit 27
An output consisting of a comparison circuit 28 that compares the reference composite input of L and the input of the pipe temperature detection element 6, and a group of relay elements that control the operation of the 1EE compressor 1, the four-way switching valve 2, the indoor blower 7, and the outdoor blower 8. The regulator 25 includes a circuit 29, an oscillation circuit 30 that creates the basic timing for various signal processing of the LSI'24, and a reset circuit 31 that controls various signal processing. The output circuit 29 is connected to the boat P1 of the LSI 24, and the output circuit 29 is connected to the boat P1 of the LSI 24.
A defrosting setting circuit 27, which determines the operating temperature point at which the heating operation is switched to the defrosting operation A11 operation, is connected to the boat P21, is connected to the ratio 1-bit circuit 2Ell-t boat P3i, and is further connected to the oscillation circuit. 30, the reset circuit 31 is connected to P41, P42, and P51, respectively.

そして、基準電圧発生回路26は抵抗101・102に
よって構成され、除霜設定回路27はボートP21に接
続された抵抗103よりIF;成され、また出力回路2
9は、各ボートP11〜P16に接続されたリレー素子
R1・R2・R3・R4・R5・R6より構成されてい
る。リレー素子R1は圧縮機に対応し、リレー素子R2
は四方切換弁に相当し、リレー素子R3は室外送風機に
相当し、リレー素子R4・R5・R6はそれぞれ室内送
風機の風量切換えを行う「低速」・「中速」・「高速」
の速度端子に相当する。
The reference voltage generation circuit 26 is constituted by resistors 101 and 102, the defrost setting circuit 27 is configured by the resistor 103 connected to the boat P21, and the output circuit 2
9 is composed of relay elements R1, R2, R3, R4, R5, and R6 connected to each boat P11 to P16. Relay element R1 corresponds to the compressor, relay element R2
corresponds to a four-way switching valve, relay element R3 corresponds to an outdoor blower, and relay elements R4, R5, and R6 respectively switch the air volume of the indoor blower to "low speed,""mediumspeed," and "high speed."
Corresponds to the speed terminal of

さらに33はインバータIC回路で、前記LSI24の
ボートPoに接続され、前記DC電源発生部23により
余波整流された波形信号をiiJ記LSI24へ入力す
る。したがって、1]右記LSI24は、この波形信号
゛の周期により市原周波数が例えば50Hzか60 H
zを判定し、その結果をボートP21へ出力し、除霜設
定回路27を動作させ、比較回路28における基r1に
合成入力を変える。木実施例では、高い周波数(60H
z)を検出したとき、ボーhP21からは「Hl」を出
力し、基71+4合成入力電圧を上昇させ、境界値帰、
度を上!・させるよって設定している。
Furthermore, an inverter IC circuit 33 is connected to the port Po of the LSI 24, and inputs the waveform signal rectified by the DC power generation section 23 to the LSI 24 described in iiJ. Therefore, 1] The LSI 24 shown on the right has an Ichihara frequency of, for example, 50 Hz or 60 Hz depending on the period of this waveform signal.
z is determined, the result is output to the boat P21, the defrost setting circuit 27 is operated, and the synthesis input in the comparison circuit 28 is changed to base r1. In the tree embodiment, the high frequency (60H
z), the Baud hP21 outputs "Hl", increases the base 71+4 combined input voltage, and returns the boundary value.
Take it to the next level!・It is set to enable.

また51は吸込み空気?+’+’を度を検出する空気温
度検出素子、52は複数の抵抗1j’n 110〜11
5を具C情したA/D交換回路、53は+ifr記空気
温空気温度(i出走子51の入力と、A/D交換回5各
52からの入力の比1咬を行い、印縮機1の運転・停止
4二(コ号を出力する比較回路である。
Also, is 51 the intake air? +'+' is an air temperature detection element that detects degrees, 52 is a plurality of resistors 1j'n 110 to 11
5 is an A/D exchange circuit with information on C, 53 is +ifr air temperature air temperature (i) The ratio of the input of the output element 51 and the input from each 52 of the A/D exchange circuit 5 is calculated, and the compression machine 1 run/stop 42 (This is a comparison circuit that outputs C).

1111記空気温度検出素子51、A/D変換回路52
は室内昌度調節を行うサーモスタットの機能を構成し、
+iff記A/D変換回路52ば、LSI24のボート
P71〜P74に、また比較回路53の出力は、LSI
24のボートP81にそれぞれ接続されている。この室
温制御については本発明の要旨に関係しないため、詳細
な説明は省略する。
1111 air temperature detection element 51, A/D conversion circuit 52
constitutes the function of the thermostat that adjusts the room temperature,
+if notation The A/D conversion circuit 52 is sent to ports P71 to P74 of the LSI 24, and the output of the comparison circuit 53 is sent to the ports P71 to P74 of the LSI 24.
They are respectively connected to 24 boats P81. Since this room temperature control is not related to the gist of the present invention, detailed explanation will be omitted.

次に、操作部りは、「低速」・「中速」・「高速」・「
停止」の選択スイッチS1〜S4を具備した風量切換操
作部41と、室品を設定操作するスイッチ311〜S1
4を具備した室温設定操作部42より11°η成されて
いる。そして風量切換操作部41および室温設定操作部
42ば、LSI24のボートP61〜P55に−すれぞ
れ接続されている。
Next, the operation section is set to ``Low speed'', ``Medium speed'', ``High speed'', ``
An air volume switching operation section 41 equipped with "stop" selection switches S1 to S4, and switches 311 to S1 for setting and operating room items.
4, the room temperature setting operation section 42 has an angle of 11°η. The air volume switching operation section 41 and the room temperature setting operation section 42 are connected to the boats P61 to P55 of the LSI 24, respectively.

この!g:、;3切換操作部41、室温設定操作部42
をそれぞれ操作することにより、LSI24の内部でそ
の技1作内容が処理され、出力回路29、室温1御関係
回路部が01作する。
this! g:, ;3 switching operation section 41, room temperature setting operation section 42
By operating each of them, the content of the technique 1 is processed inside the LSI 24, and the output circuit 29 and the room temperature 1 control related circuit section perform 01.

さらに、上記F:FG成と第1図に示すI’l’/j成
の関係について説111する。
Furthermore, the relationship between the above F:FG composition and the I'l'/j composition shown in FIG. 1 will be explained.

配管温度検出素子6は、温度検出手段に(上当し、基l
(1・電圧発生回路26と除霜設定回路2了は、設定温
度記憶手段に1月光し、比軟回路28は、第2の比軟手
段に相当し、インパークIC回路33とDC電源発生)
■23は、クロック入力手段に相当し、またト]fi記
除霜設定回路27は、設定温度切換手段にも相当し、さ
らにLSI24は、周波数゛用別手段、時間計測手段、
設定時間記憶手段、第1の比較手段、ヤ1定手段に相当
し、出力回路29は、MIiR出力手段に相当する。
The pipe temperature detection element 6 is used as a temperature detection means (upper and lower).
(1. The voltage generation circuit 26 and the defrosting setting circuit 2 are connected to the set temperature storage means, the ratio soft circuit 28 corresponds to the second ratio soft means, and the impark IC circuit 33 and the DC power generation )
(23) corresponds to a clock input means, and (5) the defrost setting circuit 27 also corresponds to a set temperature switching means;
This corresponds to a set time storage means, a first comparison means, and a constant value means, and the output circuit 29 corresponds to an MIiR output means.

次に、暖房運転の開始から除霜運転に至るまでの0j作
について第2図〜第5図をもとに説明する。
Next, the OJ operation from the start of the heating operation to the defrosting operation will be explained based on FIGS. 2 to 5.

圧縮機1の吐出冷媒温度をTd1圧縮機1の吸入冷媒温
度をTs、圧縮機1の吐出圧力をPct、圧縮機1の吸
入圧力をPsとし、ポリトロープ指数をn(ただし 1
(n(K  の関係で、Kは断熱圧縮指数)とすると、
吐出冷媒温度Tdは次式%式% したがって、室外無交喚器5が未着霜時は吸入冷媒i!
+’A度Tsが高く、又吐出冷媒浴11度Tdも高い。
The discharge refrigerant temperature of the compressor 1 is Td1, the suction refrigerant temperature of the compressor 1 is Ts, the discharge pressure of the compressor 1 is Pct, the suction pressure of the compressor 1 is Ps, and the polytropic index is n (where 1
(In the relationship of K, where K is the adiabatic compression index),
The discharge refrigerant temperature Td is determined by the following formula (%). Therefore, when the outdoor non-exchanger 5 is not frosted, the suction refrigerant i!
+'A degree Ts is high, and discharge refrigerant bath 11 degree Td is also high.

そして外気が下がり、着霜が成長するにつれて、吸入冷
媒温度Tsは低下し、吐出冷媒温度Tdも下がる。本発
明における配管温度検出素子6ば、室内側熱交換器3の
入口配管に設けられ、圧縮機1から吐出された高温高庄
の過熱域冷媒ガスが流れる部分の温度を検出するが、実
1際その温度は吐出ガスに比べて内外接続配管等での熱
損失により所定晶(度低下した温度である。
As the outside air drops and frost grows, the suction refrigerant temperature Ts decreases, and the discharge refrigerant temperature Td also decreases. The pipe temperature detection element 6 in the present invention is installed at the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the high-temperature, high-strength superheated refrigerant gas discharged from the compressor 1 flows. In this case, the temperature is a certain degree lower than that of the discharged gas due to heat loss in the internal and external connecting pipes, etc.

したがって、第4図に示すように室外側熱交換器5が未
着霜時は圧縮機1の吸入冷媒温度Ts1室内側熱交換器
3の入口配管温度tはともに高く、G’Aiが進むにつ
れて徐々に低下し、そして暖房能力を大幅に低下させる
着霜に至ると、室圧側熱交換器3の入口配管温度tは極
端に低下する。すなわち、入口配管温度tが設定配管温
度11以下になれば暖房能力は低下し、着霜が進んでい
るので除霜する必要がある。
Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, both the suction refrigerant temperature Ts of the compressor 1 and the inlet pipe temperature t of the indoor heat exchanger 3 are high, and as G'Ai advances, As the temperature gradually decreases and frost formation occurs which significantly reduces the heating capacity, the temperature t of the inlet pipe of the room pressure side heat exchanger 3 extremely decreases. That is, if the inlet pipe temperature t becomes equal to or lower than the set pipe temperature 11, the heating capacity decreases, and since frost formation has progressed, it is necessary to defrost.

また、電源周波数において、50 Hzと60 Hzと
では、圧縮機1の能力が異なり、室外側熱交換器5の若
霜時における、電圧、吐出温度も異なる。
Moreover, in the power supply frequency, the capacity of the compressor 1 differs between 50 Hz and 60 Hz, and the voltage and discharge temperature of the outdoor heat exchanger 5 also differ when there is a light frost.

すなわち、50 Hzと60 Hzでは一般的に室内側
熱交換器3の入口配管温度(も異なり、設定配管温度t
1を50)(zと60 Hzでは切換えて除:iA¥ 
′14J定を行わなければ、電源周波数に応じて、例え
ば60Hzのときに適切な除霜検出が行えず、暖房能力
を十分に発揮することができないことになる。
That is, at 50 Hz and 60 Hz, the inlet pipe temperature of the indoor heat exchanger 3 (also different, the set pipe temperature t
1 to 50) (Switch and divide between z and 60 Hz: iA¥
If '14J determination is not performed, appropriate defrost detection cannot be performed depending on the power supply frequency, for example, at 60 Hz, and the heating capacity cannot be fully demonstrated.

このように、室内側熱交換器3の入口配管温度目は、過
熱域冷媒ガスの温度であるため、室内送虱機7の風量の
影響を受けにくく、室内側熱交換器3の入口配管温度に
て50Hz、60Hz共に適G(1′な除霜運転の゛閉
所を行うことができる。
In this way, since the temperature of the inlet pipe of the indoor heat exchanger 3 is the temperature of the refrigerant gas in the superheated region, it is less affected by the air volume of the indoor fan 7, and the temperature of the inlet pipe of the indoor heat exchanger 3 is At 50Hz and 60Hz, suitable G (1') defrosting operation can be performed in a closed area.

以上の説明に基つき、第3図に示す)υ11副回路は、
第5図に示すフローチャートの内容の制御を行う。
Based on the above explanation, the υ11 subcircuit shown in Figure 3 is as follows:
The contents of the flowchart shown in FIG. 5 are controlled.

ここで、説明の便宜上暖房運転時ては、圧縮機、四方切
換弁、室外送風機、「低連」で運転されている基円送風
機の各リン−素子R1〜R4が03作していると仮定す
る。
For convenience of explanation, it is assumed that during heating operation, each of the phosphorus elements R1 to R4 of the compressor, four-way switching valve, outdoor blower, and base circular blower operated in "low connection" is operating at 03. do.

すなわち、第5図のステップ1にて、電源周波数が60
 Hzかどうかを判定し、ステップ2にて、60Hzで
あればボートP21をHiにし、50 Hzであれば、
ボートP21をオーフッにする。具体的には第3図のイ
ンバータIC回路33からの波形信号によりLSI24
内の周波数゛閂別手段が判別を行い、LSI24の出力
側のボートP21を60HzであればHiにし、抵抗1
01・102の分圧によりできる基111・電圧を引き
上げ、設定配管温度L1を電源周波数の50Hz、60
Hzによって変えている。
That is, in step 1 of Fig. 5, the power supply frequency is 60
Hz, and in step 2, if it is 60 Hz, set the boat P21 to Hi, and if it is 50 Hz,
Boat P21 is turned off. Specifically, the waveform signal from the inverter IC circuit 33 shown in FIG.
The frequency discrimination means inside makes a discrimination, and if the output side port P21 of the LSI 24 is 60Hz, it becomes Hi, and the resistor 1
The group 111 created by the partial pressure of
It changes depending on Hz.

その後、ステップ3で示すように暖房運転が開始される
と、マイコン9で所定時間T1のクイマーカウントがセ
ットされる(ステップ4)。このタイマー力クシトセッ
トは、暖房運1阪開始からT1時間(例えば1時間)1
暖房運転を(i午保するためのもので、例えば強1tl
l内にT1時間暖房を連UQすることも一つの手段であ
る。
Thereafter, when the heating operation is started as shown in step 3, the microcomputer 9 sets a climber count for a predetermined time T1 (step 4). This timer power set is T1 hours (for example, 1 hour) from the start of the heating operation.
This is to maintain the heating operation (for example, 1 liter high
Continuous UQ heating for T1 hours within 1 hours is also one means.

そしてタイマーカウントがセットされると、ステップ5
でT1時間経過が判定される。T1時間経過するまでは
暖房運転が継続される。
And once the timer count is set, step 5
It is determined that the T1 time has passed. The heating operation is continued until the time T1 has elapsed.

そしてT1時間が経過するとステップ6へ移り、第2タ
イマーカウンタがセットされ、ステップ7に多って圧縮
機1が運転しているか否ががマイコン9内にて判定され
る。仮知運転が行なわれていなかったら(ステップ7を
満足していなければ)ステップ6へ戻り第2タイマーカ
ククはリセットされる。
When time T1 has elapsed, the process moves to step 6, where a second timer counter is set, and in step 7, it is determined in the microcomputer 9 whether or not the compressor 1 is operating. If the tentative operation is not performed (if step 7 is not satisfied), the process returns to step 6 and the second timer is reset.

次にステップ7の条件が満足されるとステップ8にて1
2時間(例えば4分)経過がI’ll定される。
Next, when the condition of step 7 is satisfied, 1 is reached in step 8.
It is determined that two hours (for example, four minutes) have passed.

そして、圧縮機1が連続して12時間運転が行なわれる
とステップ9へ移り、配管温度検出素子6による配管温
度tの読み込みが行われ、ステップ10に、多って、再
び圧縮機1が運転しているか否かの判定が行われる。
When the compressor 1 has been operated continuously for 12 hours, the process moves to step 9, where the pipe temperature t is read by the pipe temperature detection element 6. A determination is made as to whether or not this is the case.

そして、ステップ11に移って配管温度tがステップ1
および2で設定された設定配管温度t1よりも低いかが
判定される。具体的には第3図の比較回路2Bが判定す
る。
Then, the process moves to step 11 and the pipe temperature t is set at step 1.
It is determined whether the temperature is lower than the set pipe temperature t1 set in step 2 and 2. Specifically, the comparison circuit 2B in FIG. 3 makes the determination.

そしてステップ11の条件が満足されるとステップ12
へ移り、除霜運転が開始される。すなゎち、第3図て示
す出力回路29の各リレー素子R1・R2・R3・R4
がそれぞれ動作し、四方切換弁2を切換え、必要に応じ
てその「)[iに圧縮機1を一定時間停止し、室内送風
@7および室外送咀機8を停止する。そして冷房サイク
ルにて除重を行う。この除霜運転の内容は従来周知のた
め、詳細な説明を省略する。また暖房運転の復帰につい
ても従来より周知の如く、適宜手段にて実施できる。
Then, when the conditions of step 11 are satisfied, step 12
The defrosting operation starts. In other words, each relay element R1, R2, R3, R4 of the output circuit 29 shown in FIG.
operate, switch the four-way selector valve 2, and if necessary, stop the compressor 1 for a certain period of time, and stop the indoor air blower @ 7 and the outdoor blower 8. Then, in the cooling cycle. The weight is removed. The content of this defrosting operation is well known in the art, so a detailed explanation will be omitted. Restoration of the heating operation can also be carried out by any suitable means, as is well known in the past.

なお、本実施例においては、除霜運転を暖房サイクルか
ら冷房サイクルへの切換えによって行うようにしたが、
例えば暖房サイクルを維持したままとして室外側熱交換
器へ別途蓄熱していた冷媒を流す構成あるいは、別熱源
にて霜を溶かす構成としてもよいことは言うまでもない
。また圧縮機1は除霜運転へ切換え時には連続運転とし
、暖房運転復帰ボjに一時停止させるようにしてもよい
In this embodiment, the defrosting operation is performed by switching from the heating cycle to the cooling cycle.
For example, it goes without saying that a configuration may be adopted in which the heating cycle is maintained and a separately stored refrigerant is flowed to the outdoor heat exchanger, or a configuration in which a separate heat source is used to melt the frost. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped when returning to heating operation.

また、除霜運転に至るまでの各設定時間は、本実施例の
ものに限るものでなく、任意に設定すればよいものであ
る。さらに電源周波数に応じたボートP21の出力状況
は、50Hzのときに「H!」となるようにし、設定値
を変えるようにしてもよいO 発明の効果 以上述べたように本発明によれば、上記した構吠により
、過熱域冷媒ガスの温度を室内側熱交換器入口配管にて
検出し、室内風量の影響をあ1り受けずに、適確な除霜
運転を温度検出1点で行うことができ、羊嵜成が非常に
簡単であり、また冷媒が、暖房を行う熱量を十分に有し
ているか否かの判定が室内側熱交換器の入口側で行える
ため、実際の暖房能力の有J1((を確実に!!!11
断して除霜を行うことができる。さらに電源周波数が異
なった場合でもその周波数に応じた境界(直#+i’+
度に変更するため、除霜が確実に行えるものである。
Moreover, each setting time up to the defrosting operation is not limited to that of this embodiment, and may be set arbitrarily. Furthermore, the output status of the boat P21 according to the power frequency may be set to "H!" at 50 Hz, and the set value may be changed. Effects of the Invention As described above, according to the present invention, With the above structure, the temperature of the refrigerant gas in the superheated region is detected at the indoor heat exchanger inlet piping, and accurate defrosting operation is performed at one temperature detection point without being affected by the indoor air volume. The actual heating capacity can be determined very easily, and it is possible to determine whether the refrigerant has sufficient heat for heating at the inlet side of the indoor heat exchanger. J1 ((Make sure!!!11
It is possible to defrost the air by cutting it off. Furthermore, even if the power supply frequency is different, the boundary according to the frequency (direction #+i'+
Defrosting can be done reliably since the temperature is changed to 30°C.

すなわち、本発明は完全をて着>t?が発生している冷
媒の温度が熱交換器の入口部、中間部に差がなく、未着
霜時に入口冷媒湿度の方が中間部の冷媒温度に比べて著
しく高い点に着眼1−1入口側の冷媒温度を検出するこ
とによって、未着霜から着霜に至るまでの温度変化が大
きくとれ、1点の、71’l’1度検出で限界に近い暖
房能力を引き出すことができる。また木発F!11は、
暖房開始から一定時間経過するまで着霜を検出しないた
め、その一定時間は暖房能力が確保され、快適さが損わ
れることもない。
That is, the present invention uses complete >t? 1-1 Inlet By detecting the refrigerant temperature on the side, a large temperature change from non-frosting to frosting can be taken, and heating capacity close to the limit can be brought out by detecting one point of 71'l'. Kibatsu F again! 11 is
Since frost formation is not detected until a certain period of time has elapsed from the start of heating, heating capacity is ensured during that period of time and comfort is not compromised.

また、暖房運転中圧縮機が一時停止後、再運転開始から
一定時間経過するまで着霜を検出しないため例えばサー
七〇FF時などの圧縮機再運転直後において、上昇途中
の室内熱交換器配管温度を検知し、1倶って未若111
にもかかわらず、除霜運転を開始することもなく、信頼
性が向上する等の効果を発する。
In addition, after the compressor is temporarily stopped during heating operation, frost formation is not detected until a certain period of time has elapsed since the restart of operation. Detects the temperature and turns 111
Despite this, there is no need to start defrosting operation, resulting in improved reliability and other effects.

4、図「mの簡jliな説り1 第1図は本発明の除霜;+r++ gll+装置を機1
託実現手段で表現したブロック図、第2図は本発明の一
実施し11を示す空気−1′:J和機の冷凍サイクル図
、第3図は同空気調′1′0機における除霜制御装置1
″ffiの回路図、第4図は同除霜1171]御装置に
おける室内側熱交換器へ、516人する冷媒1fllX
度と圧岸i機吸入冷媒温度の関係を示す特性図、第5図
は同除霜制御装置i’ffの動作内容を示すフローチャ
ー1・である。
4. Simple explanation of ``m'' 1 Figure 1 shows the defrosting of the present invention;
A block diagram expressed by the means for realizing the contract, Fig. 2 is a refrigeration cycle diagram of the air-1':J machine showing one implementation 11 of the present invention, and Fig. 3 is a defrosting diagram of the air-conditioner '1'0. Control device 1
``ffi circuit diagram, Figure 4 shows the defrosting 1171'' refrigerant 1fllX to the indoor heat exchanger in the control device.
FIG. 5 is a flow chart 1 showing the operation details of the defrosting control device i'ff.

1・・・・圧縮機、2・・・・・・四方切換弁、3・・
・・・室内側熱交換器、5・・・・室外側熱交換器、6
・・・配管i7.ILJ′!i検出素子(温度検出手段
)、23・・・・・・DC電涼発主部(クロック入力手
段)、24・・・・LSI(周波数判別手段、時間計6
111手段、設定時間記憶手段、第1の比較手段、判定
手段)、26・・・・・・基準電圧発生回路(設定温度
記憶手段)、27・・・・・・除霜設定回路(設定温度
記憶手段)、28・・・・比較回路(第2の比較手段)
、29・・・・出力回路(選択出力手段)、30・・・
・発振回路、31・・・・・リセット回路、33・・・
・・インパークIC回路(クロック入力手段)。
1... Compressor, 2... Four-way switching valve, 3...
...Indoor heat exchanger, 5...Outdoor heat exchanger, 6
...Piping i7. ILJ′! i detection element (temperature detection means), 23...DC electric coolant generator main unit (clock input means), 24...LSI (frequency discrimination means, time meter 6)
111 means, set time storage means, first comparison means, determination means), 26... Reference voltage generation circuit (set temperature storage means), 27... Defrost setting circuit (set temperature storage means) storage means), 28...comparison circuit (second comparison means)
, 29...output circuit (selection output means), 30...
・Oscillation circuit, 31... Reset circuit, 33...
... Impark IC circuit (clock input means).

代理人の氏名 弁理士 中 尾 敏 男 はか1名第1
図 /−一一厘縮機 2− 四方切機升 3− 室内すU敷交挟毒、 4− 誠氏器 A−一一室、タトユニット B−−一呈内ユニット □−翻一層一雫−7−−−− 1.−、ユ、−第4図 Ts−−−)f−宿旨窄瓢の収入冷蜂J載策埒聞
Name of agent: Patent attorney Toshio Nakao (1st person)
Figure/-11 Compacting machine 2- Four-way cutting machine 3- Indoor U-bed cross-pinning, 4- Makoto's vessel A-11 room, Tato unit B--1 presentation unit □-1 layer drop- 7---- 1. -, Yu, -Figure 4 Ts---)

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧装置、室外側熱交換器を
具備した冷凍サイクルに、暖房サイクルと除霜サイクル
を切換えるサイクル切換手段を設け、さらに前記サイク
ル切換手段を、暖房サイクルから除霜サイクルに切換え
る制御装置を、前記圧縮機の一時運転停止後、再運転開
始からの時間を計測する時間計測手段と、あらかじめ設
定された時間を記憶している設定時間記憶手段と、前記
時間計測手段により検出した時間と前記設定時間記憶手
段に設定された時間の一致を検出し出力する第1の比較
手段と、前記室内側熱交換器の冷媒入口側に連結された
配管の温度を検出する温度検出手段と、暖房サイクルを
除霜サイクルに切換える境界値温度を記憶した設定温度
記憶手段と、電源周波数を入力するクロック入力手段と
、電源の異なる周波数を判別する周波数判別手段と、そ
の周波数判別手段からの出力信号により前記設定温度記
憶手段の境界値温度を切換える設定温度切換手段と、前
記温度検出手段により検出した温度が前記設定温度記憶
手段に記憶された境界値温度より低下したことを検出し
出力する第2の比較手段と、前記第1の比較手段による
設定時間経過信号と前記第2の比較手段による境界値低
下信号により、暖房サイクルから除霜サイクルへの切換
えを判定する判定手段と、前記判定手段の出力に応じて
前記冷凍サイクルを暖房運転から除霜運転へ制御する選
択出力手段より構成した空気調和機の除霜制御装置。
A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means is configured to switch between a heating cycle and a defrosting cycle. A time measuring means for measuring the time from restarting the compressor after the compressor is temporarily stopped, a set time storage means for storing a preset time, and the time measuring means for switching the control device to the cycle. a first comparison means for detecting and outputting a match between the detected time and the time set in the set time storage means; and a temperature for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger. a detection means, a set temperature storage means for storing a boundary value temperature for switching a heating cycle to a defrosting cycle, a clock input means for inputting a power supply frequency, a frequency discrimination means for discriminating between different frequencies of the power supply, and a frequency discrimination means for the frequency discrimination means. a set temperature switching means for switching the boundary value temperature of the set temperature storage means based on an output signal from the set temperature storage means; a second comparing means for outputting, a determining means for determining switching from a heating cycle to a defrosting cycle based on a set time elapsed signal from the first comparing means and a boundary value decrease signal from the second comparing means; A defrosting control device for an air conditioner comprising a selection output means for controlling the refrigeration cycle from heating operation to defrosting operation according to the output of the determination means.
JP61014017A 1986-01-24 1986-01-24 Control device for defrosting of air-conditioning machine Granted JPS62172139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61014017A JPS62172139A (en) 1986-01-24 1986-01-24 Control device for defrosting of air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61014017A JPS62172139A (en) 1986-01-24 1986-01-24 Control device for defrosting of air-conditioning machine

Publications (2)

Publication Number Publication Date
JPS62172139A true JPS62172139A (en) 1987-07-29
JPH0566491B2 JPH0566491B2 (en) 1993-09-21

Family

ID=11849422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61014017A Granted JPS62172139A (en) 1986-01-24 1986-01-24 Control device for defrosting of air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS62172139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023459A (en) * 2019-12-30 2020-04-17 宁波奥克斯电气股份有限公司 Air conditioner operation control method and device and air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137153A (en) * 1974-09-25 1976-03-29 Seitetsu Kagaku Co Ltd Horipuropirenno funmatsukahoho

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265343A (en) * 1975-11-26 1977-05-30 Sharp Corp Defrosting apparatus of air conditioner
JPS54154851A (en) * 1978-05-26 1979-12-06 Saginomiya Seisakusho Inc Defrost control method of heating or freezing and cooling apparatus and defrost controller
JPS60138348A (en) * 1983-12-26 1985-07-23 Matsushita Electric Ind Co Ltd Method of controlling defrosting of air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265343A (en) * 1975-11-26 1977-05-30 Sharp Corp Defrosting apparatus of air conditioner
JPS54154851A (en) * 1978-05-26 1979-12-06 Saginomiya Seisakusho Inc Defrost control method of heating or freezing and cooling apparatus and defrost controller
JPS60138348A (en) * 1983-12-26 1985-07-23 Matsushita Electric Ind Co Ltd Method of controlling defrosting of air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023459A (en) * 2019-12-30 2020-04-17 宁波奥克斯电气股份有限公司 Air conditioner operation control method and device and air conditioner
CN111023459B (en) * 2019-12-30 2021-06-15 宁波奥克斯电气股份有限公司 Air conditioner operation control method and device and air conditioner

Also Published As

Publication number Publication date
JPH0566491B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
KR900005722B1 (en) Defrosting control apparatus for a temperature control system
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62172139A (en) Control device for defrosting of air-conditioning machine
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPS62206336A (en) Defrosting control device for air-conditioning machine
JPS62172141A (en) Defrosting control device for air-conditioning machine
JPS63220029A (en) Defrosting controller for air conditioner
JPS62233631A (en) Control device for defrosting of air conditioner
JPS62213638A (en) Defrost control device for air conditioner
JPS63189731A (en) Defrosting controller of air conditioner
JPS6341758A (en) Defrosting control device for air conditioner
JPS62261846A (en) Defrosting controller for air-conditioning machine
JPS62223551A (en) Defrosting control unit of air conditioner
JPS62172143A (en) Defrosting control device air-conditioning machine
JPS62223548A (en) Defrosting control unit of air conditioner
JPS6341757A (en) Defrosting control device for air conditioner
JPS62218752A (en) Defrosting controller for air-conditioning machine
JPS62172142A (en) Defrosting control device for air-conditioning machine
JPH0566492B2 (en)
JPS62119347A (en) Defrosting device of air conditioner
JPS6383538A (en) Defrosting control device for air conditioner
JPS62210338A (en) Control device for defrosting of air-conditioning machine
JPS62213636A (en) Defrost control device for air conditioner
JPS62210339A (en) Control device for defrosting of air-conditioning machine
JPS6315020A (en) Defrosting controller for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term