JPS62172141A - Defrosting control device for air-conditioning machine - Google Patents

Defrosting control device for air-conditioning machine

Info

Publication number
JPS62172141A
JPS62172141A JP61014019A JP1401986A JPS62172141A JP S62172141 A JPS62172141 A JP S62172141A JP 61014019 A JP61014019 A JP 61014019A JP 1401986 A JP1401986 A JP 1401986A JP S62172141 A JPS62172141 A JP S62172141A
Authority
JP
Japan
Prior art keywords
cycle
temperature
defrosting
switching
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61014019A
Other languages
Japanese (ja)
Other versions
JPH0566493B2 (en
Inventor
Akira Yokouchi
横内 朗
Makoto Kaihara
海原 誠
Katsumi Fukuda
克己 福田
Keiichi Kuriyama
栗山 啓一
Masahiro Watanabe
渡邉 雅洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61014019A priority Critical patent/JPS62172141A/en
Publication of JPS62172141A publication Critical patent/JPS62172141A/en
Publication of JPH0566493B2 publication Critical patent/JPH0566493B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a defrosting control device capable of being simplified in the constitution thereof by a method wherein the defrosting control device is provided with a deciding means, deciding switching from heating cycle into defrosting cycle, and a selective output means, controlling refrigerating cycle from heating operation to defrosting operation in accordance with the output of the judging means. CONSTITUTION:A frequency deciding means in a LSI24 decides an electric source frequency by a waveform signal from an inverter IC circuit 33 whether it is 60Hz and when it is 60Hz, the output side port P21 of the LSI24 is made Hi and a reference voltage, generated by the divided voltage of resistors 101, 102, is elevated while a set pipeline temperature t1 is changed in accordance with the electric source frequency of 50Hz or 60Hz. Heating operation is started and a pipeline temperature (t) is read by a pipeline temperature detecting element 6. A comparator 28 decides whether the pipeline temperature (t) is lower than the set pipeline temperature t1 and when a condition is satisfied, defrosting operation is started. The relay elements R1.R2.R3.R4 of an output circuit 29 are operated, a four-way changeover valve 2 is switched, a compressor 1 is stopped for a given time in accordance with necessity, an indoor fan 7 as well as an outdoor fan 8 are stopped and defrosting is effected by cooling cycle.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調和機の除
霜制御装置に1するもので、特に室外側熱交換器の着霜
を室内側で検知し得るようにした空気調和機にfilす
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a defrosting control device for a separate heat pump type air conditioner, and is particularly capable of detecting frost formation on an outdoor heat exchanger indoors. Fill the air conditioner.

従来の技術 従来、特公昭59−34255号公報に示されるように
、室内側熱交換器の温度変化と室内温度の変化の両者に
基ついて室外側熱交換器への着霜状態を検知し、暖房運
転と除霜運転を制御する技術が開発さt″Lでいる。
BACKGROUND ART Conventionally, as shown in Japanese Patent Publication No. 59-34255, the state of frost on an outdoor heat exchanger is detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change. Technology to control heating operation and defrosting operation has been developed.

発明が解決しようとする問題点 しかしながら、かかる従来の構[戊に、温度検出素子が
複数必要となり、自と回路が複数化する問題がある。さ
らに、空気調和機においては、室内側の送風量が任意に
可変設定されることが常であり、そのためにも従来の技
術に風用補正手段を加味させることは、一層回路を複雑
化てしてしまう。
Problems to be Solved by the Invention However, with this conventional structure, there is a problem in that a plurality of temperature detection elements are required, resulting in a plurality of circuits. Furthermore, in air conditioners, the amount of air blown indoors is usually set variably, and for this reason, adding a wind correction means to the conventional technology would further complicate the circuit. I end up.

しかも、かかる構成は熱交換器を流れている途中の気液
混合冷媒温度を検出しているため、着霜時と未肯霜時の
温度変化が小さく、微小な範囲で着W判定を行わなけれ
ばならず、検出精度が安定しない問題がある。
Moreover, since this configuration detects the temperature of the gas-liquid mixed refrigerant while it is flowing through the heat exchanger, the temperature change between frost formation and unconfirmed frost is small, and it is necessary to perform the W wearing judgment in a minute range. However, there is a problem that the detection accuracy is unstable.

また、電源周波数により、50 Hz と60Hzにお
いて圧縮機能力が異なり、一般的に60Hzの方が高圧
が上がり、同じ室内側熱交換器温度においても、50H
zと60Hzでは、室外側熱交換器の着霜状真が異なり
、適確な除霜やI定ができなかった。
In addition, the compression function power differs between 50 Hz and 60 Hz depending on the power supply frequency, and generally higher pressure is higher at 60 Hz, and even at the same indoor heat exchanger temperature, 50 Hz and 60 Hz
The degree of frost formation on the outdoor heat exchanger was different between z and 60 Hz, and appropriate defrosting and I-setting were not possible.

以上のように、従来の技術には問題点が多々あり、改善
が要求されるものである。
As described above, the conventional technology has many problems, and improvements are required.

不発r!IEIは、上記従来の問題点に鑑み、従来技術
の利点を損うことなく、構成の簡素化がはかれる除霜1
[す御装首を提供するものである。
Misfire r! In view of the above-mentioned conventional problems, the IEI is a defrosting system 1 that can simplify the configuration without sacrificing the advantages of the conventional technology.
[It provides a headdress.]

問j顕点を解決するだめの手段 上記問題点を解決するために不発F′!Aは、第1シ烈
に示すように冷凍サイクルを暖房サイクルから除霜サイ
クルに制御する制御装置を、室内側熱交換器の冷媒入口
側に連結された配管の温度を検出する温度検出手段と、
暖房サイクルを除霜サイクルに切換える境界値温度を記
憶した設定温度記憶手段と、電源周波数を入力すると、
前記周波数クロック入力手段からの出力をもとに電源の
異なる周波数を判別する周波数判別手段と、その周波数
−1別手段からの出力信号により前記設定温度記憶手段
の境界値温度を切換える境界値温度切換手段と、前記温
度検出手段により検出した温度が前記設定温度記憶手段
に記憶された境界値温度より低下したことを検出し出力
する比較手段による境界値低下信号により、暖房サイク
ルから除霜サイクルへのの切換えを判定する判定手段と
、前記判定手段の出力に応じて前記冷凍サイクルを暖房
運転から除霜運転へjtU御する選択出力手段より構成
したものである。
Question J: Unsuccessful means to solve the problem F'! As shown in the first diagram, A is a control device for controlling the refrigeration cycle from a heating cycle to a defrosting cycle, and a temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger;
When you input the set temperature storage means that stores the boundary value temperature for switching the heating cycle to the defrosting cycle and the power supply frequency,
frequency discrimination means for discriminating different frequencies of the power supply based on the output from the frequency clock input means; and boundary value temperature switching for switching the boundary value temperature of the set temperature storage means based on the output signal from the frequency-1 different means. and a boundary value decrease signal from a comparison means that detects and outputs that the temperature detected by the temperature detection means has fallen below the boundary value temperature stored in the set temperature storage means, the heating cycle is switched from the heating cycle to the defrosting cycle. and a selection output means for controlling the refrigeration cycle from heating operation to defrosting operation according to the output of the determination means.

作  用 この構成により、電源周波数に応じた境界値温度を記憶
した設定温度記憶手段と、温度検出手段の検出副産に応
じて、除霜運転が制御される。
Operation With this configuration, the defrosting operation is controlled according to the set temperature storage means that stores the boundary value temperature according to the power supply frequency and the detected by-product of the temperature detection means.

実施例 以下、本発明の一実施例を第2図〜第5図を参lKtに
して説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 2 to 5.

第2図は、本発明の一実施例を示す冷凍丈イクル図であ
る。
FIG. 2 is a refrigeration cycle diagram showing an embodiment of the present invention.

同図において、冷凍サイクルに圧縮機1、四方切換弁2
、室内側熱交換器3、減圧器4、室外側熱交換器5を順
次連結することにより構成されている。6は配管湿度検
出素子であり、暖房時において室内側熱交換器3(凝縮
器)の冷媒入口側となる配管に取り付けられている。こ
の場合、暖房運転時は同図の実線矢印の方向に冷媒が流
れ、暖房運転時には四方切換弁2が切換わることにより
同図の破線矢印の方向に冷媒が流れるようになっている
In the figure, the refrigeration cycle includes a compressor 1 and a four-way switching valve 2.
, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5 are connected in sequence. Reference numeral 6 denotes a pipe humidity detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. In this case, during heating operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 is switched so that the refrigerant flows in the direction of the broken line arrow in the figure.

さらに、上記E縮機1、四方切換弁2、減圧器4、室外
側熱交換器5および室外送風機8によって室外ユニット
Aが構成されている。また上記室内側熱交換器3および
室内送風機7、さらに配管温度検出素子6、温度調節機
能、判断慨能などがプログラムされたマイクロコンピユ
ータ(以下、LSIと略称する)を有する運転制御部(
図示せず)は室内ユニットBK設けられている。ここで
、配管温度検出素子6は、室内送風機7の送風の影響を
受けない風回路からはずれた箇所に取付けられている。
Further, the E-compressor 1, the four-way switching valve 2, the pressure reducer 4, the outdoor heat exchanger 5, and the outdoor blower 8 constitute an outdoor unit A. In addition, an operation control unit (hereinafter referred to as LSI) having a microcomputer (hereinafter abbreviated as LSI) programmed with the indoor heat exchanger 3 and the indoor blower 7, a pipe temperature detection element 6, a temperature adjustment function, a judgment function, etc.
(not shown) is provided with an indoor unit BK. Here, the pipe temperature detection element 6 is attached at a location away from the wind circuit where it is not affected by the air blowing from the indoor blower 7.

また、室内ユニントBの近辺でもよい。Alternatively, the location may be near the indoor unit B.

次に第3図により、運転1[す御回路構口yについて説
り1する。ここで、第2図と同じものについては同一の
番号を付して説明する。
Next, referring to FIG. 3, we will explain the operation 1 [control circuit structure exit 1]. Here, the same parts as in FIG. 2 are given the same numbers and will be explained.

同図において、C−Dはそれぞれ運転制御部とリモート
コントロール部(以下操作部と1小す)を示し、運転制
御部Cは、交流電訊21を降圧するトランス22と、交
流を直流に斐換するDC屯源発生部23と、このDC電
源発生部23からの直流をLSI24の入力′か源とす
るレギュラー25と、基準電匡発生回路26と、除’、
2NFを行うだめの動作温度を切換える除1)1設定回
路27と、前記基準電圧発生回路26と除霜設定回路2
7の基準合成入力と配管温度検出素子6の入力を比較す
る比較回路28と、E、ta機1、四方切換弁2、室内
法、風量7、室外送風機8の各運転を制御するリレー素
子群からな彊出力回路29と、前記LSI24の各種信
号処理の基礎タイミングを作る発生回路30と、各種信
号処理を司るリセット回路31を具備している。ここで
、前記レギュレータ25はLSI24のボートP1に接
続され、出力回路29はボートP11〜P16にそれぞ
れ接続され、また暖房運転から除霜運転へ切換える動作
温度点を決定する除霜設定回路271−tポートP21
に接続され、比較回路28はポー1−R3,に接続され
、さらに発信回路30、リセ7)回路31ぽボートP4
1 ・R42・R51にそれぞれ接続されている。
In the figure, CD indicates an operation control unit and a remote control unit (hereinafter referred to as the operation unit), respectively, and the operation control unit C includes a transformer 22 that steps down the AC telephone 21, and a transformer 22 that converts AC into DC. A DC voltage generator 23, a regular 25 which uses the DC from the DC power generator 23 as an input or source of the LSI 24, a reference voltage generator 26,
1) 1 setting circuit 27 for switching the operating temperature at which 2NF is performed, the reference voltage generation circuit 26, and the defrosting setting circuit 2.
A comparison circuit 28 that compares the reference composite input of 7 and the input of the pipe temperature detection element 6, and a relay element group that controls the operation of the E, TA machine 1, four-way switching valve 2, indoor method, air volume 7, and outdoor blower 8. It is equipped with an output circuit 29, a generation circuit 30 that creates basic timing for various signal processing of the LSI 24, and a reset circuit 31 that controls various signal processing. Here, the regulator 25 is connected to the boat P1 of the LSI 24, the output circuit 29 is connected to the boats P11 to P16, respectively, and a defrost setting circuit 271-t that determines the operating temperature point at which heating operation is switched to defrosting operation Port P21
The comparator circuit 28 is connected to port 1-R3, and further connected to the transmitter circuit 30, the reset circuit 7) circuit 31 port P4
1 ・Connected to R42 and R51 respectively.

そして、基準電子発生回路26に抵抗101・102に
よって構成され、除霜設定回路27はボートP21に接
続された抵抗103より構成され、壕だ出力回路29は
、各ボートP11〜P16に接続されたリレー素子R1
・R2・R3・R4・R5゛R6より+(1ζ収されて
いる。リレー素子R1は圧縮機に対応し、リレー素子R
2は四方切換弁に相当し、リレー素子R3は室外送風機
に相当し、リレー素子R4・R5・R6ばそれぞれ室内
送風機の風量切換えを行う「低速」・「中速」・「高速
」の速温端子に相当する。
The reference electron generation circuit 26 is composed of resistors 101 and 102, the defrost setting circuit 27 is composed of a resistor 103 connected to the boat P21, and the trench output circuit 29 is connected to each boat P11 to P16. Relay element R1
・R2・R3・R4・R5゛+(1ζ) is collected from R6.Relay element R1 corresponds to the compressor, and relay element R
2 corresponds to a four-way switching valve, relay element R3 corresponds to an outdoor blower, and relay elements R4, R5, and R6 respectively control the speed temperature of "low speed", "medium speed", and "high speed" to switch the air volume of the indoor fan. Corresponds to a terminal.

さらに33はインバータIC回路で、前記LSI24の
ボートPoに接続され、6f7記DC電源発生部23に
より全波整流された波形信号を前記LSI24へ入力す
る。したがって、前記LSI24は、この波形信号の周
期により電源周波&が例えは50Hzか60 Hzを判
定し、その結果をボートP21へ出力し、除霜設定回路
を動作させ、比較回路2日にかける基準合成入力を変え
る。本実施例では、高い周′e、数60Hzを検出した
とき、ボートP21からは「Hi Jを出力し、基準合
成入力電圧を上昇させ、境界値温度を上昇させるように
設定している。
Furthermore, an inverter IC circuit 33 is connected to the port Po of the LSI 24, and inputs a waveform signal that has been full-wave rectified by the DC power generation section 6f7 to the LSI 24. Therefore, the LSI 24 determines whether the power supply frequency & is, for example, 50 Hz or 60 Hz, based on the period of this waveform signal, outputs the result to the boat P21, operates the defrost setting circuit, and sets the standard for the comparison circuit 2 days. Change the synthesis input. In this embodiment, when a high frequency 'e of several 60 Hz is detected, the boat P21 outputs "Hi J", increases the reference composite input voltage, and increases the boundary value temperature.

また51に吸込み空気温度を検出する空気温度検出素子
、52は複数の抵抗群iio〜115を具(1!G シ
だA/D f換回路、53は前記空気温度検出素子51
の入力と、A/D変換回ms2からの入力の比較を行い
、王縮機1の運転・停止信号を出力する比較回路である
Further, 51 is an air temperature detection element for detecting the temperature of the intake air, 52 is a plurality of resistor groups IIO to 115 (1!G side A/D f conversion circuit, 53 is the air temperature detection element 51
This is a comparison circuit that compares the input from the A/D conversion circuit ms2 with the input from the A/D conversion circuit ms2, and outputs an operation/stop signal for the compressor 1.

前記空気温度検出素子51、A/D変換回路52は室内
温度調節を行う丈−モスタットのa能を構成し、前記A
/D変換回路52は、LSI24のボートP71〜P7
4に、また比較回路53の出力は、LSI24のボート
P81にそれぞれ接続されている。この室温制御につい
てけ不発り−jの・墨旨に力係しないため、詳細な説明
は省略する。
The air temperature detecting element 51 and the A/D conversion circuit 52 constitute a function of a height-mostat that adjusts the indoor temperature.
The /D conversion circuit 52 connects the ports P71 to P7 of the LSI 24.
4 and the output of the comparison circuit 53 are respectively connected to the port P81 of the LSI 24. A detailed explanation of this room temperature control will be omitted since it does not relate to the main point of the failure-j.

次に、操作64IDに、「低速コ・「中速コ・「高速」
 ・ 「停止」の選択スイッチ81〜S4を具びhした
風量9〕換操作部41と、電源を設定操作するスイッチ
811〜S14を具C11ii L/た室温設定操作g
1ζ42より構成びれている。そして風1j1切換操作
部41および室温設定操作部42は、LSI24の:F
: −トP 61〜”66にそれぞれ接続されている。
Next, enter "Low speed", "Medium speed", "High speed" in the operation 64 ID.
- Room temperature setting operation with the air volume change operation section 41 equipped with "stop" selection switches 81 to S4 and switches 811 to S14 for setting the power supply.
The fin is composed of 1ζ42. The wind 1j1 switching operation section 41 and the room temperature setting operation section 42 are connected to :F of the LSI 24.
: - connected to P61 to P66, respectively.

この風量切換操作部41、室温設定操作部42をそれぞ
れ操作することにより、LSI24内部でその操作内容
が処理され、出力回路29、室温制御関係回路部が動作
する。
By operating the air volume switching operation section 41 and the room temperature setting operation section 42, the operation contents are processed inside the LSI 24, and the output circuit 29 and the room temperature control related circuit section are operated.

さらに、上記構成と第1図に示す構成の関係について説
明する。
Furthermore, the relationship between the above configuration and the configuration shown in FIG. 1 will be explained.

配管温度検出素子6は、温度検出手段に相当し、インバ
ータIC回路33とDC電源発生部23は、クロ7り入
力手段に相当し、基準電圧発生回路26と除′A″i設
定回路27は、設定温度記憶手段に(目当し、また前記
除11■設定回路27は、ぢ5界(面温度切換手段に]
目当し、比較回路28け、比較手段に相当し、出力回路
29n、m択出力手段に目当し、四方切換弁2は、サイ
クルg)換手段に相当する。そして、LSI24は、周
波数’l’Jl別手段、゛用定手段に+l」当する。
The pipe temperature detection element 6 corresponds to a temperature detection means, the inverter IC circuit 33 and the DC power supply generation section 23 correspond to a voltage input means, and the reference voltage generation circuit 26 and the ``A''i setting circuit 27 correspond to , to the set temperature storage means (for the purpose), and the setting circuit 27 is set to the 5 field (for the surface temperature switching means).
The comparison circuit 28 corresponds to the comparison means, the output circuit 29n serves as the m selection output means, and the four-way switching valve 2 corresponds to the cycle g) switching means. The LSI 24 corresponds to frequency 'l' Jl separate means and 'use determining means +l'.

次に、暖房運転の開始から除1′I’r’f運転に至る
までの動作について第2図〜第5図をもとに説明する。
Next, the operation from the start of the heating operation to the 1'I'r'f operation will be explained based on FIGS. 2 to 5.

lf縮+3:1の吐出冷媒湿度をTd、圧縮機1の吸入
冷媒温度をTs、 aEM機1の吐出圧力をPd、圧縮
機1の吸入圧力をPsとし、ポl) ト(ml−プ指牧
をn(ただし 1(n(K  の関係で、Kは断熱圧縮
指数)とすると、吐出冷媒湿度Tdは次式%式% したがって、室外熱交換器5が未着霜時に吸入冷媒温度
Tsが高く、又吐出冷媒湿度Tdも高い。
Let the discharge refrigerant humidity of lf compression +3:1 be Td, the suction refrigerant temperature of compressor 1 be Ts, the discharge pressure of aEM machine 1 be Pd, the suction pressure of compressor 1 be Ps, If the refrigerant temperature is n (where 1 (n (in relation to K, where K is the adiabatic compression index), then the discharge refrigerant humidity Td is expressed by the following formula (%). Therefore, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts is In addition, the discharge refrigerant humidity Td is also high.

そして外気が下がり、着霜が改良するにつれて、吸入冷
媒温度Tsは低下し、吐出冷媒湿度Tdも下がる。本発
明における配管温度検出素子6は、室内mlJ熱交換器
3の入口配管に設けられ、圧#J機1から吐出された高
温高圧の過熱域冷媒ガスが流れる部分の温度を検出する
が、実1祭その温度は吐出ガスに比べて内外接続配管等
での熱損失により所定温度低下した温度である。
As the outside air decreases and frost formation improves, the suction refrigerant temperature Ts decreases and the discharge refrigerant humidity Td also decreases. The pipe temperature detection element 6 in the present invention is installed in the inlet pipe of the indoor MLJ heat exchanger 3 and detects the temperature of the part through which the high temperature and high pressure superheated region refrigerant gas discharged from the pressure #J machine 1 flows. The first temperature is a temperature lower than that of the discharged gas by a predetermined temperature due to heat loss in internal and external connecting pipes, etc.

したがって、第4図に示すように室外側熱交換器5が未
着霜時は圧縮機1の吸入冷媒温度Ts。
Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature of the compressor 1 is Ts.

室内側熱交換器3の入口配管温度tはともに高く、着霜
が進むにつれて徐々に低下し、そして暖房能力を大幅に
低下させる着霜に至ると、室内側熱交換器3の入口配管
m1)度tは甑端に低下する。すなわち、入口配管温度
tが設定配g湿度t1以下になれば暖房能力は低下し、
若111が進んでいるので除霜する必要がある。
The temperature t of the inlet pipes of the indoor heat exchanger 3 is both high, and gradually decreases as frosting progresses, and when frosting occurs which significantly reduces the heating capacity, the temperature t of the inlet pipe of the indoor heat exchanger 3 (m1) The degree t decreases at the end. In other words, if the inlet pipe temperature t becomes less than the set gag humidity t1, the heating capacity decreases,
Since young 111 is progressing, it is necessary to defrost it.

また、電源周波数において、50 Hzと60 Hzと
では、圧縮機1の能力が異なり、室外側熱交換器5の着
11↑時における、高圧、吐出湿度も異なる。
In addition, the capacity of the compressor 1 is different between 50 Hz and 60 Hz in terms of the power supply frequency, and the high pressure and discharge humidity of the outdoor heat exchanger 5 at 11↑ are also different.

すなわち、50 Hzと60 Hzでは一般的に室内側
熱交換器3の入口配管温度tも異なり、設定配管温度t
1を50 Hzと60Hzでは切換えて除霜判定を行わ
なければ、電源周波数に応じて、例えば60Hzのとき
に適切な除霜検出が行えず、暖房能力を十分発揮するこ
とができないことになる。
That is, the inlet pipe temperature t of the indoor heat exchanger 3 is generally different between 50 Hz and 60 Hz, and the set pipe temperature t
If defrost determination is not performed by switching 1 between 50 Hz and 60 Hz, appropriate defrost detection cannot be performed depending on the power supply frequency, for example at 60 Hz, and the heating capacity cannot be fully demonstrated.

このように、室内側熱交換器3の入口配管温度tは、過
熱域冷媒ガスの温度であるため、室内送風機7の風量の
影響を受けにくく、室内側熱交換器3の入口配管温度に
て50Hz、60 Hz共に適確な除霜運転の判断を行
うことができる。
In this way, since the inlet pipe temperature t of the indoor heat exchanger 3 is the temperature of the refrigerant gas in the superheated region, it is not easily affected by the air volume of the indoor blower 7, and the inlet pipe temperature t of the indoor heat exchanger 3 is Appropriate defrosting operation judgment can be made at both 50 Hz and 60 Hz.

以上の説明に基づき、第3図に示す制御回路は、第5図
に示すフローチャートの内容の制御を行う。
Based on the above explanation, the control circuit shown in FIG. 3 controls the contents of the flowchart shown in FIG. 5.

ここで、説明の便宜上暖房運転時は、圧縮機、四方切換
弁、室外送風機、「低速」で運転されている室内送風機
の各リレー素子R1〜R4が動作していると仮定する。
Here, for convenience of explanation, it is assumed that during the heating operation, the compressor, the four-way switching valve, the outdoor blower, and the relay elements R1 to R4 of the indoor blower operated at "low speed" are operating.

すなわち、第5図のステップ1にて、電源周波数が60
 Hzかどうかを判定し、ステップ2にて、60 Hz
であればボートP21をHiにし、50 Hzであれば
、ボートP21をオープンにする。具体的には第3図の
インバータIC回路33からの波形信号・によりLSI
24内の周波数’I′ll別手段が判別を行い、LSI
24の出力側のボートP21を60HzであればHlに
し、抵抗101・102の分圧によりできる基j%電圧
を引き上げ、設定配管温度t1を電源周波数の50 H
z・60Hzによって変えている。
That is, in step 1 of Fig. 5, the power supply frequency is 60
60 Hz in step 2.
If so, set the boat P21 to Hi, and if it is 50 Hz, set the boat P21 to open. Specifically, the waveform signal from the inverter IC circuit 33 in FIG.
The frequency 'I'll discrimination means in 24 makes the determination, and the LSI
If the frequency is 60Hz, set the boat P21 on the output side of 24 to Hl, raise the base j% voltage created by the partial pressure of resistors 101 and 102, and set the set pipe temperature t1 to 50H of the power frequency.
It changes depending on z/60Hz.

その後、ステップ3にて暖房運転が開始され、配管湿度
検出素子6による配管温度tの読み込みが行わ、i(ス
テップ4)、ステップ5に移って配管湿度tがステップ
1および2で設定された設定配管温度t1よりも低いか
が判定される。具体的には第3図の比較回路2Bが判定
する。
After that, heating operation is started in step 3, the pipe temperature t is read by the pipe humidity detection element 6, and the process moves to i (step 4) and step 5, where the pipe humidity t is set to the same setting as that set in steps 1 and 2. It is determined whether the pipe temperature is lower than t1. Specifically, the comparison circuit 2B in FIG. 3 makes the determination.

そしてステップ5の条件が満ヱされるとステップ6へ移
り、除霜運転が開始される。すなわち、第3図に示す出
力回路29の各リレー素子R1・R2・R3・R4がそ
れぞれ動作し、四方切換弁2を切換え、必要に応じてそ
の11f1に圧縮機1″ffニ一定時間停止し、室内送
風vA7および室外送風機8を停止する。そして冷房サ
イクルにて除霜を行う。
When the conditions of step 5 are satisfied, the process moves to step 6 and defrosting operation is started. That is, each of the relay elements R1, R2, R3, and R4 of the output circuit 29 shown in FIG. , the indoor air blower vA7 and the outdoor air blower 8 are stopped, and defrosting is performed in the cooling cycle.

この除霜運転の内容は従来周知のため、詳細な説明を省
略する。また暖房運転の復帰についても従来より周知の
如く、適宜手段にて実施できる。
Since the content of this defrosting operation is conventionally well known, detailed explanation will be omitted. Further, the restoration of the heating operation can be carried out by any suitable means as is well known in the art.

なお、木実施例においては、除霜運転を暖房サイクルか
ら冷房サイクルへのり換えによって行うようにしたが、
例えば暖房サイクルを維持したま捷として室外側熱交換
器へ別途蓄熱していた冷媒を流す構成あるいは、別熱源
にて霜を溶かす構成としてもよいことは言うまでもない
。また圧縮機1は除霜運転へ切換え時には連続運転とし
、暖房α転数す])′!11fjに一時停止させるよう
にしてもよい。
In addition, in the wood example, the defrosting operation was performed by switching from the heating cycle to the cooling cycle.
For example, it goes without saying that a configuration may be adopted in which a separately stored refrigerant is flowed to the outdoor heat exchanger while the heating cycle is maintained, or a configuration in which frost is melted using a separate heat source. Also, compressor 1 is operated continuously when switching to defrosting operation, and the heating α rotation speed is set])'! It may be made to temporarily stop at 11fj.

さらに、電源周波数に応じたボートP21の出力状況は
、50Hzのときに「Hl」となるようにし、設定値を
変えるようにしてもよい。
Furthermore, the output status of the boat P21 according to the power frequency may be set to "Hl" when the frequency is 50 Hz, and the set value may be changed.

発明の効果 以上並べたように本発明によれば、上記した構成により
、過熱域冷媒ガスの温度る室内側熱交換器入口V管にて
検出し、室内風量の影響をあまり受けずに、適確な除霜
運転を温度検出1点で行うことができ、hIk成が非常
に簡単であり、また冷媒が、暖房を行う熱量を十分に有
しているか否かの判定が室内側熱交換器の入口側で行え
るため、実1祭の暖房能力の有無を確実に判断して除霜
を行うことができる。さらに電源周波数が異なった場合
でもその周波数に応じた境界値温度に変更するため、除
霜が確実に行え、信・頂性が向上する。
Effects of the Invention As stated above, according to the present invention, with the above-described configuration, the temperature of the refrigerant gas in the superheated region is detected at the indoor heat exchanger inlet V pipe, and the temperature is detected appropriately without being affected by the indoor air flow rate. Reliable defrosting operation can be performed with a single temperature detection point, hIk formation is very simple, and it can be determined whether the refrigerant has enough heat for heating using the indoor heat exchanger. Since defrosting can be carried out on the entrance side of the refrigerator, it is possible to reliably determine whether the heating capacity of the refrigerator is available before defrosting. Furthermore, even if the power supply frequency differs, the temperature is changed to the boundary value according to the frequency, so defrosting can be performed reliably and reliability and top quality are improved.

すなわち、本発明は完全に若霜が発生している冷媒の6
度が熱交換器の入口部、中間部に差がなく、未着霜時に
入口冷媒温度の方が中間部の冷媒温度に比べて著しく高
い点に着眼し、入口側の冷媒湿度を検出することによっ
て、未着霜から着コ1τ2こ至るまでの温度変化が大き
くとれ、1点の温度検出で限界に近い暖房能力を引き出
すことができる。
That is, the present invention uses 6 refrigerants in which young frost has completely occurred.
The refrigerant humidity on the inlet side is detected by focusing on the fact that there is no difference in temperature between the inlet and middle parts of the heat exchanger, and the inlet refrigerant temperature is significantly higher than the refrigerant temperature in the middle part when not frosted. As a result, the temperature change from no frost to 1τ2 can be largely controlled, and heating capacity close to the limit can be extracted by detecting the temperature at one point.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の除霜制御装置を機能実現手段で表現し
たプ07り図、第2図は本発明の一実施例を示す空気調
和機の冷凍サイクル図、第3図は同空気調和機における
除〉11制御装置の回路図、第4図は同除霜制御装置に
おける室内側熱交換器へ流入する冷媒湿度と圧縮機吸入
冷媒湿度の関係を示す特性図、第5図は同除霜制御装置
の動作内容を示すフローチャートである。 1・・・・・・圧縮機、2 ・・・・四方切換弁、3・
・・・室内側熱交換器、5・−・・−室外側熱交換器、
6・・・配管温度検出素子(温度検出手段)、23・・
・・・・DC電源発生部(クロック入力手段)、24・
・・・・・LSI(、′l!IJ定手段)、26 ・・
基準電圧発生回路(設定温度記憶手段′)、27・・・
・・・除霜設定回路(設定温度記憶手段)、2B・・・
・・・比軟回路(比較手段)、29 ・出力回路(選択
出力手段)、30・・・・・発振回路、31 ・・・リ
セット回路、33・ ・インパークIC回路(クロ7タ
入力手股)。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ノーーfI4f3J冷 Z−−−[7,’!rV7東弁 6−−−艷井刻烈灸(灸各 6一−−恥嘴&&次二禾立 A−−−*外エニント B−一一史四ユニント n−−一圧糟Iべの吸入、+啄j+Li綽閾
Fig. 1 is a schematic diagram expressing the defrosting control device of the present invention using function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a diagram of the air conditioner refrigeration cycle showing an embodiment of the present invention. Fig. 4 is a characteristic diagram showing the relationship between the humidity of the refrigerant flowing into the indoor heat exchanger and the humidity of the refrigerant sucked into the compressor in the defrosting control device, and Fig. 5 is a circuit diagram of the defrosting control device. It is a flowchart which shows the operation content of a frost control device. 1... Compressor, 2... Four-way switching valve, 3...
...Indoor heat exchanger, 5.--Outdoor heat exchanger,
6... Piping temperature detection element (temperature detection means), 23...
...DC power generation section (clock input means), 24.
...LSI (,'l!IJ constant means), 26...
Reference voltage generation circuit (set temperature storage means'), 27...
...Defrost setting circuit (set temperature storage means), 2B...
... Ratio soft circuit (comparison means), 29 - Output circuit (selective output means), 30 ... Oscillation circuit, 31 ... Reset circuit, 33 ... Impark IC circuit (crochet input hand) crotch). Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure no-fI4f3J cold Z---[7,'! rV7 East dialect 6 --- Moxibustion for each 61 -- Shame beak && next 2nd grade A --- * External eninth B -- 11 History 4 unit n -- 1 Pressure Ibe no inhalation , + takuj + Li 綽 threshold

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧装置、室外側熱交換器を
具備した冷凍サイクルに、暖房サイクルと除霜サイクル
を切換えるサイクル切換手段を設け、さらに前記サイク
ル切換手段を暖房サイクルから除霜サイクルに切換える
制御装置を、前記室内側熱交換器の冷媒入口側に連結さ
れた配管の温度を検出する温度検出手段と、暖房サイク
ルを除霜サイクルに切換える境界値温度を記憶した設定
温度記憶手段と、電源周波数を入力するクロック入力手
段と、前記クロック入力手段からの出力をもとに、電源
の異なる周波数を判別する周波数判別手段と、その周波
数判別手段からの出力信号により前記設定温度記憶手段
の境界値温度を切換える境界値温度切換手段と、前記温
度検出手段により検出した温度が前記設定温度記憶手段
に記憶された境界値温度より低下したことを検出し出力
する比較手段による境界値低下信号により、暖房サイク
ルから除霜サイクルへの切換えを判定する判定手段と、
前記判定手段の出力に応じて前記冷凍サイクルを暖房運
転から除霜運転へ制御する選択出力手段より構成した空
気調和機の除霜制御装置。
A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means is further configured to switch from a heating cycle to a defrosting cycle. The control device for switching to the indoor heat exchanger includes temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger, and set temperature storage means for storing a boundary value temperature for switching the heating cycle to the defrosting cycle. , a clock input means for inputting the power supply frequency; a frequency determination means for determining different frequencies of the power supply based on the output from the clock input means; and a frequency determination means for determining the set temperature storage means based on the output signal from the frequency determination means. A boundary value temperature switching means for switching the boundary value temperature, and a boundary value decrease signal from a comparison means for detecting and outputting that the temperature detected by the temperature detection means has fallen below the boundary value temperature stored in the set temperature storage means. , determination means for determining switching from the heating cycle to the defrosting cycle;
A defrosting control device for an air conditioner comprising a selection output means for controlling the refrigeration cycle from heating operation to defrosting operation according to the output of the determination means.
JP61014019A 1986-01-24 1986-01-24 Defrosting control device for air-conditioning machine Granted JPS62172141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61014019A JPS62172141A (en) 1986-01-24 1986-01-24 Defrosting control device for air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61014019A JPS62172141A (en) 1986-01-24 1986-01-24 Defrosting control device for air-conditioning machine

Publications (2)

Publication Number Publication Date
JPS62172141A true JPS62172141A (en) 1987-07-29
JPH0566493B2 JPH0566493B2 (en) 1993-09-21

Family

ID=11849481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61014019A Granted JPS62172141A (en) 1986-01-24 1986-01-24 Defrosting control device for air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS62172141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103426A (en) * 2007-10-03 2009-05-14 Panasonic Corp Air conditioner
CN111457545A (en) * 2020-04-21 2020-07-28 宁波奥克斯电气股份有限公司 Compressor control method and device and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154851A (en) * 1978-05-26 1979-12-06 Saginomiya Seisakusho Inc Defrost control method of heating or freezing and cooling apparatus and defrost controller
JPS60138348A (en) * 1983-12-26 1985-07-23 Matsushita Electric Ind Co Ltd Method of controlling defrosting of air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154851A (en) * 1978-05-26 1979-12-06 Saginomiya Seisakusho Inc Defrost control method of heating or freezing and cooling apparatus and defrost controller
JPS60138348A (en) * 1983-12-26 1985-07-23 Matsushita Electric Ind Co Ltd Method of controlling defrosting of air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103426A (en) * 2007-10-03 2009-05-14 Panasonic Corp Air conditioner
CN111457545A (en) * 2020-04-21 2020-07-28 宁波奥克斯电气股份有限公司 Compressor control method and device and air conditioner

Also Published As

Publication number Publication date
JPH0566493B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
KR900005722B1 (en) Defrosting control apparatus for a temperature control system
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62172141A (en) Defrosting control device for air-conditioning machine
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPH0566491B2 (en)
JPH0566492B2 (en)
JPS63189731A (en) Defrosting controller of air conditioner
JPS62172143A (en) Defrosting control device air-conditioning machine
JPS62233631A (en) Control device for defrosting of air conditioner
JPS62206336A (en) Defrosting control device for air-conditioning machine
JPS62213638A (en) Defrost control device for air conditioner
JPS63131943A (en) Defrosting controller of air conditioner
JPS63220029A (en) Defrosting controller for air conditioner
JPH0566494B2 (en)
JPS62223551A (en) Defrosting control unit of air conditioner
JPS62119347A (en) Defrosting device of air conditioner
JPS6341758A (en) Defrosting control device for air conditioner
JPS6341757A (en) Defrosting control device for air conditioner
JPS6315020A (en) Defrosting controller for air conditioner
JPS62119345A (en) Defrosting device of air conditioner
JPH08219566A (en) High pressure protector and condensation pressure controller in refrigerating apparatus
JPS62223549A (en) Defrosting control unit of air conditioner
JPH0583819B2 (en)
JPS62213639A (en) Defrost control device for air conditioner
JPS62210337A (en) Control device for defrosting of air-conditioning machine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term