JPH0535328B2 - - Google Patents

Info

Publication number
JPH0535328B2
JPH0535328B2 JP61230383A JP23038386A JPH0535328B2 JP H0535328 B2 JPH0535328 B2 JP H0535328B2 JP 61230383 A JP61230383 A JP 61230383A JP 23038386 A JP23038386 A JP 23038386A JP H0535328 B2 JPH0535328 B2 JP H0535328B2
Authority
JP
Japan
Prior art keywords
current value
current
defrosting
switching
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61230383A
Other languages
Japanese (ja)
Other versions
JPS6383538A (en
Inventor
Akira Yokochi
Takashi Deguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61230383A priority Critical patent/JPS6383538A/en
Publication of JPS6383538A publication Critical patent/JPS6383538A/en
Publication of JPH0535328B2 publication Critical patent/JPH0535328B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調
和機の除霜制御装置に関するもので、特に室外側
熱交換器の除霜終了を室内側で検知し得るように
した空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat pump type air conditioner, and particularly to a defrosting control device for a separate heat pump type air conditioner. Regarding air conditioners.

従来の技術 従来、特開昭58−205064号公報に示されるよう
に、除霜中の圧縮機の電流を検出し、検出電流値
が高圧冷媒圧力の許容範囲を超える時点での圧縮
機電流値を超えた時、除霜終了をする除霜制御技
術が開発されている。
Conventional technology As disclosed in Japanese Patent Application Laid-Open No. 58-205064, the current of the compressor during defrosting is detected, and the compressor current value is determined at the point when the detected current value exceeds the permissible range of high-pressure refrigerant pressure. A defrosting control technology has been developed that terminates defrosting when the temperature exceeds this limit.

発明が解決しようとする問題点 しかしながら、かかる従来の技術では、室外熱
交換器の霜の溶解のタイミングと除霜終了時期と
が異なり、霜が溶けてもなかなか除霜を終了しな
い問題があり、除霜が短時間に終了せず、暖房能
力の低下及び電力の浪費につながり、経済的かつ
快適性に欠けるという問題点があつた。
Problems to be Solved by the Invention However, in such conventional technology, there is a problem that the timing of melting the frost on the outdoor heat exchanger and the timing of finishing defrosting are different, and it takes time to finish defrosting even when the frost melts. There were problems in that defrosting was not completed in a short time, leading to a reduction in heating capacity and waste of electricity, resulting in a lack of economy and comfort.

また、電源周波数の違い、つまり50Hzの場合と
60Hzの場合で圧縮機の運転電流が異り、除霜能力
に差が生じるため、同一設定電流値では、最適な
除霜を行うことができないという問題点があつ
た。
Also, the difference in power supply frequency, that is, 50Hz and
In the case of 60Hz, the operating current of the compressor differs, resulting in a difference in defrosting ability, so there was a problem that optimal defrosting could not be performed with the same set current value.

以上のように、従来の技術には問題点が多々あ
り、改善が要求されるものである。
As described above, the conventional technology has many problems, and improvements are required.

本発明は、上記従来の問題点に鑑み、従来技術
の利点を損うことなく、除霜終了のタイミングの
最適化がはかられる除霜制御装置を提供するもの
である。
In view of the above conventional problems, the present invention provides a defrosting control device that can optimize the timing of defrosting completion without sacrificing the advantages of the prior art.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図
に示すように、冷凍サイクルの暖房サイクルと除
霜サイクルの切換えを行う制御装置を、除霜開始
から設定時間経過したことを検出し、出力する設
定時間検出手段と、この設定時間検出手段による
設定時間経過後において、圧縮機の運転電流を検
出する電流検出手段によつて検出された設定時間
経過電流値と、あらかじめ設定電流値を記憶した
設定電流記憶手段と、電源周波数を入力する周波
数入力手段と、前記周波数入力手段による入力周
波数が50Hzか60Hzかを判定する周波数判定手段
と、前記周波数判定手段の出力により前記設定電
流記憶手段に記憶された設定電流値を切換える設
定電流値切換手段と、前記設定時間経過電流値に
前記設定電流記憶手段に記憶された設定電流値を
加えて復帰電流値として記憶する復帰電流演算記
憶手段と、前記電流検出手段により検出される電
流値と前記復帰電流値を比較し、電流値が復帰電
流値より大きくなつたことを判定し出力する判定
出力手段と、この判定出力手段の出力信号により
サイクル切換手段を駆動する出力手段より構成し
たものである。
Means for Solving the Problems In order to solve the above problems, the present invention, as shown in FIG. A set time detection means that detects and outputs the elapse of time, and a set time elapsed current value detected by a current detection means that detects the operating current of the compressor after the set time has elapsed by the set time detection means. a set current storage means that stores a set current value in advance; a frequency input means that inputs a power supply frequency; a frequency determination means that determines whether the frequency input by the frequency input means is 50Hz or 60Hz; a set current value switching means for switching the set current value stored in the set current storage means by an output, and a set current value stored in the set current storage means added to the set time elapsed current value and stored as a return current value. a return current calculation storage means for comparing the current value detected by the current detection means with the return current value, and a judgment output means for determining and outputting that the current value has become larger than the return current value; It is constructed of an output means for driving the cycle switching means based on an output signal from the output means.

作 用 上記構成により、除霜開始から設定時間検出手
段による設定時間経過後において、電流検出手段
によつて設定時間経過電流値と電源周波数に応じ
た設定電流値を加えた復帰電流値を検出し、判定
手段によつて圧縮機運転電流がその復帰電流値を
超えたことを判定するとサイクル切換手段によ
り、除霜サイクルを暖房サイクルに切換える。
Effect With the above configuration, after the set time by the set time detecting means has elapsed from the start of defrosting, the current detecting means detects the return current value which is the sum of the set time elapsed current value and the set current value according to the power supply frequency. When the determining means determines that the compressor operating current exceeds the return current value, the cycle switching means switches the defrosting cycle to the heating cycle.

実施例 以下、本発明の一実施例を第2図〜第5図を参
照にして説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 2 to 5.

第2図は、本発明の一実施例を示す冷凍サイク
ル図である。
FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention.

同図において、冷凍サイクルは圧縮機1、四方
切換弁2、室内側熱交換器3、減圧器4、室外側
熱交換器5を順次連結することにより構成されて
いる。6は配管温度検出素子であり、暖房時にお
いて室内側熱交換器3の冷媒入口側となる配管に
取り付けられている。この場合、冷房運転および
除霜運転時は同図の実線矢印の方向に冷媒が流
れ、暖房運転時には四方切換弁2が切換わること
により同図の破線矢印の方向に冷媒が流れるよう
になつている。
In the figure, the refrigeration cycle is constructed by sequentially connecting a compressor 1, a four-way switching valve 2, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5. Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 during heating. In this case, during cooling operation and defrosting operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 switches, so that the refrigerant flows in the direction of the broken line arrow in the figure. There is.

さらに、上記圧縮機1、四方切換弁2、減圧器
4、室外側熱交換器5および室外送風機8によつ
て室外ユニツトAが構成されている。また上記室
内側熱交換器3および室内送風機7、さらに配管
温度検出素子6、タイマ機能および温度調節機能
などがプログラムされたマイクロコンピユータ
(以下、マイコンと略称する)を有する運転制御
部(図示せず)は室内ユニツトBに設けられてい
る。ここで、配管温度検出素子6は、室内送風機
7の送風の影響を受けない風回路からはずれた箇
所に取付けられている。また、室内ユニツトBの
近辺でもよい。
Further, the compressor 1, the four-way switching valve 2, the pressure reducer 4, the outdoor heat exchanger 5, and the outdoor blower 8 constitute an outdoor unit A. In addition, an operation control unit (not shown) includes a microcomputer (hereinafter referred to as microcomputer) programmed with the indoor heat exchanger 3 and indoor blower 7, as well as a pipe temperature detection element 6, a timer function, a temperature control function, etc. ) is provided in indoor unit B. Here, the pipe temperature detection element 6 is attached at a location away from the wind circuit where it is not affected by the air blowing from the indoor blower 7. Alternatively, the location may be near indoor unit B.

次に第3図により、運転制御回路構成について
説明する。ここで、第2図と同じものについては
同一の番号を付して説明する。
Next, the operation control circuit configuration will be explained with reference to FIG. Here, the same parts as in FIG. 2 are given the same numbers and will be explained.

同図において、C,Dはそれぞれ運転制御部と
リモートコントロール部(以下操作部と称す)を
示し、運転制御部Cは、交流電源21を降圧する
トランス22と、交流を直流に交換するDC電源
発生部23と、このDC電源発生部23からの直
流をマイクロコンピユータ(以下LSIと称す)2
4の入力電源とするレギユレータ25と、基準電
圧発生回路26と配管温度検出素子6の入力を比
較する比較回路28と、圧縮機1、四方切換弁
2、室内送風機7、室外送風機8の各運転を制御
するリレー素子群からなる出力回路29と、前記
LSI24の各種信号処理の基礎タイミングを作る
発振回路30と、各種信号処理を司るリセツト回
路31を具備している。
In the figure, C and D indicate an operation control section and a remote control section (hereinafter referred to as operation section), respectively, and the operation control section C includes a transformer 22 that steps down the AC power supply 21, and a DC power supply that exchanges AC into DC. A generator 23 and a microcomputer (hereinafter referred to as LSI) 2 which receives direct current from the DC power generator 23.
4, a comparison circuit 28 that compares the inputs of the reference voltage generation circuit 26 and the pipe temperature detection element 6, and the operation of the compressor 1, four-way switching valve 2, indoor blower 7, and outdoor blower 8. an output circuit 29 consisting of a group of relay elements for controlling the
It is equipped with an oscillation circuit 30 that creates basic timing for various signal processing of the LSI 24, and a reset circuit 31 that controls various signal processing.

また、電流検出回路9は、圧縮機電流に比例し
た電流を抽出し得る交流器10と、この交流器1
0の電流を全波整流する整流回路11と、この整
流回路11の出力を平滑するコンデンサ12,1
3および抵抗14と、交流器10の出力電圧を安
定化させる抵抗15および整流回路11の出力電
圧を安定化させる抵抗16とで構成されている。
ここで、前記レギユレータ25はLSI24のポー
トP1に接続され、出力回路29はポートP11〜P16
にそれぞれ接続され、電流検出回路9はポート
P2に接続され、比較回路28はポートP31に接続
され、さらに発振回路30、リセツト回路31は
ポートP41,P42,P51にそれぞれ接続されている。
The current detection circuit 9 also includes an alternator 10 that can extract a current proportional to the compressor current, and an alternator 10 that can extract a current proportional to the compressor current.
A rectifier circuit 11 that performs full-wave rectification of a zero current, and capacitors 12 and 1 that smooth the output of this rectifier circuit 11.
3 and a resistor 14, a resistor 15 that stabilizes the output voltage of the alternator 10, and a resistor 16 that stabilizes the output voltage of the rectifier circuit 11.
Here, the regulator 25 is connected to the port P1 of the LSI 24, and the output circuit 29 is connected to the ports P11 to P16.
and the current detection circuit 9 is connected to the port
P2 , the comparison circuit 28 is connected to port P31 , and the oscillation circuit 30 and reset circuit 31 are connected to ports P41 , P42 , and P51, respectively.

また、DC電源発生部23のダイオードブリツ
ジから全波整流をとり出し、インバーター32で
クロツク信号に変え、P0ポートに入力される。
そのクロツク信号を受け、LSI24内部の50/60
Hz判定手段で周波数が判定され、周波数に応じた
設定電流値が選ばれる。
Further, the full-wave rectification is taken out from the diode bridge of the DC power generation section 23, converted into a clock signal by the inverter 32, and inputted to the P0 port.
After receiving that clock signal, the 50/60 inside the LSI24
The frequency is determined by the Hz determination means, and a set current value is selected according to the frequency.

そして、基準電圧発生回路26は抵抗101,
102によつて構成され、また出力回路29は、
各ポートP11〜P16に接続されたリレー素子R1
R2,R3,R4,R5,R6により構成されている。リ
レー素子R1は圧縮機に対応し、リレー素子R2
四方切換弁に相当し、リレー素子R3は室外送風
機に相当し、リレー素子R4,R5,R6はそれぞれ
室内送風機の風量切換えを行う「低速」・「中
速」・「高速」の速度端子に相当する。
The reference voltage generation circuit 26 includes a resistor 101,
102, and the output circuit 29 is
Relay element R 1 connected to each port P 11 to P 16 ,
It is composed of R 2 , R 3 , R 4 , R 5 , and R 6 . Relay element R 1 corresponds to a compressor, relay element R 2 corresponds to a four-way switching valve, relay element R 3 corresponds to an outdoor blower, and relay elements R 4 , R 5 , R 6 each correspond to the air volume of an indoor blower. Corresponds to the "low speed", "medium speed", and "high speed" speed terminals for switching.

また51は吸込み空気温度を検出する空気温度
検出素子、52は複数の抵抗群110〜115を
具備したA/D変換回路、53は前記空気温度検
出素子51の入力と、A/D変換回路52からの
入力の比較を行い、圧縮機1の運転・停止信号を
出力する比較回路である。
Further, 51 is an air temperature detection element for detecting the intake air temperature, 52 is an A/D conversion circuit including a plurality of resistor groups 110 to 115, and 53 is an input of the air temperature detection element 51 and the A/D conversion circuit 52. This is a comparison circuit that compares the inputs from the compressor 1 and outputs an operation/stop signal for the compressor 1.

前記空気温度検出素子51、A/D変換回路5
2は室内温度調節を行うサーモスタツトの機能を
構成し、前記A/D変換回路52は、LSI24の
ポートP71〜P74に、また比較回路53の出力は、
LSI24のポートP81にそれぞれ接続されている。
この室温制御については本発明の要旨に関係しな
いため、詳細な説明は省略する。
The air temperature detection element 51 and the A/D conversion circuit 5
2 constitutes the function of a thermostat that adjusts the indoor temperature, the A/D conversion circuit 52 is connected to ports P 71 to P 74 of the LSI 24, and the output of the comparison circuit 53 is
Each is connected to port P81 of LSI24.
Since this room temperature control is not related to the gist of the present invention, detailed explanation will be omitted.

次に、操作部Dは、「低速」・「中速」・「高速」・
「停止」の選択スイツチS1〜S4を具備した風量切
換操作部41と、室温を設定操作するスイツチ
S11〜S14を具備した室温設定操作部42より構成
されている。そして風量切換操作部41および室
温設定操作部42は、LSI24のポートP61〜P66
にそれぞれ接続されている。この風量切換操作部
41、室温設定操作部42をそれぞれ操作するこ
とにより、LSI24内部でその操作内容が処理さ
れ、出力回路29、室温制御関係回路部が動作す
る。
Next, the operation part D selects "low speed", "medium speed", "high speed",
An air volume switching operation section 41 equipped with "stop" selection switches S 1 to S 4 and a switch for setting the room temperature.
It is composed of a room temperature setting operation section 42 equipped with S11 to S14 . The air volume switching operation unit 41 and the room temperature setting operation unit 42 are connected to ports P 61 to P 66 of the LSI 24.
are connected to each. By operating the air volume switching operation section 41 and the room temperature setting operation section 42, the operation contents are processed inside the LSI 24, and the output circuit 29 and the room temperature control related circuit section are operated.

さらに、上記構成と第1図に示す構成の関係に
ついて説明する。電流検出回路9は、電流検出手
段に相当し、出力回路29は出力手段に相当し、
インバーター32は周波数入力手段に相当し、ま
た発振回路30は、LSI24の基本動作時間を作
り、LSI24は、設定時間検出手段、周波数判定
手段、設定電流切換手段、設定電流記憶手段、復
帰電流演算記憶手段に相当する動作を行い、さら
に除霜運転か暖房運転かを判定する比較判定手段
にも相当する。
Furthermore, the relationship between the above configuration and the configuration shown in FIG. 1 will be explained. The current detection circuit 9 corresponds to current detection means, the output circuit 29 corresponds to output means,
The inverter 32 corresponds to frequency input means, the oscillation circuit 30 creates the basic operating time of the LSI 24, and the LSI 24 has set time detection means, frequency determination means, set current switching means, set current storage means, and return current calculation storage. It performs an operation corresponding to a means, and also corresponds to a comparison determination means for determining whether the operation is defrosting operation or heating operation.

次に第4図を参考に除霜開始から除霜終了に至
るまでの動作について説明する。
Next, the operation from the start of defrosting to the end of defrosting will be explained with reference to FIG.

除霜開始すると暖房サイクルから除霜サイクル
に切換わり、運転電流は急激に下がる。そして所
定時間T1が経過すると安定する。
When defrosting begins, the heating cycle switches to the defrosting cycle, and the operating current drops rapidly. Then, it becomes stable after a predetermined time T1 has elapsed.

その後、室外側熱交換器5の着霜が溶けると高
圧圧力が上がりそれに伴なつて電流値も急増す
る。ここで、除霜開始から所定時間T1経過後の
運転電流をI0とし、設定電流I1としたとき、室外
側熱交換器の着霜が溶けたときの運転電流、すな
わち、除霜終了信号を発生する運転電流I2は、I2
=I1+I0で表わされる。
Thereafter, when the frost on the outdoor heat exchanger 5 melts, the high pressure increases and the current value also increases rapidly. Here, when the operating current after a predetermined time T 1 has elapsed from the start of defrosting is I 0 , and the set current I is 1 , the operating current when the frost on the outdoor heat exchanger melts, that is, the end of defrosting. The operating current I 2 that generates the signal is I 2
It is expressed as =I 1 +I 0 .

ここで、電源周波数が50Hzの場合は、第4図の
破線で表わすように60Hzの場合より一般に電流値
が低く、設定電流値I1は小さくなる。よつて、50
Hz、60Hzで同一の設定電流値I1を使うと50Hzの場
合、霜が溶けてもなお除霜運転が続けられるた
め、最適除霜時間にするように、50Hzと60Hzで設
定電流値I1を変えて、最適な除霜動作を確保して
いる。
Here, when the power supply frequency is 50 Hz, the current value is generally lower than when it is 60 Hz, as shown by the broken line in FIG. 4, and the set current value I1 is smaller. By the way, 50
If the same set current value I 1 is used for 50 Hz and 60 Hz, defrosting operation will continue even if the frost melts. to ensure optimal defrosting operation.

以上の説明に基づき、第3図に示す制御回路
は、第5図に示すフローチヤートの内容の制御を
行なう。
Based on the above explanation, the control circuit shown in FIG. 3 controls the contents of the flowchart shown in FIG. 5.

すなわち、ステツプ1で除霜運転が開始され、
ステツプ2で電源周波数が入力されると、ステツ
プ3で50Hzか60Hzか判断され、ステツプ4で周波
数に応じた設定電流値I1が記憶される。そして所
定時間T1をタイマーカウントがカウントする
(ステツプ5)。このタイマーカウントセツトは除
霜運転開始からT1時間(例えば1分間)除霜運
転を確保するためのもので、電流の変動による誤
動作を防止する一つの手段である。
That is, the defrosting operation is started in step 1,
When the power supply frequency is input in step 2, it is determined whether it is 50Hz or 60Hz in step 3, and the set current value I1 corresponding to the frequency is stored in step 4. Then, the timer counts a predetermined time T1 (step 5). This timer count set is to ensure defrosting operation for T1 hours (for example, 1 minute) from the start of defrosting operation, and is one means for preventing malfunctions due to current fluctuations.

そして、ステツプ6で示すようにLSI24にて
T1時間の経過が判定されるとステツプ7へ移り、
電流検出回路9により運転電流Iの読み込みを行
い、ステツプ8にてT1時間経過後の運転電流I0
LSI24に記憶される。さらに、LSIに記憶され
ている電源周波数に応じた設定電流I1(例えば
1A)と運転電流I0の加算が行われ除霜終了電流I2
として記憶される(ステツプ9)。
Then, as shown in step 6, in LSI24
When it is determined that 1 hour has passed, the process moves to step 7.
The current detection circuit 9 reads the operating current I, and in step 8 the operating current I 0 after T 1 hour has passed is determined.
It is stored in the LSI24. Furthermore, the setting current I 1 according to the power supply frequency stored in the LSI (for example
1A) and the operating current I 0 are added to obtain the defrosting end current I 2
(Step 9).

そして、運転電流Iが除霜終了電流I2よりも小
さいか否かが判定される(ステツプ10)。この判
定はLSI24によつて判定される。
Then, it is determined whether the operating current I is smaller than the defrosting end current I2 (step 10). This determination is made by the LSI 24.

そしてステツプ10の条件が満足されるとステツ
プ11へ移り除霜終了信号を発生する。
When the conditions of step 10 are satisfied, the process moves to step 11 and a defrosting end signal is generated.

発明の効果 以上述べたように本発明によれば、除霜中の運
転電流を検出して的確な除霜終了を検知でき、構
成も簡単であり、かつ、室内側で除霜終了が検知
でき、不必要な除霜時間を省くことができ、経済
性と快適性が向上できる。
Effects of the Invention As described above, according to the present invention, the operating current during defrosting can be detected to accurately detect the end of defrosting, the configuration is simple, and the end of defrosting can be detected indoors. , unnecessary defrosting time can be omitted, and economy and comfort can be improved.

すなわち、除霜開始から所定時間後の運転電流
に設定電流値を加えて除霜終了電流とするため常
に電源周波数に応じた最適な除霜電流値で除霜を
終了することができ、地域による電圧の高低差の
影響も受けることなく最小時間で除霜を終了させ
る。さらに着霜量の大小、地域電圧の差、外気温
度に影響をほとんど受けずに室内側の電流検出と
LSIによつて最適な除霜終了検知が行なえる。
In other words, since the defrost end current is determined by adding the set current value to the operating current after a predetermined time from the start of defrosting, defrosting can always be ended at the optimal defrosting current value depending on the power supply frequency, which can vary depending on the region. To complete defrosting in the minimum time without being affected by differences in voltage levels. In addition, indoor current detection is possible without being affected by the amount of frost, regional voltage differences, or outside temperature.
Optimal defrosting completion detection can be performed using LSI.

また、運転電流は圧縮機のみの電流にかぎら
ず、室外フアンモータの電流等を含む総合電流と
しても同様に効果を奏する。
Further, the operating current is not limited to the current of only the compressor, but the same effect can be obtained as a total current including the current of the outdoor fan motor, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の除霜制御装置を機能実現手段
で表現したブロツク図、第2図は本発明の一実施
例を示す空気調和機の冷凍サイクル図、第3図は
同空気調和機における除霜制御装置の回路図、第
4図は同除霜制御装置における除霜中の運転電流
と時間の関係を示す特性図、第5図は同除霜制御
装置の動作内容を示すフローチヤートである。 1……圧縮機、2……四方切換弁、3……室内
側熱交換器、5……室外側熱交換器、9……電流
検出回路(電流検出手段)、24……LSI(設定時
間検出手段、周波数判定手段、設定電流切換手
段、設定電流記憶手段、復帰電流演算記憶手段、
比較判定手段)、29……出力回路(出力手段)、
32……周波数入力手段。
Fig. 1 is a block diagram expressing the defrosting control device of the present invention using function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a diagram of the defrosting control device of the present invention. A circuit diagram of the defrosting control device, Fig. 4 is a characteristic diagram showing the relationship between operating current and time during defrosting in the defrosting control device, and Fig. 5 is a flowchart showing the operation details of the defrosting control device. be. 1... Compressor, 2... Four-way switching valve, 3... Indoor heat exchanger, 5... Outdoor heat exchanger, 9... Current detection circuit (current detection means), 24... LSI (setting time detection means, frequency determination means, set current switching means, set current storage means, return current calculation storage means,
comparison judgment means), 29...output circuit (output means),
32...Frequency input means.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、四方切換弁、室内側熱交換器、減圧
装置、室外側熱交換器を具備した冷凍サイクル
に、暖房サイクルと除霜サイクルを切換えるサイ
クル切換手段と、前記暖房サイクルと除霜サイク
ルの切換えを制御する制御装置において、除霜開
始から設定時間経過したことを検出し、出力する
設定時間検出手段と、この設定時間検出手段によ
る設定時間経過後において、圧縮機の運転電流を
検出する電流検出手段によつて検出された設定時
間経過電流値と、あらかじめ設定電流値を記憶し
た設定電流記憶手段と、電源周波数を入力する周
波数入力手段と、前記周波数入力手段による入力
周波数が50Hzか60Hzかを判定する周波数判定手段
と、前記周波数判定手段の出力により前記設定電
流記憶手段に記憶された設定電流値を切換える設
定電流値切換手段と、前記設定時間経過電流値に
前記設定電流記憶手段に記憶された設定電流値を
加えて復帰電流値として記憶する復帰電流演算記
憶手段と、前記電流検出手段により検出される電
流値と前記復帰電流値を比較し、電流値が復帰電
流値より大きくなつたことを判定し出力する比較
判定手段と、前記比較判定手段の出力信号により
前記サイクル切換手段を駆動する出力手段を具備
した空気調和機の除霜制御装置。
1. A refrigeration cycle equipped with a compressor, a four-way switching valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger, and a cycle switching means for switching between a heating cycle and a defrosting cycle, and a cycle switching means for switching between a heating cycle and a defrosting cycle. In a control device that controls switching, a set time detection means detects that a set time has elapsed from the start of defrosting and outputs an output, and a current that detects the operating current of the compressor after the set time has elapsed by the set time detection means. A set current storage means that stores the set time elapsed current value detected by the detection means, a set current storage means that stores the set current value in advance, a frequency input means that inputs the power supply frequency, and whether the input frequency by the frequency input means is 50 Hz or 60 Hz. a set current value switching means for switching the set current value stored in the set current storage means based on the output of the frequency determination means; a return current calculation storage means for adding the set current value set and storing the result as a return current value, and comparing the current value detected by the current detection means and the return current value, and detecting that the current value has become larger than the return current value. What is claimed is: 1. A defrosting control device for an air conditioner, comprising a comparison and determination means for determining and outputting a result, and an output means for driving the cycle switching means based on an output signal of the comparison and determination means.
JP61230383A 1986-09-29 1986-09-29 Defrosting control device for air conditioner Granted JPS6383538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61230383A JPS6383538A (en) 1986-09-29 1986-09-29 Defrosting control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61230383A JPS6383538A (en) 1986-09-29 1986-09-29 Defrosting control device for air conditioner

Publications (2)

Publication Number Publication Date
JPS6383538A JPS6383538A (en) 1988-04-14
JPH0535328B2 true JPH0535328B2 (en) 1993-05-26

Family

ID=16907008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61230383A Granted JPS6383538A (en) 1986-09-29 1986-09-29 Defrosting control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS6383538A (en)

Also Published As

Publication number Publication date
JPS6383538A (en) 1988-04-14

Similar Documents

Publication Publication Date Title
US20070261422A1 (en) Humidity control for air conditioning system
JPS60142140A (en) Air conditioner
JPH0615932B2 (en) Defrost control device for air conditioner
JPH04208368A (en) Air conditioner
JPH09294335A (en) System link generator
JPH09113014A (en) Controller for air conditioner
JPH023093Y2 (en)
JPH0535328B2 (en)
JPH0427456B2 (en)
JP3059926B2 (en) Air conditioner
JPH0633896B2 (en) Defrost control method for air conditioner
JP2001099459A (en) Method of evaluating test run of air conditioner
JPS63163723A (en) Control device for defrosting of air conditioner
JPH09152169A (en) Multi-type air conditioner
JPH0557496B2 (en)
JPH06159771A (en) Air conditioner
JP2001091027A (en) Air conditioner
JPH09152168A (en) Separate type air conditioner
JP2000230740A (en) Air-conditioner
JPH05240493A (en) Air conditioner
JP2919596B2 (en) Control device for air conditioner
JPH05296519A (en) Air conditioner
JPS6130176B2 (en)
JPS6358051A (en) Air conditioner
JPS63220029A (en) Defrosting controller for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term