JPS63131943A - Defrosting controller of air conditioner - Google Patents

Defrosting controller of air conditioner

Info

Publication number
JPS63131943A
JPS63131943A JP61277209A JP27720986A JPS63131943A JP S63131943 A JPS63131943 A JP S63131943A JP 61277209 A JP61277209 A JP 61277209A JP 27720986 A JP27720986 A JP 27720986A JP S63131943 A JPS63131943 A JP S63131943A
Authority
JP
Japan
Prior art keywords
time
temperature
cycle
defrosting
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61277209A
Other languages
Japanese (ja)
Inventor
Shinichiro Matsumoto
真一郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61277209A priority Critical patent/JPS63131943A/en
Publication of JPS63131943A publication Critical patent/JPS63131943A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure the space heating capacity for a predetermined period of time and to prevent the defrosting operation from being erroneously started by changing over the mode of operation from a space heating cycle to a defrosting cycle by a set time elapsed signal and a interface value lowering signal. CONSTITUTION:When a normal space heating operation is started, a power supply frequency is inputted and if the frequency is 60 Hz, the output of a port P25 is set to a high value, and a pipeline temperature set value is increased. The time count of a predetermined time T1 is counted by a microcomputer 22, and a space heating operation is continued until the time T1 passes. When the time T1 has passed, the timer count of a predetermined time T2 is set by the microcomputer 22. Then, the air flow rate is judged when it is judged to be weak, the output of a port P22 is set to a high value. When it is medium, the output of a port P23 is set to a high value. When it is strong, the output of a port P24 is set to a high value. The pipeline temperature is read by a pipeline temperature detecting element 6. If the pipeline temperature is lower than the set pipeline temperature corresponding to each power source frequency and air flow rate, a high output is generated from a comparator 27. Until a time T2 passes, the space heating operation is continued, and the defrosting operation is started.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式の空気調和機の
除霜制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a defrosting control device for a separate heat pump type air conditioner.

従来の技術 従来、特公昭5B−32296号公報に示されるように
、室内側熱交換器の温度変化と室内温度の変化の両者に
基づいて室外側熱交換器への着霜状態を検知し、暖房運
転と除霜運転を制御する技術が開発されている。
BACKGROUND ART Conventionally, as shown in Japanese Patent Publication No. 5B-32296, the state of frost on an outdoor heat exchanger is detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change. Technologies have been developed to control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、温度検出素子が複
数必要となり、自ずと回路が複雑化する問題がある。し
かも、かかる構成は熱交換器を流れている途中の気液混
合冷媒温度を検出しているため、着霜時と未着霜時の温
度変化が小さく、微少な範囲で着霜判定を行なわなけれ
ばならず、検出精度が安定しない問題がある。
Problems to be Solved by the Invention However, such a conventional configuration requires a plurality of temperature detection elements, which naturally causes the problem of complicating the circuit. Furthermore, since this configuration detects the temperature of the gas-liquid mixed refrigerant while flowing through the heat exchanger, the temperature change between frost and non-frost is small, and frost formation must be determined within a minute range. However, there is a problem that the detection accuracy is unstable.

まり近年、マイクロコンピュータにて複雑な信号処理を
行わせ、制御装置を構成することが多いが、従来技術の
ように入力信号源(温度検出素子)が多いことは、その
プログラム作成に当っても弊害のもとであり、そのプロ
グラムの簡素化にも限界がある。
In recent years, control devices are often constructed by using microcomputers to perform complex signal processing, but the fact that there are many input signal sources (temperature detection elements) as in conventional technology makes it difficult to create programs. This is a source of harmful effects, and there are limits to the simplification of the program.

更に、室内熱交換器の温度は室内送風機の動作に基づく
室内空気の循環量にも影響を受けるという問題があり、
たとえば室内熱交換器に対する室内空気の循環量が少な
ければこれに伴って室内熱交換器の温度が上昇し、この
だめ室外熱交換器に対する除霜運転が必要であるにもか
かわらず除霜運転が開始されないという不都合が生じて
しまう。
Furthermore, there is a problem in that the temperature of the indoor heat exchanger is also affected by the amount of indoor air circulation based on the operation of the indoor blower.
For example, if the amount of indoor air circulating to the indoor heat exchanger is small, the temperature of the indoor heat exchanger will rise accordingly, and even though defrosting operation is required for the outdoor heat exchanger, defrosting operation is not performed. This causes the inconvenience of not starting.

違いが生じ室内熱交換器の温度が変わる。例えば60H
2の場合50 H2の場合よりも圧縮機の回転数が高く
冷凍サイクルの能力が大きいため室内熱交換器の温度が
上昇し、このため室外熱交換器に対する除霜運転が必要
であるにもかかわらず除霜運転が開始されないという問
題点があった。
A difference occurs and the temperature of the indoor heat exchanger changes. For example 60H
In case of 50 H2, the temperature of the indoor heat exchanger rises because the compressor rotation speed is higher and the capacity of the refrigeration cycle is larger than in the case of H2. There was a problem in that the defrosting operation did not start immediately.

5へ−ジ 本発明は、上記従来の問題点に鑑み、従来技術の利点を
損うことなく、構成の簡素化がはかれる除霜制御装置を
提供するものである。
5. In view of the above-mentioned conventional problems, the present invention provides a defrosting control device that can be simplified in configuration without sacrificing the advantages of the prior art.

問題点を解決するだめの手段 上記問題点を解決するために本発明は、第1図に示すよ
うに冷凍サイクルを暖房サイクルから除霜サイクルに制
御する制御装置を、前記圧縮機の暖房運転開始からの時
間を計測する第1の時間計測手段と、あらかじめ設定さ
れた時間を記憶している第1の設定時間記憶手段と、前
記第1の時間計測手段により検出した時間と前記第1の
設定時間記憶手段に設定された時間の一致を検出し出力
する第1の比較手段と、暖房運転時に前記室内熱交換器
の冷媒入口側に連絡された配管の温度を検出する温度検
出手段と、暖房サイクルを除霜サイクルに切換える境界
値温度を記憶した設定温度記憶手段と、前記温度検出手
段により検出した温度が、前記設定温度記憶手段に記憶
された境界値温度より低下した時間を計測する第2の時
間計測手段と、あらかじめ設定された時間を記憶してい
る6・・−; 第2設定時間記憶手段と、前記第2の時間計測手段によ
り検出した時間と前記第2の設定時間記憶手段に設定さ
れた時間の一致を検出し出力する第2の比較手段と、電
源周波数を入力する周波数入力手段と、その周波数が5
0 H2か60 H2か判定する周波数判定手段と、風
量を切換える風量切換手段と各風量及び前記周波数判定
手段の出力により設定温度を切換える設定温度切換手段
と、前記温度検出手段により検出した温度が前記設定温
度記憶手段により記憶された境界値温度より低下したこ
とを検出し出力する第3の比較手段と、前記第1および
第2の比較手段による設定時間経過信号と前記第3の比
較手段による境界値低下信号により、暖房サイクルから
除霜サイクルへの切換えを判定する判定手段と、前記判
定手段の出力に応じて前記冷凍サイクルを暖房運転から
除霜運転へ制御する選択出力手段より構成したものであ
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention, as shown in FIG. a first time measuring means for measuring the time from , a first set time storage means for storing a preset time, and a time detected by the first time measuring means and the first setting. a first comparison means for detecting and outputting the coincidence of times set in the time storage means; a temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger during heating operation; a set temperature storage means that stores a boundary value temperature for switching the cycle to a defrosting cycle; and a second temperature storage means that measures the time when the temperature detected by the temperature detection means falls below the boundary value temperature stored in the set temperature storage means. a second set time storage means, and a second set time storage means that stores the time detected by the second time measurement means and the second set time storage means; a second comparison means for detecting and outputting the coincidence of the set times; a frequency input means for inputting the power supply frequency;
a frequency determining means for determining whether the temperature is 0 H2 or 60 H2; an air volume switching means for switching the air volume; a set temperature switching means for switching the set temperature based on each air volume and the output of the frequency determining means; a third comparison means for detecting and outputting a decrease in temperature below the boundary value temperature stored by the set temperature storage means; a set time elapsed signal from the first and second comparison means; and a boundary signal from the third comparison means. It is composed of a determining means for determining switching from a heating cycle to a defrosting cycle based on a value decrease signal, and a selection output means for controlling the refrigeration cycle from a heating operation to a defrosting operation in accordance with the output of the determining means. be.

作   用 この構成により、暖房運転開始から所定時間が経過する
までは暖房運転が確保され、その所定時7ヘー。
Effect: With this configuration, heating operation is ensured until a predetermined time has elapsed from the start of heating operation, and at that predetermined time 7 hours.

間経過後において、境界値温度を低下し一定時間経過後
、風量に応じて切換わる境界値温度を記憶した設定温度
記憶手段と、温度検出手段の検出温度により、除霜運転
が制御される。
After a certain period of time has elapsed, the defrosting operation is controlled by the set temperature storage means that stores the boundary value temperature that changes according to the air volume and the temperature detected by the temperature detection means.

実施例 以下、本発明の一実施例を第2図〜第7図を参照にして
説明する。第2図は、本発明の一実施例を示す冷凍サイ
クル図である。同図において、冷凍サイクルは圧縮機1
、四方切換弁2、室内側熱交換器3、減圧器4、室外側
熱交換器5を順次連結することにより構成されている。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 2 to 7. FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention. In the same figure, the refrigeration cycle includes compressor 1
, a four-way switching valve 2, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5 are connected in sequence.

6は配管温度検出素子であり、暖房時において室内側熱
交換器3(凝縮器)の冷媒入口側となる配管に取り付け
られている。この場合、冷房運転時は同図の実線矢印の
方向に冷媒が流れ、暖房運転時には四方切換弁2が切換
わるこ七により同図の破線矢印の方向に冷媒が流れるよ
うになっている。
Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. In this case, during cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 is switched so that the refrigerant flows in the direction of the broken line arrow in the figure.

さらに、前記圧縮機1、四方切換弁2、減圧機4、室外
側熱交換器5および室外送風機8によって室外ユニッ)
Aが構成されている。
Furthermore, an outdoor unit is provided by the compressor 1, four-way switching valve 2, pressure reducer 4, outdoor heat exchanger 5, and outdoor blower 8.
A is configured.

また、上記室内側熱交換器3および室内送風機7、さら
に配管温度検出素子6、タイマ機能および温度調節機能
などがプログラムされたマイクロコンピュータ第3図2
2(以下、マイコンと略称する)を有する運転制御部(
第3図C)は室内ユニットBに設けられている。ここで
、配管温度検出素子6は、室内送風機7の送風の影響を
受けない風回路からはずれた箇所に取付けられている。
In addition, a microcomputer in which the indoor heat exchanger 3 and the indoor blower 7, a pipe temperature detection element 6, a timer function, a temperature adjustment function, etc. are programmed, is also provided.
2 (hereinafter abbreviated as microcomputer)
FIG. 3C) is installed in the indoor unit B. Here, the pipe temperature detection element 6 is attached at a location away from the wind circuit where it is not affected by the air blowing from the indoor blower 7.

また、室内ユニッl−Bの近辺でもよい。Alternatively, it may be located near indoor unit 1-B.

第3図は、運転制御部C及び制御操作部りを示す図であ
る。運転制御部Cは、交流電源18より供給された電圧
をトランス17で降圧しDC電源発生部16内のダイオ
ードブリッジで全波整流に変換し、レギユレータICで
マイコン22を動作させるDC電源を作っている。マイ
コン22には、リセット回路23がp□ボートに、発振
回路26がPl、、P2ポートに接続されている。P7
.P8ポートからは、スキャン信号が出され、制御操作
部りの運転スイッチ風量切換部24、室温設定部25(
7)ONloFFKJ:す、 P3 、P4 、P5 
ホー ト9ぺ−7 に種々のスキャン信号が入ることにより、所定の制御を
行なう。pHポートから圧縮機1を駆動するリレーを動
作させる信号が出され、P12ボートから四方切換弁2
を駆動するリレーを動作させる信号が出され、P13ボ
ートからは室外送風機8を駆動させるリレーを動作させ
る信号が出され、又P14〜P16ポートからは室内送
風機7を駆動させるリレーを動作させる信号が出される
。P、17〜P 20’ボートからは、吸込センサ29
からの入力と室温を比較するだめの基準電圧を、D/A
変換部19で作るだめの信号が出されその基準電圧と、
吸込センサ29の入力を比較するコンパレータ15の出
力がP21ポートに入力される。マイコン22は、制御
操作部りの室温設定部25の入力を受け、先のP21ポ
ートの入力と比較し圧縮機1のON/○FF制御を行な
う。風量がHi、Me、Loと切り換わるにつれ、P2
2〜P24の出力ポートからHi倍信号出され、設定温
度記憶手段28の抵抗9゜10で記憶された温度による
基準電圧を切り換える。その基準電圧と温度検出手段3
0の信号を第10ヘ−7 3の比較手段に当るコンパレータ27で比較し、P26
に入力される。電源周波数の信号はD%電源発生部16
からインバータ21でクロック信号に変えP10ポート
に入力される。そのタロツク信号を受け、マイコン22
の内部の50/60H2IJ定手段で、60H2である
ことが判定されるとP25ポートからHi高出力出力さ
れ、設定温度記憶手段の設定値を切換える。
FIG. 3 is a diagram showing the operation control section C and the control operation section. The operation control unit C steps down the voltage supplied from the AC power supply 18 with a transformer 17, converts it into full-wave rectification with a diode bridge in the DC power generation unit 16, and creates a DC power supply that operates the microcomputer 22 with a regulator IC. There is. In the microcomputer 22, a reset circuit 23 is connected to the P□ port, and an oscillation circuit 26 is connected to the Pl, P2 ports. P7
.. A scan signal is output from the P8 port, and the operation switch air volume switching unit 24 and room temperature setting unit 25 (
7) ONloFFKJ: Su, P3, P4, P5
Predetermined control is performed by inputting various scan signals to the port 9page-7. A signal to operate the relay that drives the compressor 1 is sent from the pH port, and the four-way switching valve 2 is sent from the P12 boat.
The P13 boat outputs a signal to operate the relay that drives the outdoor blower 8, and the P14 to P16 ports output a signal to operate the relay that drives the indoor blower 7. Served. P, 17-P 20' From the boat, suction sensor 29
The reference voltage for comparing the input from the D/A and the room temperature is
A signal generated by the converter 19 is output, and its reference voltage and
The output of the comparator 15 that compares the input of the suction sensor 29 is input to the P21 port. The microcomputer 22 receives the input from the room temperature setting section 25 of the control operation section, compares it with the input from the P21 port, and performs ON/OFF control of the compressor 1. As the air volume switches from Hi to Me to Lo, P2
A Hi-multiply signal is output from the output ports 2 to P24, and the reference voltage is switched according to the temperature stored in the resistor 9.degree. 10 of the set temperature storage means 28. Its reference voltage and temperature detection means 3
0 signal is compared by the comparator 27 corresponding to the 10th H-73 comparison means, and the P26
is input. The power supply frequency signal is sent to the D% power generation section 16.
The clock signal is converted into a clock signal by the inverter 21 and inputted to the P10 port. Upon receiving the tarok signal, the microcomputer 22
When the internal 50/60H2IJ constant means determines that the temperature is 60H2, a Hi high output is output from the P25 port, and the set value of the set temperature storage means is switched.

ここで第3図の構成と第1図の構成を対比すると、配管
温度検出素子6即ち、温度検出手段30は、第1図の温
度検出手段に、コンパレータ27は第3の比較手段に、
抵抗9.10は設定温度記憶手段に、制御操作部りの風
量切換スイッチ24は、風量設定手段に、インパーク2
1は周波数入力手段に抵抗11.12.13.14は、
設定温度切換手段に、マイコン22は、第1図の第1及
び第2の設定時間記憶手段、第1及び第2の時間計測手
段、50/60H2判定手段、設定温度記憶手段、第1
、第2及び第3の比較手段、判定手段、選択出力手段に
相当する。
Comparing the configuration of FIG. 3 with the configuration of FIG. 1, the pipe temperature detection element 6, that is, the temperature detection means 30 is the temperature detection means of FIG. 1, and the comparator 27 is the third comparison means.
The resistor 9.10 serves as a set temperature storage means, the air volume selector switch 24 on the control operation section serves as an air volume setting means, and the impark 2
1 is a frequency input means, and resistors 11, 12, 13, and 14 are
The microcomputer 22 includes the first and second set time storage means, the first and second time measurement means, the 50/60H2 determination means, the set temperature storage means, and the first set temperature storage means shown in FIG.
, second and third comparison means, determination means, and selection output means.

1 1 l+−; 次に、暖房運転の開始から除霜運転に至るまでの動作に
ついて説明する。
1 1 l+-; Next, the operation from the start of heating operation to defrosting operation will be explained.

圧縮機1の吐出冷媒温度をTd、圧縮機1の吸入冷媒温
度をTs、圧縮機1の吐出圧力をPd、圧縮機1の吸入
圧力をPsとし、ポlJ1.ロープ指数をn(ただし、
1 < n < kの関係で、kは断熱圧縮指数)とす
ると、吐出冷媒温度Tdは次式で表わされる。
The discharge refrigerant temperature of the compressor 1 is Td, the suction refrigerant temperature of the compressor 1 is Ts, the discharge pressure of the compressor 1 is Pd, the suction pressure of the compressor 1 is Ps, and PolJ1. Let the rope index be n (however,
1 < n < k, where k is an adiabatic compression index), the discharge refrigerant temperature Td is expressed by the following equation.

Pd      n Td=Ts・(Ps) したがって、室外側熱交換器5が未着霜時は吸入冷媒温
度Tsが高く、各吐出冷媒温度Tdも高い。そして外気
が下がり、着霜が成長するにつれて、吸入冷媒温度Ts
は低下し、吐出冷媒温度Tdも下がる。本発明における
配管温度検出素子6は、室内側熱交換器3の入口配管に
設けられ、圧縮機1から吐出された高温高圧の過熱域冷
媒ガスが流れる部分の温度を検出するが、実際その温度
は吐出ガスに比べて内外接続配管等での熱損失により所
定温度低下した温度でめる。したがって、第4図に示す
ように室外側熱交換器5が未着霜時は圧縮機1の吸入冷
媒温度Ts、室内側熱交換器30入ロ配管温度tは、と
もに高く、着霜が進む ゛につれて徐々に低下し、そし
て暖房能力を大幅に低下させる着霜に至ると、室内側熱
交換器3の入口配管温度tは極端に低下する。すなわち
、入口配管温度tが設定配管温度t 1 (60H2風
量Lo)以下になれば暖房能力は低下し、着霜が進んで
いるので除霜する必要がある。
Pd n Td=Ts·(Ps) Therefore, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts is high, and each discharge refrigerant temperature Td is also high. Then, as the outside air drops and frost grows, the suction refrigerant temperature Ts
decreases, and the discharge refrigerant temperature Td also decreases. The pipe temperature detection element 6 in the present invention is installed in the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the high-temperature, high-pressure superheated refrigerant gas discharged from the compressor 1 flows. is determined as a temperature lower than that of the discharged gas by a predetermined temperature due to heat loss in internal and external connecting piping, etc. Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, both the suction refrigerant temperature Ts of the compressor 1 and the indoor heat exchanger 30 input pipe temperature t are high, and frosting progresses. As the temperature increases, the temperature t of the inlet pipe of the indoor heat exchanger 3 gradually decreases, and when frost formation occurs which significantly reduces the heating capacity, the temperature t of the inlet pipe of the indoor heat exchanger 3 decreases extremely. That is, if the inlet pipe temperature t becomes equal to or lower than the set pipe temperature t 1 (60H2 air volume Lo), the heating capacity decreases, and since frost formation has progressed, it is necessary to defrost.

又、この入口配管温度は若干の風量による影響を受ける
ため、第4図に示すように、風量LO(弱風)、風量M
’e  (中風)、風量Hi(強風)知できる。さらに
、圧縮機1の回転数は、電源周波数50Hz及び60H
2にほぼ比例した値となるため、冷凍サイクルの高圧圧
力は60Hzの場合が高くなる。従って第4図に示す室
内熱交換器の入口配管温度は、実線部tを60H2とす
れば破線部tが50H2となり、除霜開始を(21(風
量131・−7 Lo)のみに固定すると50H2の場合は、着霜が少な
いうちに除霜に入り、暖房効率が悪くなる。
Also, since this inlet pipe temperature is slightly affected by the air volume, as shown in Figure 4, the air volume LO (weak wind) and the air volume M
'e (medium wind), air volume Hi (strong wind) can be known. Furthermore, the rotation speed of the compressor 1 is set to a power frequency of 50Hz and 60H.
Since the value is almost proportional to 2, the high pressure of the refrigeration cycle is high at 60 Hz. Therefore, the inlet pipe temperature of the indoor heat exchanger shown in Fig. 4 is, if the solid line section t is 60H2, the broken line section t is 50H2, and if the defrosting start is fixed only at (21 (air volume 131・-7 Lo)), it is 50H2. In this case, defrosting will begin before there is much frost and heating efficiency will deteriorate.

そこで50H2の場合には、室内熱交換器の入口配管温
度の除霜開始温度を117とすることで、最適の除霜動
作が確保される。
Therefore, in the case of 50H2, by setting the defrosting start temperature of the inlet pipe temperature of the indoor heat exchanger to 117, optimal defrosting operation is ensured.

以上の説明に基づき、第3図に示す制御回路は、第7図
に示すフローチャートの内容の制御を行なう。
Based on the above explanation, the control circuit shown in FIG. 3 controls the contents of the flowchart shown in FIG. 7.

60H2ならばP25ボートを出力Hiにして配 ゛管
温度設定値を上げる(ステップ4)。そして、マイコン
22で所定時間T1のタイ゛々′がクントがカク7ント
される(ステップ5人 この第1クイマカクントセツト
は、暖房運転開始からT1時間(例えば1時間)暖房運
転を確保するだめのもので、例えば強制的にT1時間暖
房を連続することも一つの手段である。
If it is 60H2, set the P25 boat to output Hi and increase the piping temperature set value (Step 4). Then, the microcomputer 22 sets the number of units for a predetermined period of time T1 (step 5). For example, one method is to forcibly continue heating for T1 hours.

そしてタイマ力クントがセットされると、ステツブ6で
T1時間経過が判定される。T1時間経過するまでは暖
房運転が継続される(第5図参照)。
When the timer is set, it is determined in step 6 whether the time T1 has elapsed. The heating operation is continued until the time T1 has elapsed (see FIG. 5).

そしてT1時間が経過するとステップ7にてマイコン2
2で所定時間T2のクイマカクントがセットされる。こ
の第2のタイマカクントセットは、配管温度tが設定配
管温度(風量切換手段によりt 、s t 2・13)
を連続して下回る時間T2(例えば1分間)を計測する
ので、例えばノイズなどによυ配管温度tを実際の温度
より低く検知し、除霜運転が誤捷って開始されるのを防
止するために設けである(第6図参照)。そして、この
タイマカクントがセットされると風量が判別される。風
量がL(弱風)であれば、P22ボートの出力をHiに
して(ステップ8.9)風量がMe(中風)であれば、
P23ポート出力をHiにして(ステップ10.11)
、それ以外(風量H1強風)の場合は、P24ポート出
力をHiにする(ステップ12)。このように第3図抵
抗9.10の分圧よりなる電圧で決められた設定配管温
度を抵抗11〜14を用いて、電源周波数50H2,6
0H2の違い或い1 5t−。
Then, when the time T1 has elapsed, the microcomputer 2
At step 2, the count for a predetermined time T2 is set. In this second timer actuator set, the pipe temperature t is the set pipe temperature (t by the air volume switching means, s t 2・13).
Since the time T2 (for example, 1 minute) in which the temperature is continuously lower than (See Figure 6). Then, when this timer count is set, the air volume is determined. If the wind volume is L (weak wind), set the output of the P22 boat to Hi (step 8.9), and if the wind volume is Me (medium wind),
Set the P23 port output to Hi (step 10.11)
In other cases (air volume H1 strong wind), the P24 port output is set to Hi (step 12). In this way, using resistors 11 to 14, set pipe temperature determined by the voltage formed by the partial pressure of resistor 9 and 10 in Figure 3,
The difference between 0H2 and 15t-.

は風量の変更により設定配管温度を変えると七を可能な
らしめている。
7 is possible by changing the set piping temperature by changing the air volume.

設定配管温度が設定されると、ステップ13で配管温度
検出素子6による配管温度tの読み込みが行なわれる。
Once the set pipe temperature is set, the pipe temperature t is read by the pipe temperature detection element 6 in step 13.

そして、入口配管温度tが、各電源周波数、各風量に応
じた設定配管温度txよりも低くなっていれば(ステッ
プ14)、コンパレータ27よりH1出力が出される。
Then, if the inlet pipe temperature t is lower than the set pipe temperature tx corresponding to each power frequency and each air volume (step 14), the comparator 27 outputs H1.

ステップ14の条件が満足されると、ステップ15で1
2時間経過が判定される。12時間経過するまでは暖房
運転が継続され、又12時間経過する以前に入口配管温
度tが設定配管温度txより大きければステップ7に戻
り、第2タイマカクンタがリセットされる。
When the condition of step 14 is satisfied, step 15
It is determined that two hours have passed. The heating operation is continued until 12 hours have elapsed, and if the inlet pipe temperature t is greater than the set pipe temperature tx before 12 hours have elapsed, the process returns to step 7 and the second timer counter is reset.

そしてステップ15の条件が満足されるとステップ16
へ移り、除霜運転が開始される。
Then, when the conditions of step 15 are satisfied, step 16
The defrosting operation starts.

すなわち、P11〜P16ポート出力を変え、四方切換
弁2を切換え、必要に応じてその前に圧縮機1を一定時
間停止し、室内送風機7及び室外送風機8を停止する。
That is, the P11 to P16 port outputs are changed, the four-way switching valve 2 is switched, and if necessary, the compressor 1 is stopped for a certain period of time, and the indoor blower 7 and the outdoor blower 8 are stopped.

そして冷房サイクルにて除霜を行なう。この除霜運転の
内容は従来周知のため、詳細な説明を省略する。また暖
房運転の復帰についても従来より周知の如く、適宜手段
にて実施できる。
Then, defrost is performed in the cooling cycle. Since the content of this defrosting operation is conventionally well known, detailed explanation will be omitted. Further, the restoration of the heating operation can be carried out by any suitable means as is well known in the art.

なお、本実施例においては、除霜運転を暖房サイクルか
ら冷房サイクルへの切換えによって行うようにしたが、
例えば暖房サイクルを維持したままとして室外側熱交換
器へ別途蓄熱していた冷媒を流す構成あるいは、側熱源
にて霜を溶かす構成としてもよいことは言うまでもない
。また圧縮機1は除霜運転へ切換え時には連続運転とし
、暖房運転復帰前に一時停止させるようにしてもよい。
In this embodiment, the defrosting operation is performed by switching from the heating cycle to the cooling cycle.
For example, it goes without saying that a configuration may be adopted in which the heating cycle is maintained and a separately stored refrigerant is flowed to the outdoor heat exchanger, or a configuration in which frost is melted using a side heat source. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped before returning to heating operation.

発明の効果 以上述べたように本発明によれば、上記した構成により
、過熱域冷媒ガスの温度を室内側熱交換で行うことがで
き、構成が非常に簡単であり、甘た冷媒が、暖房を行う
熱量を十分に有しているか否かの判定が室内側熱交換器
の入口側で行えるため、実際の暖17・−7 房能力の有無を確実に判断して除霜を行うことができる
Effects of the Invention As described above, according to the present invention, the temperature of the superheated refrigerant gas can be controlled by indoor heat exchange with the above-described configuration, and the configuration is very simple, and the sweet refrigerant can be used for heating. Since it can be determined at the inlet side of the indoor heat exchanger whether or not there is enough heat to perform can.

すなわち、本発明は完全に着霜が発生している冷媒の温
度が熱交換器の入口部、中間部に差がなく、未着霜時に
入口冷媒温度の方が中間部の冷媒温度に比べて著しく高
い点に着眼し、入口側の冷媒温度を検出することによっ
て、未着霜がら着霜に至るまでの温度変化が大きくとれ
、1点の温度検出で限界に近い暖房能力を引き出すこと
ができる。また本発明は、暖房開始から一定時間経過す
るまで着霜を検出しないため、その一定時間は暖房能力
が確保され、快適さが損われることもない。
In other words, in the present invention, there is no difference in the temperature of the refrigerant at the inlet part and the middle part of the heat exchanger when frost has completely formed, and when no frost has formed, the inlet refrigerant temperature is higher than the refrigerant temperature in the middle part. By focusing on extremely high points and detecting the refrigerant temperature on the inlet side, it is possible to detect large temperature changes from unfrosted to frosted, and it is possible to draw out heating capacity close to the limit by detecting the temperature at one point. . Furthermore, since the present invention does not detect frost formation until a certain period of time has elapsed from the start of heating, the heating capacity is ensured for that certain period of time, and comfort is not impaired.

さらに室内熱交換器の配管温度が連続して設定温度を下
回らない表除霜運転を開始しない制御としている為、ノ
イズなどにより配管温度を実際の温度より低く検知し、
除霜運転が誤まって開始されることもない。
Furthermore, since the indoor heat exchanger's pipe temperature does not continuously fall below the set temperature, the defrosting operation is not started, so the pipe temperature may be detected to be lower than the actual temperature due to noise, etc.
Defrosting operation will not be started by mistake.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の除霜制御装置を機能実現手段で表現し
たブロック図、第2図は本発明の一実施18・、−1 例を示す空気調和機の冷凍サイクル図、第3図は同空気
調和機における除霜制御装置の回路図、第4図は同除霜
制御装置における室内側熱交換器へ流入する冷媒温度と
圧縮機吸入冷媒温度の関係を示す特性図、第5図は暖房
開始から一定時間T1暖房運転を継続することを示す運
転時間と配管温度との関係図、第6図は設定温度を下回
る時間がある所定時間T2経過しないと除霜運転を開始
しないことを示す運転時間と配管温度との関係図、第7
図は同除霜制御装置の動作内容を示すフローチャートで
ある。 1・・・・・・圧縮機、2・・・・・・四方切換弁、3
・・・・・・室内側熱交換器、5・・・・・・室外側熱
交換器、6・・・・・・配管温度検出素子、9.10・
・・・・・設定温度記憶抵抗、12.13.14・・・
・・・設定温度切換抵抗、22・・・・・・マイクロコ
ンピュータ、27・川・・コンパレーク代理人の氏名 
弁理士 中 尾 敏 男 ほか1名第1図 I−一亙廟券 ?−切刃W横升 a−!内側熱父視呑 4−一一遍μ呑 A−一室ダトユニッ) B−一隻内ユニット 第2図 0   賦JiP四−
Fig. 1 is a block diagram expressing the defrosting control device of the present invention as a function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an example of implementation 18.,-1 of the present invention, and Fig. 3 is Figure 4 is a circuit diagram of the defrosting control device in the air conditioner, and Figure 5 is a characteristic diagram showing the relationship between the temperature of the refrigerant flowing into the indoor heat exchanger and the temperature of the refrigerant sucked into the compressor in the defrosting control device. A relationship diagram between operating time and pipe temperature showing that the heating operation continues for a certain period of time T1 from the start of heating, and FIG. 6 shows that the defrosting operation will not start until a predetermined period of time T2 in which the temperature falls below the set temperature has elapsed. Relationship diagram between operating time and pipe temperature, No. 7
The figure is a flowchart showing the operation details of the defrosting control device. 1... Compressor, 2... Four-way switching valve, 3
... Indoor heat exchanger, 5 ... Outdoor heat exchanger, 6 ... Piping temperature detection element, 9.10.
...Setting temperature memory resistance, 12.13.14...
... Set temperature switching resistor, 22 ... Microcomputer, 27. River ... Name of Compare Lake agent.
Patent attorney Toshio Nakao and one other person Figure 1 I-Yiyangmyo ticket? -Cutting blade W horizontal square a-! Inner thermophilic drinker 4-11pen mu cup A-1 room dato unit) B-1 ship unit Fig. 2 0 FujiP4-

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧装置、室外側熱交換器を
具備した冷凍サイクルに、暖房サイクルと除霜サイクル
を切換えるサイクル切換手段を設け、さらに前記サイク
ル切換手段は、暖房サイクルから除霜サイクルに切換え
る制御装置を有し、前記制御装置を前記圧縮機の暖房運
転開始からの時間を計測する第1の時間計測手段と、あ
らかじめ設定された時間を記憶している第1の設定時間
記憶手段と、前記第1の時間計測手段により検出した時
間と前記第1の設定時間記憶手段に設定された時間の一
致を検出し出力する第1の比較手段と、暖房運転時に前
記室内側熱交換器の冷媒入口側に連結された配管の温度
を検出する温度検出手段と、暖房サイクルを除霜サイク
ルに切換える境界値温度を記憶した設定温度記憶手段と
、前記温度検出手段により検出した温度が、前記設定温
度記憶手段に記憶されたある設定温度値より低下した時
間を計測する第2の時間計測手段と、あらかじめ設定さ
れた時間を記憶している第2の設定時間記憶手段と、前
記第2の時間計測手段により検出した時間と前記第2の
設定時間記憶手段に設定された時間の一致を検出し出力
する第2の比較手段と、電源周波数を入力する周波数入
力手段と、その周波数が50HZか60HZかを判定す
る周波数判定手段と、風量を切り換える風量切換手段と
、各風量及び前記電源周波数判定手段の出力により設定
温度を切り換える設定温度切換手段と、前記温度検出手
段により検出した温度が前記設定温度記憶手段に記憶さ
れた境界値温度より低下したことを検出し出力する第3
の比較手段と、前記第1および第2の比較手段による第
1および第2の設定時間経過信号と前記第3の比較手段
による境界値低下信号により、暖房サイクルから除霜サ
イクルへの切換えを判定する判定手段と、前記判定手段
の出力に応じて前記冷凍サイクルを暖房運転から除霜運
転へ制御する選択出力手段より構成した空気調和機の除
霜制御装置。
A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducer, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means switches from the heating cycle to the defrosting cycle. a first time measuring means having a control device for switching the control device to a cycle, a first time measuring means for measuring the time from the start of heating operation of the compressor; and a first set time memory storing a preset time. means, first comparing means for detecting and outputting a match between the time detected by the first time measuring means and the time set in the first set time storage means, and the indoor heat exchanger during heating operation. a temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side of the container; a set temperature storage means for storing a boundary value temperature for switching a heating cycle to a defrosting cycle; and a temperature detected by the temperature detection means; a second time measuring means for measuring the time when the temperature drops below a certain set temperature value stored in the set temperature storage means; a second set time storing means for storing a preset time; a second comparing means for detecting and outputting a match between the time detected by the time measuring means and the time set in the second set time storage means; a frequency input means for inputting a power supply frequency; a frequency determining means for determining whether the temperature is 60 Hz or 60Hz; an air volume switching means for switching the air volume; a set temperature switching means for switching the set temperature based on each air volume and the output of the power frequency determining means; A third device detects and outputs that the temperature has fallen below the boundary value stored in the set temperature storage means.
, the switching from the heating cycle to the defrosting cycle is determined based on the first and second set time elapsed signals from the first and second comparing means and the boundary value drop signal from the third comparing means. A defrosting control device for an air conditioner, the defrosting control device for an air conditioner comprising: a determining means for determining, and a selection output means for controlling the refrigeration cycle from heating operation to defrosting operation according to the output of the determining means.
JP61277209A 1986-11-20 1986-11-20 Defrosting controller of air conditioner Pending JPS63131943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61277209A JPS63131943A (en) 1986-11-20 1986-11-20 Defrosting controller of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61277209A JPS63131943A (en) 1986-11-20 1986-11-20 Defrosting controller of air conditioner

Publications (1)

Publication Number Publication Date
JPS63131943A true JPS63131943A (en) 1988-06-03

Family

ID=17580330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61277209A Pending JPS63131943A (en) 1986-11-20 1986-11-20 Defrosting controller of air conditioner

Country Status (1)

Country Link
JP (1) JPS63131943A (en)

Similar Documents

Publication Publication Date Title
KR900005722B1 (en) Defrosting control apparatus for a temperature control system
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPS63131943A (en) Defrosting controller of air conditioner
JPS63189731A (en) Defrosting controller of air conditioner
JPH0195242A (en) Defrosting control device in air conditioner
JPH0566493B2 (en)
JPH0566491B2 (en)
JPS6315020A (en) Defrosting controller for air conditioner
JPS62233631A (en) Control device for defrosting of air conditioner
JPH0566492B2 (en)
JPS62206336A (en) Defrosting control device for air-conditioning machine
JPS6341757A (en) Defrosting control device for air conditioner
JPS6341758A (en) Defrosting control device for air conditioner
JPH0566495B2 (en)
JPS62119345A (en) Defrosting device of air conditioner
JPS62233633A (en) Control device for defrosting of air conditioner
JPS62223551A (en) Defrosting control unit of air conditioner
JPS62223549A (en) Defrosting control unit of air conditioner
JPS62223553A (en) Defrosting control unit of air conditioner
JPS62213638A (en) Defrost control device for air conditioner
JPH0566494B2 (en)
JPS63220029A (en) Defrosting controller for air conditioner
JPS62210338A (en) Control device for defrosting of air-conditioning machine
JPH0566497B2 (en)