JPS62233631A - Control device for defrosting of air conditioner - Google Patents

Control device for defrosting of air conditioner

Info

Publication number
JPS62233631A
JPS62233631A JP61074752A JP7475286A JPS62233631A JP S62233631 A JPS62233631 A JP S62233631A JP 61074752 A JP61074752 A JP 61074752A JP 7475286 A JP7475286 A JP 7475286A JP S62233631 A JPS62233631 A JP S62233631A
Authority
JP
Japan
Prior art keywords
temperature
switching
defrosting
cycle
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61074752A
Other languages
Japanese (ja)
Inventor
Keiichi Kuriyama
栗山 啓一
Akira Yokouchi
横内 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61074752A priority Critical patent/JPS62233631A/en
Publication of JPS62233631A publication Critical patent/JPS62233631A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure space heating operation and be able to carry out proper defrosting operation by temp. detection at one point by a method wherein frosting is found out by detecting the temp. of the refrigerant gas in an overheated region at the inlet piping of a indoor side heat exchanger and a set temp. is corrected by an indoor quantity and the frequency of electric power source when a specified time has elapsed after the start of space heating. CONSTITUTION:At the inlet piping of an indoor side heat exchanger in a refrigerating cycle, a detector for piping temp. is installed. Thereby, the existence of frosting is exactly detected. The frequency of a power source of a compressor is input into a frequency input means to judge whether the frequency is 50Hz or 60Hz and when 50Hz, a set temp. is lowered than that at 60Hz and in response to a detected signal from an air quantity change-over means in a room a set temp. change-over means is operated to lower the set temp. when an air quantity is larger. When the set temp. coincides with the detected temp. and a specified time has elapsed after the start of space heating, change-over from space heating operation to defrosting one is carried out by a selection output means.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパ〈−ト形ヒートポンプ式空気調和機の除
霜制御装置に関するもので、特に室外側熱交換器の着霜
を室内側で検知し得るようにした空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat pump type air conditioner. Regarding the air conditioner that was obtained.

従来の技術 従来、特公tldss−32296号公報に示されるよ
うに、室内側熱交換器の温度変化と室内温度の変化の両
者に基ついて室外側熱交換器への着霜状態を検知し、暖
房運転と除霜運転を制御する技術が開発されている。
BACKGROUND ART Conventionally, as shown in Japanese Patent Publication TLDSS-32296, the state of frost on an outdoor heat exchanger is detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change, Technologies have been developed to control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、温度検出素子が複
数必要(!:なり、白さ回路が複雑化する問題がある。
Problems to be Solved by the Invention However, such a conventional configuration requires a plurality of temperature detection elements (!:), resulting in a problem that the whiteness circuit becomes complicated.

しかも、かかる構成に熱交換器を流れている途中の気液
混合冷媒温度を検出しているため、着霜時と未着霜時の
温度変化が小さく、微小な範囲で@霜判定を行わなけれ
ばならず、検出精度が安定しない問題がある。
Moreover, since this configuration detects the temperature of the gas-liquid mixed refrigerant while flowing through the heat exchanger, the temperature change between frost and non-frost is small, making it possible to make @frost determinations within a minute range. However, there is a problem that the detection accuracy is unstable.

また近年、マイクロコンピュータにて複雑な信号処理を
行わせ、制御装置を構成することが多いが、従来技術の
ように入力信号源(温度検出素子)が多いことは、その
プログラム作成に当っても弊害のもとであり、プログラ
ムの簡素化にも限界がある。さらに室内熱交換器の湿度
は室内送風機の動作に基つく室内空気の循環量にも影響
を受けるという問題があり念とえば室内熱交換器に対す
る室内空気の循環量が少なければこれに伴って室内熱交
換器の湿度が上昇しこのため室外熱交換器に対する除霜
運転が必要であるにもかかわらず除湿運転が開始されな
いという不都合を応じてしまつ。
In addition, in recent years, control devices are often configured by using microcomputers to perform complex signal processing, but the fact that there are many input signal sources (temperature detection elements) as in conventional technology makes it difficult to create programs. This is a source of negative effects, and there are limits to the simplification of programs. Furthermore, there is a problem that the humidity of the indoor heat exchanger is affected by the amount of indoor air circulating based on the operation of the indoor blower. This results in the inconvenience that the humidity in the heat exchanger increases and, even though defrosting operation is required for the outdoor heat exchanger, dehumidifying operation is not started.

又、電源周波数の違いつま))50HZの場合と60H
Zの場合圧縮機の回転数が変り、冷凍サイクルの能力に
違いが応じるため室内熱交換器の温度が変る。
Also, the difference in power supply frequency is 50HZ and 60H.
In the case of Z, the rotation speed of the compressor changes and the temperature of the indoor heat exchanger changes depending on the capacity of the refrigeration cycle.

たとえば、80HZの場合50HZよりも圧縮機の回転
数が多く冷凍サイクルの能力が大きい為室内熱交換器の
温度が上昇しこのため室外熱交換器に対する除霜運転が
必要であるにもかかわらず除霜運転が開始されないとい
う問題点があった。
For example, in the case of 80Hz, the rotation speed of the compressor is higher than that of 50Hz, and the capacity of the refrigeration cycle is greater, so the temperature of the indoor heat exchanger rises, and therefore, even though defrosting operation is required for the outdoor heat exchanger, defrosting is not possible. There was a problem that the frost operation did not start.

本発明は、上記従来の問題点に鑑み、従来技術の利点を
損うことなく、構成の簡素化がはかれる除霜制御装置を
提供するも、のである。
In view of the above-mentioned conventional problems, the present invention provides a defrosting control device whose configuration can be simplified without impairing the advantages of the conventional technology.

問題点を解決するだめの手段 上記問題点を解決するために本発明は、第1図に示すよ
うに冷凍サイクルを暖房サイクルから除1サイクルに制
御する制御装置を、前記圧縮機の運転開始からの時間を
計測する時間計測手段と、あらかじめ設定された時間を
記憶している設定時間記憶手段と、前記時間計測子故に
上り検出した時間と前記設定時間記憶手段に設定された
時間の一致を検出し出力する第1の比較手段と、前記室
内側熱交換器の冷媒入口側に連結された配管の温度を検
出する温度検出手段と、暖房サイクルを除霜サイクルに
切換える境界値温度を記憶した設定温度記憶手段と電源
周波数を入力する周波数入力手段と、その周波&が50
HZか60HZか判定する周波数判定手段と、風量を切
換える風量切換手段と各風量及び前記周波数判定手段の
出力により設定温度を切換る設定温度切換手段と前記温
度検出手段により検出した温度が前記設定温度記憶手段
により記憶された境界値温度より低下したことを検出し
出力する第2の比較手段と、前記第1の比較手段による
設定時間経過信号と前記第2の比較手段による境界値低
下信号により、暖房サイクルから除霜サイクルへの切換
えを判定する判定手段と、前記fIj定手段の出力に応
じて前記冷凍サイクルをIガ房qrF!鼾か1.、l詮
雷;mrへ曲1z聞す入4希炉出力手段より構成したも
のである。
Means for Solving the Problems In order to solve the above problems, the present invention, as shown in FIG. a time measuring means for measuring time, a set time storage means for storing a preset time, and a match between the time detected by the time measuring element and the time set in the set time storage means. a temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger; and a setting storing a boundary value temperature for switching a heating cycle to a defrosting cycle. A temperature storage means, a frequency input means for inputting the power supply frequency, and the frequency & is 50.
A frequency determining means for determining whether the temperature is HZ or 60Hz, an air volume switching means for switching the air volume, a set temperature switching means for switching the set temperature based on each air volume and the output of the frequency determining means, and the temperature detected by the temperature detecting means is the set temperature. a second comparison means that detects and outputs a temperature drop below the boundary value stored in the storage means; a set time elapsed signal from the first comparison means; and a boundary value drop signal from the second comparison means; A determination means for determining switching from a heating cycle to a defrosting cycle, and a determination means for controlling the refrigeration cycle according to the output of the fIj determining means. Snoring?1. , 1 listen to the music 1z to the mr, and it is composed of 4 rare furnace output means.

作  用 この構成により、暖房運転開始から所定時間が経過する
までは暖房運転が確保され、その所定時間経過後におい
て、温度検出手段の検出温度により、除霜運転が制御さ
れる。
Effect: With this configuration, the heating operation is ensured until a predetermined time has elapsed from the start of the heating operation, and after the elapse of the predetermined time, the defrosting operation is controlled based on the temperature detected by the temperature detection means.

実施例 以下、本発明の一実施例を第2図〜第5図を参照にして
説明する。第2図は、本発明の一実施例を示す冷凍サイ
クル図である。同図において、冷凍サイクルは圧縮機1
、四方切換弁2、室内側熱交換器3、減田器4、室外側
熱交換器5を順次連結することにより構成されている。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 2 to 5. FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention. In the same figure, the refrigeration cycle includes compressor 1
, a four-way switching valve 2, an indoor heat exchanger 3, a rice reducer 4, and an outdoor heat exchanger 5 are connected in sequence.

6は配管温度検出素子であり、暖房時において室内側熱
交換器3(凝縮器)の冷媒入口側となる配管に取り付け
られている。この場合、冷房運転時は同図の実線矢印の
方向に冷媒が流れ、暖房運転時には四方切換弁2が切換
わることにより同図の破線矢印の方向に冷媒が流れるよ
うになっている。
Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. In this case, during cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 is switched so that the refrigerant flows in the direction of the broken line arrow in the figure.

さらに、上記圧縮機1、四方切換弁2、減圧機4、室外
側熱交換器5および室外送風機8によって室外ユニット
Aが構53と、されている。また上記室内側熱交換器3
および室内送風機7、さらに配管湿度検出素子6、タイ
マ機能および温度調節機能などがプログラムされたマイ
クロコンピューク第3図22(以下、マイコンと略称す
る)を有する運転制御部(第3図C)は室内ユニツ)B
IC設けられている。ここで、配管温度検出素子6は、
室内送風機7の送風の影響を受けない風回路からはずれ
た箇所に取付けられている。また、室内ユニットBの近
辺でもよい。
Furthermore, the outdoor unit A is constituted by the compressor 1, the four-way switching valve 2, the pressure reducer 4, the outdoor heat exchanger 5, and the outdoor blower 8. In addition, the indoor heat exchanger 3
and an operation control unit (Fig. 3C) having a microcomputer (hereinafter referred to as microcomputer) programmed with the indoor blower 7, a pipe humidity detection element 6, a timer function, a temperature control function, etc. is an indoor unit)B
IC is installed. Here, the pipe temperature detection element 6 is
It is installed at a location away from the wind circuit that is not affected by the air blown by the indoor blower 7. Alternatively, the location may be near the indoor unit B.

第3図は、運転制御部及びリモートコントロール部を示
す図である。運転制御部Cは、交流電源18より供給さ
れた電圧をトランス17で降圧しDC電源発生部16内
のダイオードグリッジで余波整流に変換し、レギュレー
タICでマイクロコンピュータ22(以後マイコンと呼
ぶ。)を動作させるDC電源を作っている。マイコン2
2には、リセット回路23がPOポートに、発信回路2
6がp1p2ポートに接続されている。P7、PBポー
トからは、スキャン信号が出され、操作部りの運転スイ
ッチ風量切換部24、室温設定部25のスイッチの0N
10FFにより、P3、P4、P5ポートに種々のスキ
ャン信号が入ることにより、所定の制御を行なう。P1
1ポートから圧縮機1を駆動するリレーを動作させる信
号が出され、P12ボートから四方弁2を駆動するリレ
ーを動作させる信号が出され、P13ポートからは室外
送風機8を駆動させるリレーを動作させる信号が出され
、又P14〜P16ポートからは室内送風機7を駆動さ
せるリレーを動作させる信号が出される。P17〜P2
0ボートからは、吸込センブー7からの入力と室温を比
較するための基準電圧を、D/A変換部19で作るだめ
の信号が出されその基準電圧と、吸込センブー7の入力
を比較するコンパレーター15の出力がP21ボートに
入力さレル。マイコン22i、リモートコントロール部
りの室温設定部25の入力を受け、先のP21ボートの
入力と比較し圧縮機1の0N10FF制御を行なう。風
量がHi、Me、Loと切り換わるにつれ、P22〜P
24の出力ボートからHi倍信号出され、設定温度記憶
手段8の、抵抗9.10で記憶された温度【よる基準電
圧を切り換える。その基準電圧と温度検出手段6の信号
を第2の比較手段に当るコンパレータ27で比較し、P
26に入力される。DC電源発生都16のダイオードブ
リッジから全波整流をとり出し、インバークー21でタ
ロツク信号に変える10ボートに入力される。そのタロ
ツク信号を受け、マイコン内部の50/60Hz判定手
段で、60Hzであることが判定するとP25ボートか
らHi出力が出され、設定温度記憶手段の設定値を切り
換える。
FIG. 3 is a diagram showing an operation control section and a remote control section. The operation control unit C steps down the voltage supplied from the AC power supply 18 using the transformer 17, converts it into rectification using the diode glitch in the DC power supply generation unit 16, and controls the microcomputer 22 (hereinafter referred to as microcomputer) using the regulator IC. We are making the DC power supply to operate it. Microcomputer 2
2, the reset circuit 23 is connected to the PO port, and the transmitting circuit 2 is connected to the PO port.
6 is connected to the p1p2 port. A scan signal is output from the P7 and PB ports, and the operating switch air volume switching unit 24 and room temperature setting unit 25 switches are set to 0N.
By inputting various scan signals to the P3, P4, and P5 ports by the 10FF, predetermined control is performed. P1
A signal to operate the relay that drives the compressor 1 is output from port 1, a signal to operate the relay that drives the four-way valve 2 is output from the P12 boat, and a signal that operates the relay that drives the outdoor blower 8 is output from the P13 port. A signal is issued, and a signal for operating a relay that drives the indoor blower 7 is issued from ports P14 to P16. P17-P2
From the 0 boat, a signal is sent to the D/A converter 19 to generate a reference voltage for comparing the input from the suction sensor 7 with the room temperature, and a comparator that compares the reference voltage with the input of the suction sensor 7 is output. The output of the regulator 15 is input to the P21 boat. The microcomputer 22i receives the input from the room temperature setting section 25 of the remote control section, compares it with the input from the P21 boat, and performs 0N10FF control of the compressor 1. As the air volume switches from Hi to Me to Lo, P22 to P
A Hi signal is output from the output port 24, and the reference voltage is switched according to the temperature stored in the set temperature storage means 8 by the resistor 9.10. The reference voltage and the signal from the temperature detection means 6 are compared by a comparator 27, which is a second comparison means, and P
26. The full wave rectification is taken out from the diode bridge of the DC power source 16 and is input to the board 10 where it is converted into a tarok signal by the inverter 21. When the tarok signal is received and the 50/60 Hz determination means inside the microcomputer determines that the frequency is 60 Hz, a Hi output is output from the P25 boat, and the set value of the set temperature storage means is switched.

ここで第3図の構成と@1図の構成を対比すると、配管
温度検出素子6は、第1図の温度検出手段に、コンパレ
ーク27は第2の比較手段に、抵抗9.10は設定温度
記憶手段に、リモートコントロール部りの風量切換スイ
ッチ24は、風量切換手段に、インパーク21は周波数
入力手段に、設定温度切換手段は、抵抗11.1と、1
3.14に、50/80判定手段設定時間記憶手段、第
1の比較手段、時間計測手段、判定手段、選択出力手段
は、マイコン22に相当する。
Comparing the configuration of FIG. 3 with the configuration of FIG. 1, the pipe temperature detection element 6 is used as the temperature detection means in FIG. The storage means includes the air volume switching switch 24 in the remote control section, the impark 21 as the frequency input means, and the resistor 11.1 as the set temperature switching means.
3.14, the 50/80 determination means, the setting time storage means, the first comparison means, the time measurement means, the determination means, and the selection output means correspond to the microcomputer 22.

次に、暖房運転の開始から除霜運転に至るまでの動作に
ついて説明する。
Next, the operation from the start of heating operation to defrosting operation will be explained.

圧縮機1の吐出冷媒温度をTd、圧縮機1の吸入冷媒温
度をTs、圧縮機1の吐出圧力をPd。
The discharge refrigerant temperature of the compressor 1 is Td, the suction refrigerant temperature of the compressor 1 is Ts, and the discharge pressure of the compressor 1 is Pd.

圧縮機1の吸入圧力をPgとし、ボl) l−ロープ指
数をn(ただし、1(n(kの関係で、kは断熱圧縮指
数)とすると、吐出冷媒温度Tdは次式で表わされる。
If the suction pressure of the compressor 1 is Pg and the l-rope index is n (where 1 (n (k), where k is the adiabatic compression index), then the discharge refrigerant temperature Td is expressed by the following formula. .

したがって、室外側熱交換器5が未着霜時は吸入冷媒温
度Tsが高く、各吐出冷媒湿度Tdも高い。そして外気
が下がり、菅霜が成長するにつれて、吸入冷媒温度Tg
は低下し、吐出冷媒温度Tdも下がる。本発明における
配管温度検出素子6は、室内側熱交換器3の入口配管に
設けられ、圧縮機1から吐出された高温高圧の過熱域冷
媒ガスが流れる部分の温度を検出するが、実際その温度
は吐出ガスに比べて内外接続配管等での熱損失により所
定温度低下した温度である。したがって、第4図に示す
ように室外側熱交換器5が未着霜時に圧縮機1の吸入冷
媒温度Ts、室内11tlJ熱交換器3の入口配管温度
上はともに高く、着霜が進むにつれて徐々に低下し、そ
して暖房能力を大幅に低下させる着霜に至ると、室内側
熱交換器30入口配管温度【は極端に低下する。すなわ
ち、入口配管温度tが設定配管温度tj(60Hz風量
Lo)以下になれば暖房能力は低下し、着霜が進んでい
るので除霜する必要がある。
Therefore, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts is high and the discharge refrigerant humidity Td is also high. Then, as the outside air drops and the frost grows, the suction refrigerant temperature Tg
decreases, and the discharge refrigerant temperature Td also decreases. The pipe temperature detection element 6 in the present invention is installed in the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the high-temperature, high-pressure superheated refrigerant gas discharged from the compressor 1 flows. is a temperature lower than that of the discharged gas by a predetermined temperature due to heat loss in internal and external connecting pipes, etc. Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts of the compressor 1 and the indoor 11tlJ inlet pipe temperature of the heat exchanger 3 are both high, and gradually increase as the frost progresses. When the indoor heat exchanger 30 inlet piping temperature (temperature) drops dramatically, the temperature of the indoor heat exchanger 30 inlet piping drops significantly. That is, if the inlet pipe temperature t becomes lower than the set pipe temperature tj (60 Hz air volume Lo), the heating capacity decreases, and since frost formation has progressed, it is necessary to defrost.

又、この入口配管温度は若干の風量による影響を受ける
ため、第4図に示すように、風量Lo(弱風)、風量M
e(中風)、風量Hi(強風)で、設定配管温度をtl
、【2、t3(60Hzの場合)と変えることにより、
より適格に着霜を検知できる。
In addition, since this inlet pipe temperature is slightly affected by the air volume, as shown in Fig. 4, the air volume Lo (weak wind) and the air volume M
e (medium wind), air volume Hi (strong wind), set pipe temperature to tl
, [2, by changing t3 (for 60Hz),
Frost formation can be detected more accurately.

さらに、圧縮機1の回転数は、電源周波数50Hz及び
60 Hzにほぼ比較した値となるため、冷凍サイクル
の高圧圧力は60Hzの場合が高くなる。従って、第4
図に示す室内側熱交換器の入口配管温度は、実線部tを
60Hzとすれば破線部tが50Hzとなり、除霜開始
をtl(風量Lo)のみに固定すると50 Hzの場合
は、着霜が少ないうちに除′A11に入り、暖房効率が
悪くなる。そこで、50 Hzの場合には、室内側熱交
換器の入口配管温度の除′A1開始温度をt、′とする
ことで、最適の除霜動作が確保できる。
Furthermore, since the rotational speed of the compressor 1 is approximately a value compared to the power supply frequencies of 50 Hz and 60 Hz, the high pressure of the refrigeration cycle is higher when the frequency is 60 Hz. Therefore, the fourth
The inlet pipe temperature of the indoor heat exchanger shown in the figure is, if the solid line section t is 60 Hz, the broken line section t is 50 Hz, and if the defrosting start is fixed only at tl (air volume Lo), if it is 50 Hz, frost formation will occur. Before the amount of heat is low, the temperature reaches A11, and the heating efficiency deteriorates. Therefore, in the case of 50 Hz, the optimal defrosting operation can be ensured by setting the starting temperature of 'A1 for subtracting the inlet pipe temperature of the indoor heat exchanger to t,'.

以上の説明に基づき、第3図に示す制御回路は、第5図
に示すフローチャートの内容の制御を行なうO ステップ1で通常暖房運転が開始され、ステップ2で電
源周波数が入力されるとステップ3で50Hzか60 
Hzか判断され、60HzならばP25ボートを出力H
iにし配管温度設定値を上げる(ステップ4)。そして
、マイコン22で、所定時間Tのタイマーカウントがセ
ットされる(ステップ5)。このタイマーカウントセツ
トは、暖房運転開始から7時間(例えば1時間)暖房運
転を確保するためのもので、例えば強制的に1時間暖房
を連続することも一つの手段である。
Based on the above explanation, the control circuit shown in FIG. 3 performs the control of the contents of the flowchart shown in FIG. 50Hz or 60
Hz, if it is 60Hz, output P25 boat H
i and increase the piping temperature set value (step 4). Then, the microcomputer 22 sets a timer count for a predetermined time T (step 5). This timer count set is for ensuring heating operation for 7 hours (for example, 1 hour) from the start of heating operation, and one way is to forcibly continue heating for 1 hour, for example.

そしてタイマーカウントがセットされると、ステップ6
で1時間経過が判定される。1時間経過するまでは暖房
運転が継続される。
And once the timer count is set, step 6
It is determined that one hour has passed. Heating operation continues until one hour has passed.

そして7時間が経過すると、風量が判別される。Then, after 7 hours have passed, the air volume is determined.

風量がLo(弱風)であれば、P22ボートの出力をH
iにしくステップ7.8)、風量がMe(中風)であれ
ば、P23ポート出力をHiにしくステップ9.10)
、それ以外(風量Hi強風)の場合は、P29ポート出
力をHiにする(ステップ11)。
If the wind volume is Lo (weak wind), the output of the P22 boat is set to H.
Step 7.8) If the air volume is Me (medium wind), set the P23 port output to Hi Step 9.10)
, in other cases (air volume Hi, strong wind), set the P29 port output to Hi (step 11).

このように、第3図抵抗9.10の分圧よりなる電圧で
決められた設定配管温度を、抵抗11〜14を用いて、
設定配管温度を変えることにより、電源周波数50Hz
、60Hzの場合の設定配管温度の変更、風量による変
更を可能としている。
In this way, using resistors 11 to 14, the set pipe temperature determined by the voltage formed by the partial pressure of resistor 9 and 10 in FIG.
By changing the set piping temperature, the power frequency can be increased to 50Hz.
, it is possible to change the set piping temperature in the case of 60Hz, and to change it depending on the air volume.

そして、入口配管温度が、各電源周波数、各風量に応じ
たtよりも低くなっていればコンパレーク27よりHi
比出力出され、マイコン22は、p26ボートでその信
り゛を受け(ステップ13)、除霜運転が開始される。
If the inlet pipe temperature is lower than t corresponding to each power frequency and each air volume, the comparator 27 will indicate Hi.
The specific output is output, and the microcomputer 22 receives the confirmation from the P26 boat (step 13), and defrosting operation is started.

(ステップ14)すなわち、P11〜P16ボート出力
を変え、四方弁切換弁2を切換え、必要に応じてその前
に圧縮機1を一定時間停止し、室内送風機ア及び室外送
風機8を停止する。そして冷房サイクルにて除霜を行う
。この除霜運転の内容は従来周知のため、詳細な説明を
省略する。また暖房運転の復帰についても従来より周知
の如く、適宜手段にて実施できる。
(Step 14) That is, the P11 to P16 boat outputs are changed, the four-way switching valve 2 is switched, and if necessary, before that, the compressor 1 is stopped for a certain period of time, and the indoor blower A and the outdoor blower 8 are stopped. Defrost is then performed in the cooling cycle. Since the content of this defrosting operation is conventionally well known, detailed explanation will be omitted. Further, the restoration of the heating operation can be carried out by any suitable means as is well known in the art.

なお、本実施例においては、除霜運転を暖房サイクルか
ら冷房サイクルへの切換えによって行うようにしたが、
例えば暖房サイクルを維持したままとして室外側熱交換
器へ別途蓄熱していた冷媒を流す構成あるいは、別熱源
にて霜を溶かす構成としてもよいことは言うまでもない
。また圧縮機1は除霜運転へ切換え時には連続運転とし
、暖房運転復帰前に一時停止させるようにしてもよい。
In this embodiment, the defrosting operation is performed by switching from the heating cycle to the cooling cycle.
For example, it goes without saying that a configuration may be adopted in which the heating cycle is maintained and a separately stored refrigerant is flowed to the outdoor heat exchanger, or a configuration in which a separate heat source is used to melt the frost. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped before returning to heating operation.

発明の効果 以上述べたように本発明によれば、上記した構成により
、過熱域冷媒ガスの温度を室内側熱交換検出1点で行う
ことができ、構成が非常に簡単であり、また冷媒が、暖
房を行う熱量を十分に有しているか否かの判定が室内側
熱交換器の入口側で行えるため、実際の暖房能力の有無
を確実に判断して除霜を行うことができる。すなわち、
本発明は完全に着霜が発生している冷媒の温度が熱交換
器の入口部、中間部に差がなく、未着霜時に入口冷媒温
度の方が中間部の冷媒温度に比べて著しく高い点に着眼
し、入口側の冷媒温度を検出することによって、未着霜
から着霜に至るまでの温度変化が大きくとれ、1点の湯
度検出で限界に近い暖房能力を引き出すことができる。
Effects of the Invention As described above, according to the present invention, with the above-described configuration, the temperature of the refrigerant gas in the superheated region can be detected at a single indoor heat exchange detection point, and the configuration is very simple. Since it is possible to determine whether or not there is a sufficient amount of heat for heating at the inlet side of the indoor heat exchanger, defrosting can be performed by reliably determining the presence or absence of actual heating capacity. That is,
In the present invention, there is no difference in the temperature of the refrigerant at the inlet part and the middle part of the heat exchanger when frost has completely formed, and the inlet refrigerant temperature is significantly higher than the refrigerant temperature in the middle part when no frost has formed. By paying attention to this point and detecting the refrigerant temperature on the inlet side, it is possible to significantly change the temperature from non-frosting to frosting, and it is possible to draw out the heating capacity close to the limit by detecting the hot water temperature at one point.

また本発明は、暖房開始から一定時間経過するまで着霜
を検出しないため、その一定時間は暖房能力が確保され
、快適さが損われることもない。
Furthermore, since the present invention does not detect frost formation until a certain period of time has elapsed from the start of heating, the heating capacity is ensured for that certain period of time, and comfort is not impaired.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の除霜制御装置を機能実現手段で表現し
たブロック図、第2図は本発明の一実施゛S−゛ 4図は同除霜制御装置における室内側熱交換器へ流入す
る冷媒温度と圧縮機吸入冷媒温度の関係を示す特性図、
第5図は同除霜制御装置の動作内容を示すフローチャー
トである。 1・・・・・圧縮機、2・・・・・・四方切換弁、3・
旧・・室内側熱交換器、5・・・・・・室外側熱交換器
、6・・・・・・配管温度検出素子、9.1o・・・・
・・設定温度記憶抵抗、11.1と、13.14・・・
・・・設定温度切換抵抗、21・・・・・・電源周波数
入力手段、22・川・・マイクロコンピユータ、27・
・・・・・コンパレーク−0代理人の氏名 弁理士 中
 尾 敏 男 ほか1名第1図 第4図 時間
Fig. 1 is a block diagram expressing the defrosting control device of the present invention as a function realizing means, Fig. 2 is an embodiment of the present invention. A characteristic diagram showing the relationship between refrigerant temperature and compressor suction refrigerant temperature,
FIG. 5 is a flowchart showing the operation details of the defrosting control device. 1... Compressor, 2... Four-way switching valve, 3...
Old...Indoor heat exchanger, 5...Outdoor heat exchanger, 6...Piping temperature detection element, 9.1o...
...Set temperature memory resistance, 11.1 and 13.14...
... Set temperature switching resistor, 21 ... Power supply frequency input means, 22. River... Microcomputer, 27.
... Compare Lake-0 Name of agent Patent attorney Toshio Nakao and 1 other person Figure 1 Figure 4 Time

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧装置、室外側熱交換器を
具備した冷凍サイクルに、暖房サイクルと除霜サイクル
を切換えるサイクル切換手段を設け、さらに前記サイク
ル切換手段を暖房サイクルから除霜サイクルに切換える
制御装置を、前記圧縮機の運転開始からの時間を計測す
る時間計測手段と、あらかじめ設定された時間を記憶し
ている設定時間記憶手段と、前記時間計測手段により検
出した時間と前記設定時間記憶手段に設定された時間の
一致を検出し出力する第1の比較手段と、前記室内側熱
交換器の冷媒入口側に連結された配管の温度を検出する
温度検出手段と、暖房サイクルを除霜サイクルに切換え
る境界値温度を記憶した設定温度記憶手段と電源周波数
を入力する周波数入力手段と、その周波数が50HZか
60HZか判定する周波数判定手段と、風量を切り換え
る風量切換手段と、各風量及び前記周波数判定手段の出
力により設定温度を切り換える設定温度切換手段と、前
記温度検出手段により検出した温度が前記設定温度記憶
手段に記憶された境界値温度より低下したことを検出し
出力する第2の比較手段と、前記第1の比較手段による
設定時間経過信号と前記第2の比較手段による境界値低
下信号により、暖房サイクルから除霜サイクルへの切換
えを判定する判定手段と、前記判定手段の出力に応じて
前記冷凍サイクルを暖房運転から除霜運転へ制御する選
択出力手段より構成した空気調和機の除霜制御装置。
A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means is further configured to switch from a heating cycle to a defrosting cycle. A control device configured to switch the control device to a time measuring means for measuring the time from the start of operation of the compressor, a set time storage means for storing a preset time, and a time detected by the time measuring means and the setting. a first comparison means for detecting and outputting the coincidence of times set in the time storage means; a temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger; A set temperature storage means for storing a boundary value temperature for switching to a defrosting cycle, a frequency input means for inputting a power supply frequency, a frequency determination means for determining whether the frequency is 50Hz or 60Hz, an air volume switching means for switching an air volume, and each air volume. and a set temperature switching means for switching the set temperature based on the output of the frequency determining means, and a second set temperature switching means for detecting and outputting that the temperature detected by the temperature detection means has fallen below the boundary value temperature stored in the set temperature storage means. a comparison means for determining switching from a heating cycle to a defrosting cycle based on a set time elapsed signal from the first comparison means and a boundary value drop signal from the second comparison means; A defrosting control device for an air conditioner comprising a selection output means for controlling the refrigeration cycle from heating operation to defrosting operation according to the output.
JP61074752A 1986-04-01 1986-04-01 Control device for defrosting of air conditioner Pending JPS62233631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61074752A JPS62233631A (en) 1986-04-01 1986-04-01 Control device for defrosting of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61074752A JPS62233631A (en) 1986-04-01 1986-04-01 Control device for defrosting of air conditioner

Publications (1)

Publication Number Publication Date
JPS62233631A true JPS62233631A (en) 1987-10-14

Family

ID=13556307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61074752A Pending JPS62233631A (en) 1986-04-01 1986-04-01 Control device for defrosting of air conditioner

Country Status (1)

Country Link
JP (1) JPS62233631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452441A (en) * 1990-06-18 1992-02-20 Sanyo Electric Co Ltd Frost-detecting method for heat pump type air-conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452441A (en) * 1990-06-18 1992-02-20 Sanyo Electric Co Ltd Frost-detecting method for heat pump type air-conditioner

Similar Documents

Publication Publication Date Title
KR900005722B1 (en) Defrosting control apparatus for a temperature control system
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPS62233631A (en) Control device for defrosting of air conditioner
JPS63189731A (en) Defrosting controller of air conditioner
JPH0566491B2 (en)
JPH0566493B2 (en)
JPS62206336A (en) Defrosting control device for air-conditioning machine
JPS63220029A (en) Defrosting controller for air conditioner
JPH0195242A (en) Defrosting control device in air conditioner
JPS62223551A (en) Defrosting control unit of air conditioner
JPH0566495B2 (en)
JPH0566492B2 (en)
JPS63131943A (en) Defrosting controller of air conditioner
JPS6341758A (en) Defrosting control device for air conditioner
JPS6315020A (en) Defrosting controller for air conditioner
JPS62210338A (en) Control device for defrosting of air-conditioning machine
JPS6341757A (en) Defrosting control device for air conditioner
JPS62213638A (en) Defrost control device for air conditioner
JPS62261846A (en) Defrosting controller for air-conditioning machine
JPS62119345A (en) Defrosting device of air conditioner
JPH0566498B2 (en)
JPS6338848A (en) Defrosting control device for air conditioner
JPS62223553A (en) Defrosting control unit of air conditioner
JPS62223548A (en) Defrosting control unit of air conditioner