JPH0566493B2 - - Google Patents

Info

Publication number
JPH0566493B2
JPH0566493B2 JP61014019A JP1401986A JPH0566493B2 JP H0566493 B2 JPH0566493 B2 JP H0566493B2 JP 61014019 A JP61014019 A JP 61014019A JP 1401986 A JP1401986 A JP 1401986A JP H0566493 B2 JPH0566493 B2 JP H0566493B2
Authority
JP
Japan
Prior art keywords
temperature
cycle
switching
defrosting
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61014019A
Other languages
Japanese (ja)
Other versions
JPS62172141A (en
Inventor
Akira Yokochi
Makoto Kaihara
Katsumi Fukuda
Keiichi Kuryama
Masahiro Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61014019A priority Critical patent/JPS62172141A/en
Publication of JPS62172141A publication Critical patent/JPS62172141A/en
Publication of JPH0566493B2 publication Critical patent/JPH0566493B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調
和機の除霜制御装置に関するもので、特に室外側
熱交換器の着霜を室内側で検知し得るようにした
空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat pump type air conditioner. Regarding air conditioners.

従来の技術 従来、特公昭59−34255号公報に示されるよう
に、室内側熱交換器の温度変化と室内温度の変化
の両者に基づいて室外側熱交換器への着霜状態を
検知し、暖房運転と除霜運転を制御する技術が開
発されている。
Prior Art Conventionally, as shown in Japanese Patent Publication No. 59-34255, the state of frost on an outdoor heat exchanger is detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change. Technologies have been developed to control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、温度検出
素子が複数必要となり、自と回路が複雑化する問
題がある。さらに、空気調和機においては、室内
側の送風量が任意に可変設定されることが常であ
り、そのためにも従来の技術に風量補正手段を加
味させることは、一層回路を複雑化にしてしま
う。しかも、かかる構成は熱交換器を流れている
途中の気液混合冷媒温度を検出しているため、着
霜時と未着霜時の温度変化が小さく、微小な範囲
で着霜判定を行わなければならず、検出精度が安
定しない問題がある。
Problems to be Solved by the Invention However, such a conventional configuration requires a plurality of temperature detection elements, and has the problem of complicating the circuit itself. Furthermore, in air conditioners, the amount of air blown inside the room is usually variably set arbitrarily, and for this reason, adding an air amount correction means to the conventional technology would further complicate the circuit. . Moreover, since this configuration detects the temperature of the gas-liquid mixed refrigerant flowing through the heat exchanger, the temperature change between frost and non-frost is small, and frost formation must be determined within a minute range. However, there is a problem that the detection accuracy is unstable.

また、電源周波数により、50Hzと60Hzにおいて
圧縮機能力が異なり、一般的に60Hzの方が高圧が
上がり、同じ室内側熱交換器温度においても、50
Hzと60Hzでは、室外側熱交換器の着霜状態が異な
り、適確な除霜判定ができなかつた。
Also, depending on the power supply frequency, the compression function differs between 50Hz and 60Hz, and in general, the pressure is higher at 60Hz, and even at the same indoor heat exchanger temperature,
The frosting conditions on the outdoor heat exchanger differed between Hz and 60Hz, making it impossible to accurately determine defrost.

以上のように、従来の技術には問題点が多々あ
り、改善が要求されるものである。
As described above, the conventional technology has many problems, and improvements are required.

本発明は、上記従来の問題点に鑑み、従来技術
の利点を損うことなく、構成の簡素化がはかれる
除霜制御装置を提供するものである。
In view of the above-mentioned conventional problems, the present invention provides a defrosting control device that can be simplified in configuration without sacrificing the advantages of the prior art.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図
に示すように冷凍サイクルを暖房サイクルから除
霜サイクルに制御する制御装置を、室内側熱交換
器の冷媒入口側に連結された配管の温度を検出す
る温度検出手段と、暖房サイクルを除霜サイクル
に切換える境界値温度を記憶した設定温度記憶手
段と、電源周波数を入力すると、前記周波数クロ
ツク入力手段からの出力をもとに電源の異なる周
波数を判別する周波数判別手段と、その周波数判
別手段からの出力信号により前記設定温度記憶手
段の境界値温度を切換える境界値温度切換手段
と、前記温度検出手段により検出した温度が前記
設定温度記憶手段に記憶された境界値温度より低
下したことを検出し出力する比較手段による境界
値低下信号により、暖房サイクルから除霜サイク
ルへの切換えを判定する判定断と、前記判定手段
の出力に応じて前記冷凍サイクルを暖房運転から
除霜運転へ制御する選択出力手段より構成したも
のである。
Means for Solving the Problems In order to solve the above problems, the present invention, as shown in FIG. temperature detection means for detecting the temperature of the pipe connected to the inlet side; set temperature storage means for storing the boundary value temperature for switching the heating cycle to the defrosting cycle; frequency discrimination means for discriminating different frequencies of the power supply based on the output; boundary value temperature switching means for switching the boundary value temperature of the set temperature storage means based on the output signal from the frequency discrimination means; and detection by the temperature detection means. determining whether to switch from the heating cycle to the defrosting cycle based on a boundary value drop signal from a comparison means that detects and outputs that the temperature has fallen below the boundary value temperature stored in the set temperature storage means; The apparatus includes selection output means for controlling the refrigeration cycle from heating operation to defrosting operation in accordance with the output of the determination means.

作 用 この構成により、電源周波数に応じた境界値温
度を記憶した設定温度記憶手段と、温度検出手段
の検出温度に応じて、除霜運転が制御される。
Operation With this configuration, the defrosting operation is controlled according to the set temperature storage means that stores the boundary value temperature according to the power supply frequency and the temperature detected by the temperature detection means.

実施例 以下、本発明の一実施例を第2図〜第5図を参
照にして説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 2 to 5.

第2図は、本発明の一実施例を示す冷凍サイク
ル図である。
FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention.

同図において、冷凍サイクルは圧縮機1、四方
切換弁2、室内側熱交換器3、減圧器4、室外側
熱交換器5を順次連結することにより構成されて
いる。6は配管温度検出素子であり、暖房時にお
いて室内側熱交換器3(凝縮器)の冷媒入口側と
なる配管に取り付けられている。この場合、暖房
運転時は同図の実線矢印の方向に冷媒が流れ、暖
房運転時には四方切換弁2が切換わることにより
同図の破線矢印の方向に冷媒が流れるようになつ
ている。
In the figure, the refrigeration cycle is constructed by sequentially connecting a compressor 1, a four-way switching valve 2, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5. Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. In this case, during the heating operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during the heating operation, the four-way switching valve 2 is switched so that the refrigerant flows in the direction of the broken line arrow in the figure.

さらに、上記圧縮機1、四方切換弁2、減圧器
4、室外側熱交換器5および室外送風機8によつ
て室外ユニツトAが構成されている。また上記室
内側熱交換器3および室内送風機7、さらに配管
温度検出素子6、温度調節機能、判断機能などが
プログラムされたマイクロコンピユータ(以下、
LSIと略称する)を有する運転制御部(図示せ
ず)は室内ユニツトBに設けられている。ここ
で、配管温度検出素子6は、室内送風機7の送風
の影響を受けない風回路からはずれた箇所に取付
けられている。また、室内ユニツトBの近辺でも
よい。
Further, the compressor 1, the four-way switching valve 2, the pressure reducer 4, the outdoor heat exchanger 5, and the outdoor blower 8 constitute an outdoor unit A. In addition, a microcomputer (hereinafter referred to as
An operation control section (not shown) having an LSI (abbreviated as LSI) is provided in indoor unit B. Here, the pipe temperature detection element 6 is attached at a location away from the wind circuit where it is not affected by the air blowing from the indoor blower 7. Alternatively, the location may be near indoor unit B.

次に第3図により、運転制御回路構成について
説明する。ここで、第2図と同じものについては
同一の番号を付して説明する。
Next, the operation control circuit configuration will be explained with reference to FIG. Here, the same parts as in FIG. 2 are given the same numbers and will be explained.

同図において、C,Dはそれぞれ運転制御部と
リモートコントロール部(以下操作部と称す)を
示し、運転制御部Cは、交流電源21を降圧する
トランス22と、交流を直流に変換するDC電源
発生部23と、このDC電源発生部23からの直
流をLSI24の入力電源とレギユラー25と、基
準電圧発生回路26と、除霜を行うための動作温
度を切換える除霜設定回路27と、前記基準電圧
発生回路26と除霜設定回路27の基準合成入力
と配管温度検出素子6の入力を比較する比較回路
28と、圧縮機1、四方切換弁2、室内送風機
7、室外送風機8の各運転を制御するリレー素子
群からなる出力回路29と、前記LSI24の各種
信号処理の基礎タイミングを作る発生回路30
と、各種信号処理を司るリセツト回路31を具備
している。ここで、前記レギユレータ25はLSI
24のポートP1に接続され、出力回路29はポ
ートP11〜P16にそれぞれ接続され、また暖房運転
から除霜運転へ切換える動作温度点を決定する除
霜設定回路27はポートP21に接続され、比較回
路28はポートP31に接続され、さらに発信回路
30、リセツト回路31はポートP41,P42,P51
にそれぞれ接続されている。
In the figure, C and D indicate an operation control section and a remote control section (hereinafter referred to as operation section), respectively, and the operation control section C includes a transformer 22 that steps down the AC power supply 21 and a DC power supply that converts AC into DC. A generating section 23, a DC power source generating section 23 that supplies direct current to the input power source of the LSI 24, a regular 25, a reference voltage generating circuit 26, a defrost setting circuit 27 that switches the operating temperature for defrosting, and the reference A comparison circuit 28 compares the reference composite input of the voltage generation circuit 26 and the defrosting setting circuit 27 with the input of the pipe temperature detection element 6, and each operation of the compressor 1, four-way switching valve 2, indoor blower 7, and outdoor blower 8 is controlled. An output circuit 29 consisting of a group of relay elements to be controlled, and a generation circuit 30 that creates basic timing for various signal processing of the LSI 24.
and a reset circuit 31 that controls various signal processing. Here, the regulator 25 is an LSI
The output circuit 29 is connected to ports P 11 to P 16 , respectively, and the defrost setting circuit 27, which determines the operating temperature point for switching from heating operation to defrosting operation, is connected to port P 21 . The comparator circuit 28 is connected to the port P 31 , and the transmitting circuit 30 and the reset circuit 31 are connected to the ports P 41 , P 42 , P 51
are connected to each.

そして、基準電圧発生回路26は抵抗101,
102によつて構成され、除霜設定回路27はポ
ートP21に接続された抵抗103より構成され、
また出力回路29は、各ポートP11〜P16に接続さ
れたリレー素子R1,R2,R3,R4,R5,R6より構
成されている。リレー素子R1は圧縮機に対応し、
リレー素子R2は四方切換弁に相当し、リレー素
子R3は室外送風機に相当し、リレー素子R4,R5
R6はそれぞれ室内送風機の風量切換えを行う
「低速」・「中速」・「高速」の速温端子に相当する。
The reference voltage generation circuit 26 includes a resistor 101,
102, the defrost setting circuit 27 is composed of a resistor 103 connected to port P21 ,
Further, the output circuit 29 includes relay elements R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 connected to each port P 11 to P 16 . Relay element R 1 corresponds to the compressor,
Relay element R 2 corresponds to a four-way switching valve, relay element R 3 corresponds to an outdoor blower, and relay elements R 4 , R 5 ,
R6 corresponds to the "low speed", "medium speed", and "high speed" speed temperature terminals that change the air volume of the indoor blower.

さらに33はインバータIC回路で、前記LSI2
4のポートPoに接続され、前記DC電源発生部2
3により全波整流された波形信号を前記LSI24
へ入力する。したがつて、前記LSI24は、この
波形信号の周期により電源周波数が例えば50Hzか
60Hzを判定し、その結果をポートP21へ出力し、
除霜設定回路を動作させ、比較回路28にかける
基準合成入力を変える。本実施例では、高い周波
数60Hzを検出したとき、ポートP21からは「Hi」
を出力し、基準合成入力電圧を上昇させ、境界値
温度を上昇させるように設定している。
Furthermore, 33 is an inverter IC circuit, and the LSI 2
4 port Po, and the DC power generation section 2
The waveform signal full-wave rectified by 3 is sent to the LSI 24.
Enter. Therefore, the LSI 24 can vary the power supply frequency from 50Hz to 50Hz, for example, depending on the period of this waveform signal.
Determine 60Hz, output the result to port P 21 ,
The defrost setting circuit is operated and the reference synthesis input applied to the comparison circuit 28 is changed. In this example, when a high frequency of 60Hz is detected, "Hi" is output from port P21 .
is set to output, increase the reference composite input voltage, and raise the boundary value temperature.

また51は吸込み空気温度を検出する空気温度
検出素子、52は複数の抵抗群110〜115を
具備したA/D変換回路、53は前記空気温度検
出素子51の入力と、A/D変換回路52からの
入力の比較を行い、圧縮機1の運転・停止信号を
出力する比較回路である。
Further, 51 is an air temperature detection element for detecting the intake air temperature, 52 is an A/D conversion circuit including a plurality of resistor groups 110 to 115, and 53 is an input of the air temperature detection element 51 and the A/D conversion circuit 52. This is a comparison circuit that compares the inputs from the compressor 1 and outputs an operation/stop signal for the compressor 1.

前記空気温度検出素子51、A/D変換回路5
2は室内温度調節を行うサーモスタツトの機能を
構成し、前記A/D変換回路52は、LSI24の
ポートP71〜P74に、また比較回路53の出力は、
LSI24のポートP81にそれぞれ接続されている。
この室温制御については本発明の要旨に関係しな
いため、詳細な説明は省略する。
The air temperature detection element 51 and the A/D conversion circuit 5
2 constitutes the function of a thermostat that adjusts the indoor temperature, the A/D conversion circuit 52 is connected to ports P 71 to P 74 of the LSI 24, and the output of the comparison circuit 53 is
Each is connected to port P 81 of the LSI 24.
Since this room temperature control is not related to the gist of the present invention, detailed explanation will be omitted.

次に、操作部Dは、「低速」・「中速」・「高速」・
「停止」の選択スイツチS1〜S4を具備した風量切
換操作部41と、室温を設定操作するスイツチ
S11〜S14を具備した室温設定操作部42より構成
されている。そして風量切換操作部41および室
温設定操作部42は、LSI24のポートP61〜P66
にそれぞれ接続されている。この風量切換操作部
41、室温設定操作部42をそれぞれ操作するこ
とにより、LSI24内部でその操作内容が処理さ
れ、出力回路29、室温制御関係回路部が動作す
る。
Next, the operation part D selects "low speed", "medium speed", "high speed",
An air volume switching operation section 41 equipped with "stop" selection switches S 1 to S 4 and a switch for setting the room temperature.
It is composed of a room temperature setting operation section 42 equipped with S11 to S14 . The air volume switching operation unit 41 and the room temperature setting operation unit 42 are connected to ports P 61 to P 66 of the LSI 24.
are connected to each. By operating the air volume switching operation section 41 and the room temperature setting operation section 42, the operation contents are processed inside the LSI 24, and the output circuit 29 and the room temperature control related circuit section are operated.

さらに、上記構成と第1図に示す構成の関係に
ついて説明する。
Furthermore, the relationship between the above configuration and the configuration shown in FIG. 1 will be explained.

配管温度検出素子6は、温度検出手段に相当
し、インバータIC回路33とDC電源発生部23
は、クロツク入力手段に相当し、基準電圧発生回
路26と除霜設定回路27は、設定温度記憶手段
に相当し、また前記除霜設定回路27は、境界値
温度切換手段に相当し、比較回路28は、比較手
段に相当し、出力回路29は、選択出力手段に相
当し、四方切換弁2は、サイクル切換手段に相当
する。そして、LSI24は、周波数判別手段、判
定手段に相当する。
The pipe temperature detection element 6 corresponds to temperature detection means, and is connected to the inverter IC circuit 33 and the DC power generation section 23.
corresponds to a clock input means, the reference voltage generation circuit 26 and the defrost setting circuit 27 correspond to a set temperature storage means, the defrost setting circuit 27 corresponds to a boundary value temperature switching means, and the comparison circuit Reference numeral 28 corresponds to comparison means, output circuit 29 corresponds to selection output means, and four-way switching valve 2 corresponds to cycle switching means. The LSI 24 corresponds to frequency discrimination means and determination means.

次に、暖房運転の開始から除霜運転に至るまで
の動作について第2図〜第5図をもとに説明す
る。
Next, the operation from the start of the heating operation to the defrosting operation will be explained based on FIGS. 2 to 5.

圧縮機1の吐出冷媒温度をTd、圧縮機1の吸
入冷媒温度をTs、圧縮機1の吐出圧力をPd、圧
縮機1の吸入圧力をPsとし、ポリトロープ指数
をn(ただし1<n<Kの関係で、Kは断熱圧縮
指数)とすると、吐出冷媒温度Tdは次式で表わ
される。
The discharge refrigerant temperature of compressor 1 is Td, the suction refrigerant temperature of compressor 1 is Ts, the discharge pressure of compressor 1 is Pd, the suction pressure of compressor 1 is Ps, and the polytropic index is n (where 1<n<K In the relationship, K is the adiabatic compression index), then the discharge refrigerant temperature Td is expressed by the following equation.

Td=Ts・(Pd/Ps)n-1/n したがつて、室外熱交換器5が未着霜時は吸入
冷媒温度Tsが高く、又吐出冷媒温度Tdも高い。
Td=Ts・(Pd/Ps) n-1/n Therefore, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts is high and the discharge refrigerant temperature Td is also high.

そして外気が下がり、着霜が成長するにつれ
て、吸入冷媒温度Tsは低下し、吐出冷媒温度Td
も下がる。本発明における配管温度検出素子6
は、室内側熱交換器3の入口配管に設けられ、圧
縮機1から吐出された高温高圧の過熱域冷媒ガス
が流れる部分の温度を検出するが、実際その温度
は吐出ガスに比べて内外接続配管等での熱損失に
より所定温度低下した温度である。
As the outside air drops and frost grows, the suction refrigerant temperature Ts decreases and the discharge refrigerant temperature Td
It also goes down. Piping temperature detection element 6 in the present invention
is installed in the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the high-temperature, high-pressure superheated refrigerant gas discharged from the compressor 1 flows, but the temperature is actually lower than that of the discharged gas. This is the temperature that has decreased by a predetermined temperature due to heat loss in piping, etc.

したがつて、第4図に示すように室外側熱交換
器5が未着霜時は圧縮機1の吸入冷媒温度Ts、
室内側熱交換器3の入口配管温度tはともに高
く、着霜が進むにつれて徐々に低下し、そして暖
房能力を大幅に低下させる着霜に至ると、室内側
熱交換器3の入口配管温度tは極端に低下する。
すなわち、入口配管温度tが設定配管温度t1以下
になれば暖房能力は低下し、着霜が進んでいるの
で除霜する必要がある。
Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts of the compressor 1,
The inlet pipe temperature t of the indoor heat exchanger 3 is both high, and gradually decreases as frosting progresses, and when frost formation that significantly reduces the heating capacity occurs, the inlet pipe temperature t of the indoor heat exchanger 3 decreases. decreases dramatically.
That is, if the inlet pipe temperature t becomes equal to or lower than the set pipe temperature t1 , the heating capacity decreases, and since frost formation has progressed, it is necessary to defrost.

また、電源周波数において、50Hzと60Hzとで
は、圧縮機1の能力が異なり、室外側熱交換器5
の着霜時における、高圧、吐出温度も異なる。す
なわち、50Hzと60Hzでは一般的に室内側熱交換器
3の入口配管温度tも異なり、設定配管温度t1
50Hzと60Hzでは切換えて除霜判定を行わなけれ
ば、電源周波数に応じて、例えば60Hzのときに適
切な除霜検出が行えず、暖房能力を十分発揮する
ことができないことになる。
Also, regarding the power frequency, the capacity of the compressor 1 is different between 50Hz and 60Hz, and the capacity of the outdoor heat exchanger 5 is different.
The high pressure and discharge temperature during frost formation are also different. In other words, the inlet pipe temperature t of the indoor heat exchanger 3 is generally different between 50Hz and 60Hz, and the set pipe temperature t1 is different from that of the indoor heat exchanger 3.
If defrost determination is not performed by switching between 50Hz and 60Hz, appropriate defrost detection cannot be performed depending on the power supply frequency, for example at 60Hz, and the heating capacity cannot be fully utilized.

このように、室内側熱交換器3の入口配管温度
tは、過熱域冷媒ガスの温度であるため、室内送
風機7の風量の影響を受けにくく、室内側熱交換
器3の入口配管温度にて50Hz、60Hz共に適確な除
霜運転の判断を行うことができる。
In this way, since the inlet pipe temperature t of the indoor heat exchanger 3 is the temperature of the refrigerant gas in the superheated region, it is not easily affected by the air volume of the indoor blower 7, and the inlet pipe temperature t of the indoor heat exchanger 3 is Appropriate defrosting operation judgment can be made at both 50Hz and 60Hz.

以上の説明に基づき、第3図に示す制御回路
は、第5図に示すフローチヤートの内容の制御を
行う。ここで、説明の便宜上暖房運転時は、圧縮
機、四方切換弁、室外送風機、「低速」で運転さ
れている室内送風機の各リレー素子R1〜R4が動
作していると仮定する。
Based on the above explanation, the control circuit shown in FIG. 3 controls the contents of the flowchart shown in FIG. 5. Here, for convenience of explanation, it is assumed that during the heating operation, the compressor, the four-way switching valve, the outdoor blower, and the relay elements R 1 to R 4 of the indoor blower operated at "low speed" are operating.

すなわち、第5図のステツプ1にて、電源周波
数が60Hzかどうかを判定し、ステツプ2にて、60
HzであればポートP21をHiにし、50Hzであれば、
ポートP21をオープンにする。具体的には第3図
のインバータIC回路33からの波形信号により
LSI24内の周波数判別手段が判別を行い、LSI
24の出力側のポートP21を60HzであればHiに
し、抵抗101,102の分圧によりできる基準
電圧を引き上げ、設定配管温度t1を電源周波数の
50Hz・60Hzによつて変えている。
That is, in step 1 of Fig. 5, it is determined whether the power supply frequency is 60Hz, and in step 2, it is determined whether the power supply frequency is 60Hz.
If it is Hz, set port P 21 to Hi, if it is 50Hz,
Open port P 21 . Specifically, the waveform signal from the inverter IC circuit 33 shown in FIG.
The frequency discrimination means in the LSI 24 makes the discrimination, and the LSI
Set port P 21 on the output side of 24 to Hi at 60 Hz, raise the reference voltage created by the partial pressure of resistors 101 and 102, and set the set pipe temperature t 1 to the power frequency.
It changes depending on 50Hz and 60Hz.

その後、ステツプ3にて暖房運転が開始され、
配管温度検出素子6による配管温度tの読み込み
が行われ(ステツプ4)、ステツプ5に移つて配
管温度tがステツプ1および2で設定された設定
配管温度t1よりも低いかが判定される。具体的に
は第3図の比較回路28が判定する。
After that, heating operation is started in step 3,
The pipe temperature t is read by the pipe temperature detection element 6 (step 4), and the process moves to step 5, where it is determined whether the pipe temperature t is lower than the set pipe temperature t1 set in steps 1 and 2 . Specifically, the comparison circuit 28 in FIG. 3 makes the determination.

そしてステツプ5の条件が満足されるとステツ
プ6へ移り、除霜運転が開始される。すなわち、
第3図に示す出力回路29の各リレー素子R1
R2,R3,R4がそれぞれ動作し、四方切換弁2を
切換え、必要に応じてその前に圧縮機1を一定時
間停止し、室内送風機7および室外送風機8を停
止する。そして冷房サイクルにて除霜を行う。こ
の除霜運転の内容は従来周知のため、詳細な説明
を省略する。また暖房運転の復帰についても従来
より周知の如く、適宜手段にて実施できる。
When the conditions of step 5 are satisfied, the process moves to step 6 and defrosting operation is started. That is,
Each relay element R 1 of the output circuit 29 shown in FIG.
R 2 , R 3 , and R 4 are operated to switch the four-way switching valve 2, and if necessary, before that, the compressor 1 is stopped for a certain period of time, and the indoor blower 7 and the outdoor blower 8 are stopped. Defrost is then performed in the cooling cycle. Since the content of this defrosting operation is conventionally well known, detailed explanation will be omitted. Further, the restoration of the heating operation can be carried out by any suitable means as is well known in the art.

なお、本実施例においては、除霜運転を暖房サ
イクルから冷房サイクルへの切換えによつて行う
ようにしたが、例えば暖房サイクルを維持したま
まとして室外側熱交換器へ別途蓄熱していた冷媒
を流す構成あるいは、別熱源にて霜を溶かす構成
としてもよいことは言うまでもない。また圧縮機
1は除霜運転へ切換え時には連続運転とし、暖房
運転復帰前に一時停止させるようにしてもよい。
In this embodiment, the defrosting operation is performed by switching from the heating cycle to the cooling cycle. It goes without saying that a configuration in which the frost is allowed to flow or a configuration in which a separate heat source is used to melt the frost may also be used. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped before returning to heating operation.

さらに、電源周波数に応じたポートP21の出力
状況は、50Hzのときに「Hi」となるようにし、
設定値を変えるようにしてもよい。
Furthermore, the output status of port P 21 according to the power frequency is set to "Hi" at 50Hz,
The setting value may be changed.

発明の効果 以上並べたように本発明によれば、上記した構
成により、過熱域冷媒ガスの温度る室内側熱交換
器入口配管にて検出し、室内風量の影響をあまり
受けずに、適確な除霜運転を温度検出1点で行う
ことができ、構成が非常に簡単であり、また冷媒
が、暖房を行う熱量を十分に有しているか否かの
判定が室内側熱交換器の入口側で行えるため、実
際の暖房能力の有無を確実に判断して除霜を行う
ことができる。さらに電源周波数が異なつた場合
でもその周波数に応じた境界値温度に変更するた
め、除霜が確実に行え、信頼性が向上する。
Effects of the Invention As described above, according to the present invention, the temperature of the refrigerant gas in the superheated region is detected at the indoor heat exchanger inlet piping, and the temperature of the refrigerant gas in the superheated region is detected accurately without being affected by the indoor air volume. The defrosting operation can be performed with one temperature detection point, the configuration is very simple, and it can be determined whether the refrigerant has enough heat for heating at the inlet of the indoor heat exchanger. Since defrosting can be done on the side, it is possible to reliably determine whether there is actual heating capacity before defrosting. Furthermore, even if the power supply frequency differs, the temperature is changed to the boundary value according to the frequency, so defrosting can be performed reliably and reliability is improved.

すなわち、本発明は完全に着霜が発生している
冷媒の温度が熱交換器の入口部、中間部に差がな
く、未着霜時に入口冷媒温度の方が中間部の冷媒
温度に比べて著しく高い点に着眼し、入口側の冷
媒温度を検出することによつて、未着霜から着霜
に至るまでの温度変化が大きくとれ、1点の温度
検出で限界に近い暖房能力を引き出すことができ
る。
In other words, in the present invention, there is no difference in the temperature of the refrigerant at the inlet part and the middle part of the heat exchanger when frost has completely formed, and when no frost has formed, the inlet refrigerant temperature is higher than the refrigerant temperature in the middle part. By focusing on extremely high points and detecting the refrigerant temperature on the inlet side, it is possible to detect large temperature changes from non-frosting to frosting, and to draw out the heating capacity close to the limit by detecting the temperature at one point. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の除霜制御装置を機能実現手段
で表現したブロツク図、第2図は本発明の一実施
例を示す空気調和機の冷凍サイクル図、第3図は
同空気調和機における除霜制御装置の回路図、第
4図は同除霜制御装置における室内側熱交換器へ
流入する冷媒温度と圧縮機吸入冷媒温度の関係を
示す特性図、第5図は同除霜制御装置の動作内容
を示すフローチヤートである。 1……圧縮機、2……四方切換弁、3……室内
側熱交換器、5……室外側熱交換器、6……配管
温度検出素子(温度検出手段)、23……DC電源
発生部(クロツク入力手段)、24……LSI(判定
手段)、26……基準電圧発生回路(設定温度記
憶手段)、27……除霜設定回路(設定温度記憶
手段)、28……比較回路(比較手段)、29……
出力回路(選択出力手段)、30……発振回路、
31……リセツト回路、33……インバータIC
回路(クロツク入力手段)。
Fig. 1 is a block diagram expressing the defrosting control device of the present invention using function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a diagram of the defrosting control device of the present invention. A circuit diagram of the defrosting control device, Fig. 4 is a characteristic diagram showing the relationship between the temperature of the refrigerant flowing into the indoor heat exchanger and the compressor suction refrigerant temperature in the defrosting control device, and Fig. 5 is a diagram showing the relationship between the temperature of the refrigerant flowing into the indoor heat exchanger in the defrosting control device This is a flowchart showing the operation contents. 1... Compressor, 2... Four-way switching valve, 3... Indoor heat exchanger, 5... Outdoor heat exchanger, 6... Piping temperature detection element (temperature detection means), 23... DC power generation section (clock input means), 24... LSI (determination means), 26... reference voltage generation circuit (set temperature storage means), 27... defrost setting circuit (set temperature storage means), 28... comparison circuit ( means of comparison), 29...
Output circuit (selection output means), 30... oscillation circuit,
31...Reset circuit, 33...Inverter IC
circuit (clock input means).

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、室内側熱交換器、減圧装置、室外側
熱交換器を具備した冷凍サイクルに、暖房サイク
ルと除霜サイクルを切換えるサイクル切換手段を
設け、さらに前記サイクル切換手段を暖房サイク
ルから除霜サイクルに切換える制御装置を、前記
室内側熱交換器の冷媒入口側に連結された配管の
うち過熱域冷媒ガスが流れる部分の温度を検出す
る温度検出手段と、暖房サイクルを除霜サイクル
に切換える境界値温度を記憶した設定温度記憶手
段と、電源周波数を入力するクロツク入力手段
と、前記クロツク入力手段からの出力をもとに、
電源の異なる周波数を判別する周波数判別手段
と、その周波数判別手段からの出力信号により前
記設定温度記憶手段の境界値温度を切換える境界
値温度切換手段と、前記温度検出手段により検出
した温度が前記設定温度記憶手段に記憶された境
界値温度より低下したことを検出し出力する比較
手段による境界値低下信号により、暖房サイクル
から除霜サイクルへの切換えを判定する判定手段
と、前記判定手段の出力に応じて前記サイクル切
換手段を駆動する出力手段より構成するととも
に、前記制御装置を室内ユニツトに設けたセパレ
ート形空気調和機の除霜制御装置。
1. A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means switches from the heating cycle to the defrosting cycle. A control device for switching the heating cycle to a defrosting cycle, a temperature detection means for detecting the temperature of a portion of the pipe connected to the refrigerant inlet side of the indoor heat exchanger through which superheated refrigerant gas flows, and a boundary for switching the heating cycle to the defrosting cycle. Based on the set temperature storage means that stores the value temperature, the clock input means that inputs the power supply frequency, and the output from the clock input means,
frequency discrimination means for discriminating between different frequencies of the power source; boundary value temperature switching means for switching the boundary value temperature of the set temperature storage means according to an output signal from the frequency discrimination means; a determination means for determining switching from a heating cycle to a defrosting cycle based on a boundary value drop signal from a comparison means which detects and outputs a temperature drop below a boundary value stored in a temperature storage means; and an output of said determination means. What is claimed is: 1. A defrosting control device for a separate air conditioner, comprising an output device for driving the cycle switching device in accordance with the cycle switching device, and the control device is provided in an indoor unit.
JP61014019A 1986-01-24 1986-01-24 Defrosting control device for air-conditioning machine Granted JPS62172141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61014019A JPS62172141A (en) 1986-01-24 1986-01-24 Defrosting control device for air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61014019A JPS62172141A (en) 1986-01-24 1986-01-24 Defrosting control device for air-conditioning machine

Publications (2)

Publication Number Publication Date
JPS62172141A JPS62172141A (en) 1987-07-29
JPH0566493B2 true JPH0566493B2 (en) 1993-09-21

Family

ID=11849481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61014019A Granted JPS62172141A (en) 1986-01-24 1986-01-24 Defrosting control device for air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS62172141A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078681B2 (en) * 2007-10-03 2012-11-21 パナソニック株式会社 Air conditioner
CN111457545B (en) * 2020-04-21 2021-09-21 宁波奥克斯电气股份有限公司 Compressor control method and device and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154851A (en) * 1978-05-26 1979-12-06 Saginomiya Seisakusho Inc Defrost control method of heating or freezing and cooling apparatus and defrost controller
JPS60138348A (en) * 1983-12-26 1985-07-23 Matsushita Electric Ind Co Ltd Method of controlling defrosting of air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154851A (en) * 1978-05-26 1979-12-06 Saginomiya Seisakusho Inc Defrost control method of heating or freezing and cooling apparatus and defrost controller
JPS60138348A (en) * 1983-12-26 1985-07-23 Matsushita Electric Ind Co Ltd Method of controlling defrosting of air conditioner

Also Published As

Publication number Publication date
JPS62172141A (en) 1987-07-29

Similar Documents

Publication Publication Date Title
KR900005722B1 (en) Defrosting control apparatus for a temperature control system
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPH0566493B2 (en)
JPH0566491B2 (en)
JPH0566492B2 (en)
JPS63189731A (en) Defrosting controller of air conditioner
JPH0566495B2 (en)
JPH0566489B2 (en)
JPS62233631A (en) Control device for defrosting of air conditioner
JPH0454858B2 (en)
JPH0566494B2 (en)
JPH0566498B2 (en)
JPS62223551A (en) Defrosting control unit of air conditioner
JPH0583819B2 (en)
JPS63131943A (en) Defrosting controller of air conditioner
JPS62210338A (en) Control device for defrosting of air-conditioning machine
JPS6315020A (en) Defrosting controller for air conditioner
JPS62206336A (en) Defrosting control device for air-conditioning machine
JPS62223549A (en) Defrosting control unit of air conditioner
JPS6341758A (en) Defrosting control device for air conditioner
JPH067020B2 (en) Defrost control device for air conditioner
JPS62223550A (en) Defrosting control unit of air conditioner
JPH0566497B2 (en)
JPS62223553A (en) Defrosting control unit of air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term