JPS6383538A - Defrosting control device for air conditioner - Google Patents

Defrosting control device for air conditioner

Info

Publication number
JPS6383538A
JPS6383538A JP61230383A JP23038386A JPS6383538A JP S6383538 A JPS6383538 A JP S6383538A JP 61230383 A JP61230383 A JP 61230383A JP 23038386 A JP23038386 A JP 23038386A JP S6383538 A JPS6383538 A JP S6383538A
Authority
JP
Japan
Prior art keywords
current
defrosting
current value
cycle
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61230383A
Other languages
Japanese (ja)
Other versions
JPH0535328B2 (en
Inventor
Akira Yokouchi
横内 朗
Takashi Deguchi
隆 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61230383A priority Critical patent/JPS6383538A/en
Publication of JPS6383538A publication Critical patent/JPS6383538A/en
Publication of JPH0535328B2 publication Critical patent/JPH0535328B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To optimize the timing of completion of defrosting by detecting the recovery current level which is the sum of the current level at the moment when the set time has past and the set current level which is dependent on the power source frequency at the moment when the set time has elapsed from the start of defrosting and switching the defrosting cycle to a heating cycle by a cycle switching means when the compressor operating current is determined to have exceeded the recovery current level. CONSTITUTION:When a defrosting operation is started and the power source frequency is inputted, it is determined whether it is 50Hz or 60Hz, and the set current level dependent on the frequency is memorized, and the set time T1 starts to be counted. When T1 is determined to have elapsed, the operating current I is read by a current detection circuit 9, and the operating current I0 at the moment when T1 has elapsed is memorized by an LSI24. The sum of the set current I1 dependent on the power source frequency and the operating current I0 is memorized as the defrosting completion current I2. Then, a determination is made as to whether the operating current level I is smaller than the defrosting completion current I2. If the condition is met, a defrosting completion signal is sent out.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調和機の除
霜制御装置に関するもので、特に室外側熱交換器の除霜
終了を室内側で検知し得るようにした空気調和機に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat pump type air conditioner. Regarding air conditioners.

従来の技術 従来、特公昭5B−205064号公報に示されるよう
に、除霜中の圧縮機の電流を検出し、検出電流値が高圧
冷媒圧力の許容範囲を超える時点での圧縮機電流値を超
えた時、除霜終了をする除霜制御装置が開発されている
Conventionally, as shown in Japanese Patent Publication No. 5B-205064, the current of the compressor during defrosting is detected, and the compressor current value at the time when the detected current value exceeds the permissible range of high-pressure refrigerant pressure is detected. A defrost control device has been developed that terminates defrosting when the temperature exceeds the limit.

発明が解決しようとする問題点 しかしながら、かかる従来の技術では、室外熱交換器の
霜の溶解のタイミングと除霜終了時期とが異なり、霜が
溶けてもなかなか除霜を終了しない問題があり、除霜が
短時聞に終了せず、暖房能力の低下及び電力の浪費につ
ながシ、経済的かつ快適性に欠けるという問題点があっ
た。
Problems to be Solved by the Invention However, with such conventional technology, there is a problem that the timing of melting the frost on the outdoor heat exchanger and the timing of finishing defrosting are different, and it takes time to finish defrosting even when the frost melts. There is a problem that defrosting is not completed in a short period of time, which leads to a reduction in heating capacity and waste of electricity, resulting in a lack of economy and comfort.

また、電源周波数の遣い、つまり50Hzの場合と60
Hzの場合で圧縮機の運転電流が異シ、除霜能力に差が
生じるため、同−設定電流値では、最適な除霜を行うこ
とができないという問題点があった。
Also, the use of power supply frequency, that is, 50Hz and 60Hz
In the case of Hz, the operating current of the compressor is different and the defrosting ability is different, so there is a problem that optimal defrosting cannot be performed with the same set current value.

以上のように、従来の技術には問題点が多々あり、改善
が要求されるものである。
As described above, the conventional technology has many problems, and improvements are required.

本発明は、上記従来の問題点に鑑み、従来技術の利点を
損うことなく、除霜終了のタイミングの最適化がはから
れる除霜制向装置を提供するものである。
In view of the above conventional problems, the present invention provides a defrost control device that can optimize the timing of defrosting completion without sacrificing the advantages of the prior art.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図に示すよ
うに、冷凍サイクルの暖房サイクルと除霜サイクルの切
換えを行う制御装置を、除霜開始から設定時間経過した
ことを検出し、出力する設定時間検出手段と、この設定
時間検出手段による設定時間経過後において、圧縮機の
運転電流を検出する電流検出手段によって検出された設
定時間経過電流値と、あらかじめ設定電流値を記憶した
設定電流記憶手段と、電源周波数を入力する周波数入力
手段と、前記周波数入力手段による入力周波数が50H
−か60Hzかを判定する周波数判定手段と、前記周?
ft数判定手段の出力により前記設定電流記憶手段に記
憶された設定電流値を切換える設定電流値切換手段と、
前記設定時間経過電流値に前句設定電流記憶手段に記憶
された設定電流値を加えて復帰電流値として記憶する復
帰電流演算記憶手段と、前記電流検出手段により検出さ
れる電流値と前記復帰電流値を比較し、電流値が復帰電
流値より大きくなったことを判定し出力する判定出力手
段と、この判定出力手段の出力信号によりサイクル切換
手段を駆動する出力手段より構成したものである。
Means for Solving the Problems In order to solve the above problems, the present invention, as shown in FIG. a set time detection means for detecting and outputting the elapse of time; and a set time elapsed current value detected by a current detection means for detecting the operating current of the compressor after the set time by the set time detection means has elapsed; A set current storage means that stores a set current value in advance, a frequency input means that inputs a power supply frequency, and a frequency input by the frequency input means is 50H.
- or 60Hz;
a set current value switching means for switching the set current value stored in the set current storage means based on the output of the ft number determining means;
a return current calculation storage means for adding a set current value stored in the preset current storage means to the set time elapsed current value and storing the result as a return current value; and a current value detected by the current detection means and the return current. It is composed of a determination output means for comparing the values and determining that the current value has become larger than the return current value and outputting the result, and an output means for driving the cycle switching means by the output signal of the determination output means.

作  用 上記構成により、除霜開始から設定時間検出手段による
設定時間経過後において、電流検出手段によって設定時
間経過電流値と電源周波数に応じた設定電流値を加えた
復帰電流値を検出し、判定手段によって圧縮機運転電流
がその復帰電流値を超えたことを判定するとサイク/L
/切換手段により、除霜サイクルを暖房サイクルに切換
える。
Effect With the above configuration, after the set time by the set time detecting means has elapsed from the start of defrosting, the current detecting means detects the return current value which is the sum of the set time elapsed current value and the set current value according to the power supply frequency, and makes a judgment. When it is determined by the means that the compressor operating current exceeds its return current value, the cycle/L
/The defrosting cycle is switched to the heating cycle by the switching means.

実施例 以下、本発明の一実施例を第2図〜第5図を参照にして
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 2 to 5.

第2図は、本発明の一実施例を示す冷凍サイクル図であ
る。
FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention.

同図において、冷凍サイクルは圧縮機1、四方切換弁2
、室内側熱交換器3、減圧器4、室外側熱交換器5を順
次連結することにより構成されている。6は配管温度検
出素子であり、暖房時において室内側熱交換器3の冷媒
入口側となる配管に取り付けられている。この場合、冷
房運転および除霜運転時は同図の実線矢印の方向に冷媒
が流れ、暖房運転時には四方切換弁2が切換わることに
より同図の破線矢印の方向に冷媒が流れるようになって
いる。
In the figure, the refrigeration cycle includes a compressor 1 and a four-way switching valve 2.
, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5 are connected in sequence. Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 during heating. In this case, during cooling operation and defrosting operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 switches, so that the refrigerant flows in the direction of the broken line arrow in the figure. There is.

さらに、上記圧縮機1、四方切換弁2、減圧器4、室外
側熱交換器5および室外送風機8によって室外ユニツ)
Aが構成されている。また上記室内側熱交換器3および
室内送風機7、さらに配管温度検出素子6、タイマ機能
および温度調節機能などがプログラムされたマイクロコ
ンピュータ(以下、マイコンと略称する)を有する運転
制御部(図示せず)は室内ユニツ)Bに設けられている
。ここで、配管温度検出素子6は、室内送風機7の送風
の影響を受けない風回路からはずれた箇所に取付けられ
ている。また、室内ユニツ)Bの近辺でもよい。
Furthermore, an outdoor unit is provided by the compressor 1, four-way switching valve 2, pressure reducer 4, outdoor heat exchanger 5, and outdoor blower 8).
A is configured. In addition, an operation control unit (not shown) includes a microcomputer (hereinafter referred to as microcomputer) programmed with the indoor heat exchanger 3 and the indoor blower 7, as well as a pipe temperature detection element 6, a timer function, a temperature control function, etc. ) is provided in indoor unit) B. Here, the pipe temperature detection element 6 is attached at a location away from the wind circuit where it is not affected by the air blowing from the indoor blower 7. Alternatively, it may be near indoor unit) B.

次に第3図により、運転制御回路構成について説明する
。ここで、第2図と同じものについては同一の番号を付
して説明する。
Next, the operation control circuit configuration will be explained with reference to FIG. Here, the same parts as in FIG. 2 are given the same numbers and will be explained.

同図において、C−Dはそれぞれ運転制御部とリモート
コントロール部(以下操作部と称す)を示し、運転制御
部Cは、交流電源21を降圧するトランス22と、交流
を直流に交換するDC電源発生部23と、このDC電源
発生部23からの直iをマイクロコンピュータ(以下I
、SIと称す)24の入力電源とするレギュレータ25
と、基準電圧発生回!26と配管温度検出素子6の入力
を比較する比較回路28と、圧縮機1、四方切換弁2、
室内送風機7、室外送風機8の各運転を制御するリレー
素子群からなる出力回路29と、前記LSI24の各種
信号処理の基礎タイミングを作る発振回路30と、各種
信号処理を司るリセット回路31を具備している。
In the figure, CD indicates an operation control unit and a remote control unit (hereinafter referred to as the operation unit), respectively, and the operation control unit C includes a transformer 22 that steps down the AC power supply 21, and a DC power supply that exchanges AC into DC. The generator 23 and the direct output from the DC power generator 23 are connected to a microcomputer (hereinafter referred to as I).
, SI) 24 as an input power source.
And the reference voltage generation times! 26 and a comparison circuit 28 that compares the input of the pipe temperature detection element 6, the compressor 1, the four-way switching valve 2,
It is equipped with an output circuit 29 consisting of a group of relay elements that controls the operation of the indoor blower 7 and the outdoor blower 8, an oscillation circuit 30 that creates basic timing for various signal processing of the LSI 24, and a reset circuit 31 that controls various signal processing. ing.

また、電流検出回路9は、圧縮機電流に比例した電流を
抽出し得る交流器10と、この交流器10の電流を全波
整流する整流回路11と、この整流回路11の出力を平
滑するコンデンサ12.13および抵抗14と、交流器
10の出力電圧を安定化させる抵抗15訃よび整流回路
11の出力電圧を安定化させる抵抗16とで構成されて
いる。
The current detection circuit 9 also includes an alternator 10 that can extract a current proportional to the compressor current, a rectifier circuit 11 that full-wave rectifies the current of the alternator 10, and a capacitor that smoothes the output of the rectifier circuit 11. 12, 13 and a resistor 14, a resistor 15 that stabilizes the output voltage of the alternator 10, and a resistor 16 that stabilizes the output voltage of the rectifier circuit 11.

ここで、前記レギユレータ25はLSI24のポートP
1に接続され、出力回路29はボートPli〜P16に
それぞれ接続され、電流検出回路9はポートP2に接続
され、比較回路2Bはボー) P31に接続され、さら
に発振回路30.リセット回路31はボー) p41・
P42・P51にそれぞれ接続されている。
Here, the regulator 25 is connected to the port P of the LSI 24.
1, the output circuit 29 is connected to the ports Pli to P16, the current detection circuit 9 is connected to the port P2, the comparison circuit 2B is connected to the port P31, and the oscillation circuit 30. Reset circuit 31 is baud) p41・
They are connected to P42 and P51, respectively.

また、DC電源発生部23のダイオードブリッジから全
波整流をとシ出し、インバーター32でクロック信号に
変え、p□ボートに入力される。
Further, full-wave rectification is output from the diode bridge of the DC power generation section 23, converted into a clock signal by the inverter 32, and inputted to the p□ port.

そのクロック信号を受け、LSI24内部の50760
Hz判定手段で周波数が判定され、周波数に応じた設定
電流値が選ばれる。
Upon receiving the clock signal, the 50760 inside the LSI24
The frequency is determined by the Hz determining means, and a set current value is selected according to the frequency.

そして、基準電圧発生回路26は抵抗101・102に
よって構成され、また出力回路29は、各ボートP11
〜P16に接続されたリレー素子R1・R2’R3・R
4・R5・R6より構成されている。リレー素子R1は
圧縮機に対応し、リレー素子R2は四方切換弁に相当し
、リレー素子R3は室外送風機に相当し、リレー素子R
4・R5・R6はそれぞれ室内送風機の風量切換えを行
う「低速」・「中速」・「高速」の速度端子に相当する
The reference voltage generation circuit 26 is constituted by resistors 101 and 102, and the output circuit 29 is configured by each boat P11.
~Relay element R1, R2'R3, R connected to P16
It is composed of 4, R5, and R6. Relay element R1 corresponds to a compressor, relay element R2 corresponds to a four-way switching valve, relay element R3 corresponds to an outdoor blower, and relay element R
4, R5, and R6 correspond to "low speed", "medium speed", and "high speed" speed terminals for switching the air volume of the indoor blower, respectively.

また61は吸込み空気温度を検出する空気温度検出素子
、62は複数の抵抗群110〜115を具備したA/D
変換回路、S3は前記空気温度検出素子61の入力と、
A/D変換回路52からの入力の比較を行い、圧縮機1
の運転・停止信号を出力する比較回路である。
Further, 61 is an air temperature detection element that detects the intake air temperature, and 62 is an A/D equipped with a plurality of resistance groups 110 to 115.
The conversion circuit S3 is an input of the air temperature detection element 61,
The input from the A/D conversion circuit 52 is compared, and the compressor 1
This is a comparison circuit that outputs a run/stop signal.

前記空気温度検出素子51、A/D変換回路52は室内
温度調節を行うサーモスタットの機能を構成し、前記A
/D変換回路62は、LSI24のボー1−P71〜P
74に、また比較回路63の出力は、LSI24のボー
)−PBlにそれぞれ接続されている。この室温制御に
ついては本発明の要旨に関係しないため、詳細な説明は
省略する。
The air temperature detection element 51 and the A/D conversion circuit 52 constitute the function of a thermostat that adjusts the indoor temperature, and
The /D conversion circuit 62 converts baud 1-P71 to P71 of the LSI 24.
74 and the output of the comparator circuit 63 are connected to baud)-PBl of the LSI 24, respectively. Since this room temperature control is not related to the gist of the present invention, detailed explanation will be omitted.

次に、操作部りは、「低速」・「中速」・「高速」・「
停止」の選択スイッチ81〜S4を具備した風量切換操
作部41と、室温を設定操作するスイッチSll〜81
4を具備した室温設定操作部42より構成されている。
Next, the operation section is set to ``Low speed'', ``Medium speed'', ``High speed'', ``
An air volume switching operation section 41 equipped with selection switches 81 to S4 for "Stop" and switches Sll to 81 for setting the room temperature.
The room temperature setting operation section 42 includes a room temperature setting operation section 42.

そして風量切換操作部41および室温設定操作部42は
、LSI24(7)ボーH’61〜P66にそれぞれ接
続されている。この風量切換操作部41、室温設定操作
部42をそれぞれ操作することKより、L S I 2
4内部でその操作内容が処理され、出力回路29、室温
制御関係回路部が動作する。
The air volume switching operation section 41 and the room temperature setting operation section 42 are connected to the LSI 24 (7) baud H'61 to P66, respectively. By operating the air volume switching operation section 41 and the room temperature setting operation section 42, LSI 2
The contents of the operation are processed inside the controller 4, and the output circuit 29 and the room temperature control related circuit section are operated.

さらに、上記構成と第1図に示す構成の関係について説
明する。電流検出回路9は、電流検出手段に相当し、出
力回路29は出力手段に相当し、インバーター32は周
波数入力手段に相当し、また発振回路30は、LSI2
40基本動作時間を作り、LSI24は、設定時間検出
手段、周波数判定手段、設定電流切換手段、設定電流記
憶手段、復帰電流演算記憶手段に相当する動作を行い、
さらに除霜運転か暖房運転かを判定する比較判定手段に
も相当する。
Furthermore, the relationship between the above configuration and the configuration shown in FIG. 1 will be explained. The current detection circuit 9 corresponds to current detection means, the output circuit 29 corresponds to output means, the inverter 32 corresponds to frequency input means, and the oscillation circuit 30 corresponds to LSI 2.
40 basic operating times, the LSI 24 performs operations corresponding to a set time detection means, a frequency determination means, a set current switching means, a set current storage means, and a return current calculation storage means,
Furthermore, it also corresponds to a comparison determination means for determining whether the operation is defrosting operation or heating operation.

次に第4図を参考に除霜開始から除霜終了に至るまでの
動作について説明する。
Next, the operation from the start of defrosting to the end of defrosting will be explained with reference to FIG.

除霜開始すると暖房サイクルから除霜サイクルに切換わ
り、運転電流は急激に下がる。そして所定時間T1が経
過すると安定する。
When defrosting begins, the heating cycle switches to the defrosting cycle, and the operating current drops rapidly. Then, it becomes stable after a predetermined time T1 has elapsed.

その後、室外側熱交換器5の着霜が溶けると高圧圧力が
上が9それに伴なって電流値も急増する。
Thereafter, when the frost on the outdoor heat exchanger 5 melts, the high pressure increases and the current value also increases rapidly.

ここで、除霜開始から所定時開T1経過後の運転電流を
IQとし、設定電流11としたとき、室外側熱交換器の
着霜が溶けたときの運転電流、すなわち、除霜終了信号
を発生する運転電流I2は、l2=I 1+I□で表わ
される。
Here, when the operating current after the predetermined time T1 has elapsed from the start of defrosting is IQ, and the set current is 11, the operating current when the frost on the outdoor heat exchanger melts, that is, the defrosting end signal is The generated operating current I2 is expressed as l2=I1+I□.

ここで、電源周波数が50Hzの場合は、第4図の破線
で表わすように60Hzの場合より一般に電流値が低く
、設定電流値11は小さくなる。よって、50Hz 、
60Hzで同一の設定電流値11を使うと50Hzの場
合、霜が溶けてもなお除霜運転が続けられるため、最適
除霜時間にするように、50Hzと601(zで設定電
流値11を変えて、最適な除霜動作を確保している。
Here, when the power supply frequency is 50 Hz, the current value is generally lower than when the power supply frequency is 60 Hz, as shown by the broken line in FIG. 4, and the set current value 11 becomes smaller. Therefore, 50Hz,
If the same set current value 11 is used at 60 Hz, defrosting operation will continue even if the frost melts at 50 Hz, so change the set current value 11 at 50 Hz and 601 (z) to obtain the optimal defrosting time. This ensures optimal defrosting operation.

以上の説明に基づき、第3図に示す制御回路は、第5図
に示す70−チャートの内容の制御を行なう。
Based on the above explanation, the control circuit shown in FIG. 3 controls the contents of the chart 70 shown in FIG.

すなわち、ステップ1で除霜運転が開始され、ステップ
2で電源周波数が入力されると、ステップ3で50Hz
か60Hzか判断され、ステップ4で周波数に応じた設
定電流値(11)が記憶される。
That is, when defrosting operation is started in step 1, and the power frequency is input in step 2, 50Hz is input in step 3.
or 60Hz, and in step 4, a set current value (11) corresponding to the frequency is stored.

そして所定時開T1をタイマーカウントがカウントする
(ステップ5)。このタイマーカウントセツトは除霜運
転開始からT1時間(例えば1分間)除霜運転を確保す
るためのもので、電流の変動による誤動作を防止する一
つの手段である。
Then, the timer counts the opening T1 at a predetermined time (step 5). This timer count set is to ensure defrosting operation for T1 time (for example, 1 minute) from the start of defrosting operation, and is one means for preventing malfunctions due to current fluctuations.

そして、ステップ6で示すようにLSI24にて、T1
時間の経過が判定されるとステップ7へ移り、電流検出
回路9により運転電流lの読み込みを行い、ステップ8
にてT1時間経過後の運転電流IQがLSI24に記憶
される。さらに、LSIに記憶されている電源周波数に
応じた設定電流11(例えばIA)と運転電流I□の加
算が行われ除霜終了電流I2として記憶される(ステッ
プ9)。
Then, as shown in step 6, T1
When it is determined that time has elapsed, the process moves to step 7, where the current detection circuit 9 reads the operating current l, and step 8
The operating current IQ after the lapse of time T1 is stored in the LSI 24. Further, the set current 11 (for example, IA) corresponding to the power supply frequency stored in the LSI and the operating current I□ are added and stored as the defrosting end current I2 (step 9).

そして、運転電流Iが除霜終了電流I2よりも小さいか
否かが判定される(ステップ10)。この判定はLSI
24によって判定される。
Then, it is determined whether the operating current I is smaller than the defrosting end current I2 (step 10). This judgment is made by LSI
24.

そしてステップ100条件が満足されるとステップ11
へ移シ除霜終了信号を発生する。
Then, if step 100 conditions are satisfied, step 11
The defrost end signal is generated.

発明の効果 以上述べたように本発明によれば、除霜中の運転電流を
検出して的確な除霜終了を検知でき、構成も簡単であシ
、かつ、室内側で除霜終了が検知でき、不必要な除霜時
間を省くことができ、経済性と快適性が向上できる。
Effects of the Invention As described above, according to the present invention, it is possible to accurately detect the end of defrosting by detecting the operating current during defrosting, the configuration is simple, and the end of defrosting can be detected indoors. This eliminates unnecessary defrosting time, improving economy and comfort.

すなわち、除霜開始から所定時間後の運転電流に設定電
流値を加えて除霜終了電流とするため常に電源周波数に
応じた最適な除霜電流値で除霜を終了することができ、
地域による電圧の高低差の影響も受けることなく最小時
間で除霜を終了させる。さらに着霜量の大小、地域電圧
の差、外気温度に影響をほとんど受けずに室内側の電流
検出とLSIによって最適な除霜終了検知が行なえる。
That is, since the defrosting end current is obtained by adding the set current value to the operating current after a predetermined time from the start of defrosting, defrosting can always be ended at the optimal defrosting current value according to the power supply frequency.
To complete defrosting in the minimum time without being affected by differences in voltage levels depending on region. Furthermore, optimal defrosting completion detection can be performed by indoor current detection and LSI without being affected by the amount of frost, regional voltage differences, or outside temperature.

また、運転電流は圧縮機のみの電流にかぎらず、室外フ
ァンモータの電流等を含む総合電流としても同様に効果
を奏する。
Further, the operating current is not limited to the current of only the compressor, but the same effect can be obtained as a total current including the current of the outdoor fan motor, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の除霜制御装置を機能実現手段で表現し
たブロック図、第2図は本発明の一実施例を示す空気調
和機の冷凍サイクル図、第3図は同空気調和機における
除霜制御装置の回路図、第4図は同除霜制御装置におけ
る除霜中の運転電流と時間の関係を示す特性図、第5図
は同除霜制御装置の動作内容を示す70−チャートであ
る。 1・・・・・・圧縮機、2・・・・・・四方切換弁、3
・・・・・・室内側熱交換器、6・・・・・・室外側熱
交換器、9・・・・・・電流検出回路(電流検出手段)
、24・・・・・・LSI(設定時間検出手段、周波数
判定手段、設定電流切換手段、設定電流記憶手段、復帰
電流演算記憶手段、比較判定手段)、29・・・・・・
出力回路(出力手段)、32・・・・・・周波数入力手
段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 /−一一圧煽^ 4−−一汽江」4 B−一−”l内ユニット vF、4図 第5図
Fig. 1 is a block diagram expressing the defrosting control device of the present invention using function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a block diagram of the defrosting control device of the present invention. A circuit diagram of the defrosting control device, Fig. 4 is a characteristic diagram showing the relationship between operating current and time during defrosting in the defrosting control device, and Fig. 5 is a 70-chart showing the operation details of the defrosting control device. It is. 1... Compressor, 2... Four-way switching valve, 3
...Indoor heat exchanger, 6...Outdoor heat exchanger, 9...Current detection circuit (current detection means)
, 24... LSI (set time detection means, frequency determination means, set current switching means, set current storage means, return current calculation storage means, comparison judgment means), 29...
Output circuit (output means), 32... Frequency input means. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure/-11 pressure fanning ^ 4--FAQ River" 4 B-1-"l unit vF, 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方切換弁、室内側熱交換器、減圧装置、室外
側熱交換器を具備した冷凍サイクルに、暖房サイクルと
除霜サイクルを切換えるサイクル切換手段と、前記暖房
サイクルと除霜サイクルの切換えを制御する制御装置に
おいて、除霜開始から設定時間経過したことを検出し、
出力する設定時間検出手段と、この設定時間検出手段に
よる設定時間経過後において、圧縮機の運転電流を検出
する電流検出手段によって検出された設定時間経過電流
値と、あらかじめ設定電流値を記憶した設定電流記憶手
段と、電源周波数を入力する周波数入力手段と、前記周
波数入力手段による入力周波数が50Hzか60Hzか
を判定する周波数判定手段と、前記周波数判定手段の出
力により前記設定電流記憶手段に記憶された設定電流値
を切換える設定電流値切換手段と、前記設定時間経過電
流値に前記設定電流記憶手段に記憶された設定電流値を
加えて復帰電流値として記憶する復帰電流演算記憶手段
と、前記電流検出手段により検出される電流値と前記復
帰電流値を比較し、電流値が復帰電流値より大きくなっ
たことを判定し出力する比較判定手段と、前記比較判定
手段の出力信号により前記サイクル切換手段を駆動する
出力手段を具備した空気調和機の除霜制御装置。
A refrigeration cycle equipped with a compressor, a four-way switching valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger, and a cycle switching means for switching between a heating cycle and a defrosting cycle, and switching between the heating cycle and the defrosting cycle. The control device that controls the system detects that a set time has passed since the start of defrosting,
A set time detection means to output, a set time elapsed current value detected by a current detection means for detecting the operating current of the compressor after a set time elapsed by the set time detection means, and a setting in which the set current value is stored in advance. a current storage means, a frequency input means for inputting a power supply frequency, a frequency determination means for determining whether the input frequency by the frequency input means is 50Hz or 60Hz, and an output of the frequency determination means stored in the set current storage means. set current value switching means for switching the set current value that has been set; return current calculation storage means for adding the set current value stored in the set current storage means to the set time elapsed current value and storing the result as a return current value; a comparison and determination means that compares the current value detected by the detection means with the return current value, determines that the current value has become larger than the return current value, and outputs the result; and the cycle switching means based on an output signal of the comparison and determination means. A defrosting control device for an air conditioner, which is equipped with an output means for driving.
JP61230383A 1986-09-29 1986-09-29 Defrosting control device for air conditioner Granted JPS6383538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61230383A JPS6383538A (en) 1986-09-29 1986-09-29 Defrosting control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61230383A JPS6383538A (en) 1986-09-29 1986-09-29 Defrosting control device for air conditioner

Publications (2)

Publication Number Publication Date
JPS6383538A true JPS6383538A (en) 1988-04-14
JPH0535328B2 JPH0535328B2 (en) 1993-05-26

Family

ID=16907008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61230383A Granted JPS6383538A (en) 1986-09-29 1986-09-29 Defrosting control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS6383538A (en)

Also Published As

Publication number Publication date
JPH0535328B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
JPS60142140A (en) Air conditioner
JPH0615932B2 (en) Defrost control device for air conditioner
JPH09113014A (en) Controller for air conditioner
JPS6383538A (en) Defrosting control device for air conditioner
JPS63163723A (en) Control device for defrosting of air conditioner
JPS6383537A (en) Defrosting control device for air conditioner
JPH01127833A (en) Air-conditioning machine
JP2001099459A (en) Method of evaluating test run of air conditioner
JPH0633896B2 (en) Defrost control method for air conditioner
JP2000230740A (en) Air-conditioner
JPH0557496B2 (en)
KR100272230B1 (en) Device and method for controlling operation of air conditioner
JPH06159771A (en) Air conditioner
JPS63220029A (en) Defrosting controller for air conditioner
JPH05296519A (en) Air conditioner
JP2708756B2 (en) Protection method for electrical equipment
JPS62172139A (en) Control device for defrosting of air-conditioning machine
JPS6314032A (en) Control device for air conditioner
JPH01137144A (en) Device for controlling operation of air conditioner
JPS62213638A (en) Defrost control device for air conditioner
JPH0730937B2 (en) Air conditioner temperature control method
JPS62238938A (en) Method of controlling air conditioner
JPS62233631A (en) Control device for defrosting of air conditioner
JPH04174242A (en) Controller for air conditioner
JPH01127832A (en) Air-conditioning machine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term