JPS62233633A - Control device for defrosting of air conditioner - Google Patents

Control device for defrosting of air conditioner

Info

Publication number
JPS62233633A
JPS62233633A JP61074760A JP7476086A JPS62233633A JP S62233633 A JPS62233633 A JP S62233633A JP 61074760 A JP61074760 A JP 61074760A JP 7476086 A JP7476086 A JP 7476086A JP S62233633 A JPS62233633 A JP S62233633A
Authority
JP
Japan
Prior art keywords
current
temperature
defrosting
cycle
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61074760A
Other languages
Japanese (ja)
Other versions
JPH0566498B2 (en
Inventor
Tsutomu Nakamura
勉 中村
Kenichiro Miura
三浦 賢一郎
Takashi Deguchi
隆 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61074760A priority Critical patent/JPS62233633A/en
Publication of JPS62233633A publication Critical patent/JPS62233633A/en
Publication of JPH0566498B2 publication Critical patent/JPH0566498B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the heating capacity nearly at its maximum as well as to prevent erroneous operation in defrosting in an air conditioner, by detecting frost freezing on a heat exchanger by detecting the temperature in a refrigerant on the inlet side of an indoor heat exchanger and by detecting the power supply current after a predetermined time has elapsed after starting of an air heating operation, while the air heating operation as well as a specified temp. and current detection are secured. CONSTITUTION:A temperature detector is provided in a pipe at the inlet of an indoor heat exchanger for refrigerating cycle. It detects the temperature in a refrigerant and compares it with a reference temperature of frosting. While the supply current to drive a compressor is detected, and a signal is output in order to change the operation mode into a defrosting operation if the detected current is below a reference value. A decision to control defrosting is not made when the compressor is started and stopped by the ON-OFF operation of a thermostat because a defrosting operation accompanies the thermostat's operation. The air heating operation is changed into defrosting operation when a decision-maker detects frosting after a predetermined time has passed after starting of an air heating operation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調和機の除
霜制御装置に関するもので、特に室外側熱交換器の着霜
を室内側で検知し得るようにした空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat pump air conditioner, and particularly to a defrosting control device for detecting frost on an outdoor heat exchanger indoors. Regarding air conditioners.

従来の技術 従来、特公昭59−34255号公報に示されるように
、室内側熱交換器の温度変化と室内温度の変化の両者に
基づいて室外側熱交換器への着霜状態を検知し、暖房運
転と除霜運転を制御する技術が開発されている。
BACKGROUND ART Conventionally, as shown in Japanese Patent Publication No. 59-34255, the state of frost on an outdoor heat exchanger is detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change. Technologies have been developed to control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、温度検出素子が複
数必要となり、自と回路が複雑化する問題がある。さら
に、空気調和機においては、室内側の送風量が任意に可
変設定されることが常であり、そのためにも従来の技術
に風景補正手段を加味させることは、一層間路を複雑化
にしてし1つ。
Problems to be Solved by the Invention However, such a conventional configuration requires a plurality of temperature detection elements, complicating the circuit itself. Furthermore, in air conditioners, the amount of air blown indoors is usually set variably, and for this reason, adding a landscape correction means to the conventional technology would further complicate the process. One thing.

しかも、かかる構成は熱交換器を流れている途中の気液
混合冷媒温度を検出しているため、着霜時と未着霜時の
温度変化が小さく、微小な範囲で若uiT flJ定を
行わなければならず、検出精度が安定しない問題がある
Moreover, since this configuration detects the temperature of the gas-liquid mixed refrigerant flowing through the heat exchanger, the temperature change between frost and non-frost is small, and the young uiT flJ can be determined within a minute range. Therefore, there is a problem that the detection accuracy is unstable.

また近年、マイクロコンピユータにて複雑な信号処理を
行わせ、制御装置を構成することが多いが、従来技術の
ように入力信号源(温度検出素子)が多いことは、その
プログラム作成に当っても弊害のもとであり、プログラ
ムの簡素化にも限界があるO 以上のように、従来の技術には問題点が多々あり、改善
が要求されるものである。
In addition, in recent years, control devices are often configured by using microcomputers to perform complex signal processing, but the fact that there are many input signal sources (temperature detection elements) as in conventional technology makes it difficult to create programs. This is a source of harmful effects, and there are limits to the simplification of programs.As mentioned above, there are many problems with the conventional technology, and improvements are required.

本発明は、上記従来の問題点に鑑み、従来技術の利点を
損うことなく、構成の簡素化がはかれる除霜制御装置を
提供するものである。
In view of the above-mentioned conventional problems, the present invention provides a defrosting control device that can be simplified in configuration without sacrificing the advantages of the prior art.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図に示すよ
うに冷凍サイクルを暖房サイクルから除霜サイクルに制
御する制御装置を、暖房運転開始からの時間を計測する
時間計測手段1と、あらかじめ設定された時間T1を記
憶している設定時間T、記憶手段と、前記時間計測手段
1により検出した時間と前記設定時間T1記憶手段に設
定された時間の一致を検出し出力する第1の比較手段と
、rJU記室内室内側熱交換器媒入口側に連結された配
管の温度を検出する温度検出手段と、暖房サイクルを除
霜サイクルに切換える境界値温度を記憶した設定温度記
憶手段と、前記温度検出手段により検出した温度が前記
設定温度記憶手段に記憶された境界値温度より低下した
ことを検出し出力する第2の比較手段と、電源電流を検
出する電流検出手段と、暖房サイタルを除霜サイクルに
切換える境界値電流工1を記憶した設定電流11記憶手
段と、+’+fJ記電流検出手段により検出した電流が
、前記設定電流11記憶手段に記憶された境界値電流よ
り低下したことを検出し出力する第3の比較手段と、あ
らかじめ設定された境界値電流I2を記憶している設定
電流I2記憶手段と、前記電流検出手段により検出した
電流と前記設定電流■2記憶手段に設定された境界値電
流I2より低下したことを検出し出力する第4の比較手
段と、前記第1の比較手段による設定時間T1経過信号
と前記第4の比較手段による設定電流工2復起信号と前
記第2の比較手段による境界値低下信号或いは前記第1
の比較手段による設定時間T1経過信号と前記第4の比
較手段による設定電流I2復起信号と、前記第3の比較
手段による境界値低下信号により、圧縮機停止中を除き
暖房サイクルから除霜サイクルへの切換えを判定する判
定手段と、前記判定手段の出力に応じて前記冷凍サイク
ルを1暖房運転から除霜運転へ制御する選択出力手段よ
り構成したものである。
Means for Solving the Problems In order to solve the above problems, the present invention, as shown in FIG. A time measurement means 1 to be measured, a set time T that stores a preset time T1, a storage means, and a match between the time detected by the time measurement means 1 and the time set in the set time T1 storage means. a first comparison means for detecting and outputting the temperature, a temperature detection means for detecting the temperature of the piping connected to the medium inlet side of the indoor heat exchanger in the rJU-recorded room, and a temperature detection means for detecting the temperature of the pipe connected to the medium inlet side of the indoor heat exchanger described in rJU, and a boundary value temperature for switching the heating cycle to the defrosting cycle. a stored set temperature storage means; a second comparison means for detecting and outputting that the temperature detected by the temperature detection means has fallen below a boundary value temperature stored in the set temperature storage means; and a second comparison means for detecting a power supply current. A current detection means, a set current 11 storage means storing a boundary value current 1 for switching the heating cycle to a defrosting cycle, and a current detected by the +'+fJ current detection means are stored in the set current 11 storage means. a third comparison means for detecting and outputting a decrease in the current from the boundary value current set by the current detection means; a set current I2 storage means for storing a preset boundary value current I2; Set current (2) A fourth comparison means for detecting and outputting that the current has fallen below the boundary value current I2 set in the storage means, and a set time T1 elapsed signal from the first comparison means and the fourth comparison means. The set current controller 2 recovery signal and the boundary value lowering signal by the second comparison means or the first
The set time T1 elapsed signal from the comparison means, the set current I2 recovery signal from the fourth comparison means, and the boundary value drop signal from the third comparison means cause the heating cycle to be switched to the defrosting cycle except when the compressor is stopped. and a selection output means for controlling the refrigeration cycle from one heating operation to a defrosting operation in accordance with the output of the determination means.

作  用 この構成により、暖房運転開始から所定時間T1が経過
するまでとサーモスクyトON等による圧縮機始動から
所定電流I2が経過するまでは1援房運転が確保され、
その所定時間T1、経過後において、温度検出手段の検
出温度或いは電流検山手段の検出電流により、除霜運転
が制御される。
Effect: With this configuration, 1 support operation is ensured until the predetermined time T1 elapses from the start of the heating operation and until the predetermined current I2 elapses from the start of the compressor by turning on the thermo shut, etc.
After the predetermined time T1 has elapsed, the defrosting operation is controlled based on the temperature detected by the temperature detection means or the current detected by the current detection means.

実施例 以下、本発明の一実施例を第2図〜第7図を参照にして
説明する。第2図は、本発明の一実施例を示す冷凍サイ
クル図である。同図において、冷凍サイクルは圧縮機1
、四方切換弁2、室内側熱交換器3、減圧器4、室外側
熱交換器5″fc順次連結することにより構成されてい
る。6は配管温度検出素子であり、暖房時において室内
側熱交換器3(凝縮器)の冷媒入口側となる配管に取り
付けられている。この場合、冷房運転時は同図の実線矢
印の方向に冷媒が流れ、暖房運転時には四方切換弁2が
切換わることにより同図の破線矢印の方向に冷媒が流れ
るようになっている。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 2 to 7. FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention. In the same figure, the refrigeration cycle includes compressor 1
, a four-way switching valve 2, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5"fc are connected in sequence. 6 is a pipe temperature detection element, which detects indoor heat during heating. It is attached to the pipe on the refrigerant inlet side of the exchanger 3 (condenser).In this case, during cooling operation, the refrigerant flows in the direction of the solid arrow in the figure, and during heating operation, the four-way switching valve 2 switches. This allows the refrigerant to flow in the direction of the dashed arrow in the figure.

さらに、上記圧縮機1、四方切換弁2、減圧器4、室外
側熱交換器5および室外送風機8によって室外ユニット
Aが構成されている。また上記室内側熱交換器3および
室内送風機7、さらに配管温度検出素子6、電源電流を
検出する電流検出素子9、タイマ機能および温度調節機
能などがプログラムされたマイクロコンピュータ(以下
、マイコンと略称する)を有する運転制御部(図示せず
)は室内ユニッ)Bに投けられている。ここで、配管温
度検出素子6は、室内送風機7の送風の影響を受けない
風回路からはずれた箇所に取付けられている。また、室
内ユニットBの近辺でもよい。
Furthermore, the compressor 1, the four-way switching valve 2, the pressure reducer 4, the outdoor heat exchanger 5, and the outdoor blower 8 constitute an outdoor unit A. In addition, a microcomputer (hereinafter abbreviated as microcomputer) is programmed with the indoor heat exchanger 3 and indoor blower 7, a pipe temperature detection element 6, a current detection element 9 for detecting power supply current, a timer function, a temperature control function, etc. ) is located in the indoor unit (B). Here, the pipe temperature detection element 6 is attached at a location away from the wind circuit where it is not affected by the air blowing from the indoor blower 7. Alternatively, the location may be near the indoor unit B.

第3図は運転制御部における主要回路図である。FIG. 3 is a main circuit diagram of the operation control section.

同図において、マイコン11内には運転時間を判定する
クイムカクント値を記憶する記憶部12、この記憶部1
2に記憶されたタイムカクント値と入力値との比較によ
り適宜出力信号を発生する1枢動信号発生手段13を有
している。このマイコン110入力側にはコンパレーク
14を介して温度検出手段である配管温度検出素子6(
例えば配管サーミスタあるいは熱電対素子等)と必要に
応じて抵抗値が変えられる温度設定用抵抗15.16.
17と、コンパレーク18を介して電流検出手段である
電流検出素子9(例えば電流変成器)と電流値を電圧値
に変換する電流−電圧変換回路21と必要に応じて抵抗
値が変えられる電流設定用抵抗19.20が接続されて
いる。また出力側には、スイッチ用トランジスタT R
1〜T R4を介して駆動手段である四方切換弁コイル
を駆動するリレーR1、室内送風機7を駆動するリレー
R2、室外送風機8を駆動するリレーR3、圧縮機1を
駆動するリレーR4が接続されている。
In the same figure, a microcomputer 11 includes a storage section 12 for storing a quimcount value for determining operating time;
The pivot signal generating means 13 generates an appropriate output signal by comparing the input value with the time value stored in the pivot signal generating means 13. A piping temperature detection element 6 (which is a temperature detection means) is connected to the input side of this microcomputer 110 via a comparator 14.
(for example, a piping thermistor or thermocouple element, etc.) and a temperature setting resistor whose resistance value can be changed as necessary 15.16.
17, a current detection element 9 (for example, a current transformer) that is a current detection means via a comparator 18, a current-voltage conversion circuit 21 that converts a current value into a voltage value, and a current setting whose resistance value can be changed as necessary. Resistors 19 and 20 are connected. Also, on the output side, a switching transistor T R
A relay R1 that drives a four-way switching valve coil, which is a driving means, a relay R2 that drives an indoor blower 7, a relay R3 that drives an outdoor blower 8, and a relay R4 that drives a compressor 1 are connected through T R4. ing.

ここで、第3図の構成と第1図の構成を対比すると、配
管温度検出素子6および抵抗15は第1図の温度検出手
段に相当し、コンパレータ14は第1図の第2の比較手
段に相当し、抵抗16・17と配管温度検出素子6によ
って作られる電圧は第1図の設定電流記憶手段の信号に
相当し、電流検出素子9及び電流電圧変換回路21は第
1図の電流検出手段に相当し、コンパレーク18は第1
図の第3の比較手段に相当し、抵抗19.20によって
作られる電圧は第1図の設定電流記憶手段の信号に相当
し、記憶部12を含むマイコン11は第1図の設定時間
T、記憶手段設定電流I2記憶手段、時間計測手段、第
1の比較手段、′第4の比較手段、判定手段、選択出力
手段に相当し、中でも駆動信号発生手段13は判定手段
、選択出力手段に相当する。
Here, when comparing the configuration in FIG. 3 with the configuration in FIG. 1, the pipe temperature detection element 6 and the resistor 15 correspond to the temperature detection means in FIG. 1, and the comparator 14 corresponds to the second comparison means in FIG. The voltage generated by the resistors 16 and 17 and the pipe temperature detection element 6 corresponds to the signal of the set current storage means shown in FIG. The comparator 18 corresponds to the first
It corresponds to the third comparison means in the figure, and the voltage generated by the resistors 19 and 20 corresponds to the signal of the set current storage means in FIG. Storage means corresponds to setting current I2 storage means, time measurement means, first comparison means, fourth comparison means, judgment means, and selection output means, among which the drive signal generation means 13 corresponds to judgment means and selection output means. do.

次に、暖房運転の開始から除霜運転に至るまでの動作に
ついて説明する。
Next, the operation from the start of heating operation to defrosting operation will be explained.

圧縮機1の吐出冷媒温度をTd、圧縮機1の吸入冷媒温
度をTs、圧縮機1の吐出圧力をPd、圧縮機1の吸入
圧力fPsとし、ポリトロープ指a′(I−ncただし
、1 (n (Kの関係で、Kは断熱圧縮指数)とする
と、吐出冷媒温度Tdは次式で表わされる。
The discharge refrigerant temperature of the compressor 1 is Td, the suction refrigerant temperature of the compressor 1 is Ts, the discharge pressure of the compressor 1 is Pd, the suction pressure of the compressor 1 is fPs, and the polytropic index a' (I-nc, where 1 ( When n (in the relationship of K, where K is an adiabatic compression index), the discharge refrigerant temperature Td is expressed by the following equation.

!1 Td = Ts・(誓)“ したがって、室外側熱交換器5が未若霜時は吸入冷媒温
度Tsが高く、また吐出冷媒温度Tdも高い。そして外
気が下がり、着霜が成長するにつれて吸入冷媒温度Ts
は低下し、吐出冷媒温度Tdも下がる。
! 1 Td = Ts・(Oath)" Therefore, when the outdoor heat exchanger 5 has not yet had a young frost, the suction refrigerant temperature Ts is high, and the discharge refrigerant temperature Td is also high. Then, as the outside air falls and the frost grows, the suction refrigerant temperature Ts is high. Refrigerant temperature Ts
decreases, and the discharge refrigerant temperature Td also decreases.

本発明における配管温度検出素子6は、室内側熱交換器
3の入口配管に設けられ、圧縮機1から吐出された高温
高圧の過熱域冷媒ガスが流れる部分の温度を検出するが
、実際その温度は吐出ガスに比べて室内外接続配管等で
の熱損失により所定温度低下した温度である。
The pipe temperature detection element 6 in the present invention is installed in the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the high-temperature, high-pressure superheated refrigerant gas discharged from the compressor 1 flows. is a temperature that is lowered by a predetermined temperature due to heat loss in indoor/outdoor connecting pipes, etc. compared to the discharged gas.

したがって第4図に示すように室外側熱交換器5が未着
霜時は、圧縮機1の吸入冷媒温度Ts、室内側熱交換器
3の入口配管温度tはともに高く、着霜が進むにつれて
徐々に低下し、そして暖房能力を大巾に低下させる着霜
に至ると、室内側熱交換器3の入口配管温度tは極端に
低下する。
Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, both the suction refrigerant temperature Ts of the compressor 1 and the inlet pipe temperature t of the indoor heat exchanger 3 are high; As the temperature gradually decreases and frost formation occurs which significantly reduces the heating capacity, the temperature t of the inlet pipe of the indoor heat exchanger 3 extremely decreases.

また、空気調和機の電源電流は、概ね、吐出冷媒uL度
Tdに比例追随する値となり、第4図に示すように、配
管温度検出素子6の検出温度に概ね追随した値となる。
Further, the power supply current of the air conditioner generally has a value that proportionally follows the discharge refrigerant uL degree Td, and as shown in FIG. 4, it has a value that roughly follows the detected temperature of the pipe temperature detection element 6.

しかし、空気調和機の冷凍サイクルに於ける冷媒[11
が減少した場合には相対的に低い電流値となる傾向があ
る。
However, the refrigerant [11
When the current value decreases, the current value tends to be relatively low.

すなわち、入口配管温度tが設定配管温度t1以下にな
るか、或いは電流値Iが設定電流工1以下になれば、暖
房能力は低下し、着霜が進んでいるので除霜する必要が
ある。
That is, if the inlet pipe temperature t becomes less than the set pipe temperature t1, or the current value I becomes less than the set current value 1, the heating capacity decreases, and since frost formation has progressed, it is necessary to defrost.

このように室内側熱交換器30入口配管温度tは、過熱
域冷媒ガスの温度であるため、室内送風機7の風量の影
響を受けにくく、室内側熱交換器30入口配管温度又は
電流値にてM確な除霜運転の判断を行うことができる。
In this way, the indoor heat exchanger 30 inlet pipe temperature t is the temperature of the refrigerant gas in the superheated region, so it is less affected by the air volume of the indoor blower 7, and the indoor heat exchanger 30 inlet pipe temperature or current value It is possible to make accurate defrosting operation decisions.

またプーモスクットOFF→ON等の、圧縮機の運転、
停止が発生した場合、圧縮機の再始動の1際、圧縮機の
吸入冷媒温度Ts、室内側熱交換器3の入口配管温度t
、電源電流値Iはそれぞれ第7図に示す様に過渡的な挙
動を示す。従って圧縮機停止中及び再始動後設定電流■
2の間は除霜判定を中止することにより、除霜判定の誤
動作を防止することができる。
Also, compressor operation such as PUMO cut OFF → ON, etc.
When a stop occurs, when restarting the compressor, the compressor suction refrigerant temperature Ts, the indoor heat exchanger 3 inlet pipe temperature t
, power supply current value I each exhibit transient behavior as shown in FIG. Therefore, the set current while the compressor is stopped and after restarting■
By suspending the defrost determination during the period 2, malfunctions in the defrost determination can be prevented.

次に冷凍サイクル内の冷媒量が不足した場合、及び長期
間にわたる使用により徐々に冷媒洩れを生じた場合の挙
動につき第6図を用いて説明する。
Next, the behavior when the amount of refrigerant in the refrigeration cycle is insufficient or when refrigerant gradually leaks due to long-term use will be explained using FIG. 6.

定常の冷媒量に対して、冷媒量が不足すると公知のごと
く冷凍サイクル内での冷媒循環量が減少することとなり
、圧縮機から吐出される冷媒の温度は上昇し又同様に吸
入冷媒温度が上昇する。一方当然冷凍サイクルでは、圧
力が低下することとなり、蒸発器での冷媒温度も圧力低
下に伴って下降することとなり、外気との熱交換により
、暖房運転時は定常の冷媒量運転時より着霜が進むこと
となる。一方電源電流は冷媒循環量が減少することによ
り高圧が下がりかつ高圧と低圧の圧力差が小さくなり圧
縮機の仕事量が減少することとなり、定常運転に比較し
減少する。
As is well known, when the amount of refrigerant is insufficient compared to the steady amount of refrigerant, the amount of refrigerant circulating within the refrigeration cycle decreases, the temperature of the refrigerant discharged from the compressor increases, and the temperature of the suction refrigerant also increases. do. On the other hand, in the refrigeration cycle, the pressure naturally decreases, and the refrigerant temperature in the evaporator also decreases with the pressure decrease, and due to heat exchange with the outside air, frost builds up during heating operation compared to when operating with a steady amount of refrigerant. will proceed. On the other hand, the power supply current decreases compared to steady operation because the amount of refrigerant circulation decreases, which lowers the high pressure and reduces the pressure difference between the high and low pressures, reducing the amount of work of the compressor.

従って圧縮機1の吸入冷媒温度Ts、室内側熱交換器の
入口配管温度t1電源電流値Iは、@′4図の状再と比
較してそれぞれ、上昇、上昇、低下(頃向となる。
Therefore, the suction refrigerant temperature Ts of the compressor 1 and the power supply current value I of the indoor heat exchanger inlet pipe temperature t1 rise, rise, and fall (approximately), respectively, compared to the state shown in Figure @'4.

従って除霜開始判定条件が、室内側熱交換器の入口配管
温度tの値のみであると、冷媒量不足の場合は、C霜が
進行しても除霜動作に入らないこととなる。
Therefore, if the defrosting start determination condition is only the value of the inlet pipe temperature t of the indoor heat exchanger, if the amount of refrigerant is insufficient, the defrosting operation will not start even if the C frost progresses.

ここで電源電流値Iの判定点11を力適切に設定するこ
とにより、このような場合にも適切な除霜動作を行うこ
とができる。
By appropriately setting the determination point 11 of the power supply current value I, an appropriate defrosting operation can be performed even in such a case.

υJ1−の説B11に実(づへ、筑3図に示す制御面落
は、第5図に示すフローチャートの内容の制御を行う。
In theory B11 of υJ1-, the control plane shown in Figure Chiku3 controls the contents of the flowchart shown in Figure 5.

すなわち、第5図のステップ1で示すように暖房運転が
開始されると、マイコン11で所定時間T1のクイマー
カクントがセットされる(ステップ2)。このタイマー
カフシトセットは、暖房運転開始からT11時間例えば
1時間)暖房運転を確保するためのもので、例えば強制
的に1時間暖房を連続することも一つの手段である。
That is, when the heating operation is started as shown in step 1 in FIG. 5, the microcomputer 11 sets a heater for a predetermined time T1 (step 2). This timer cuff set is for ensuring heating operation for a time T11 (for example, 1 hour) from the start of heating operation, and one means is to forcibly continue heating for 1 hour, for example.

そしてタイマーカクントがセットされると、ステップ3
でT1時間経過が’l’lJ定される。T1時間経過す
るまでは暖房運転が継続される。次にステップ4で圧縮
機の停止、運転を判定し、停止の場合は、始動時となる
。次にステップ5で圧縮機始動を検出し、次のステップ
6では圧縮機始動から暖房運転を確保する、すなわち圧
縮機始動時の過渡的な状況の中で誤って除霜動作に入る
ことを防止するものであり、圧縮機始動時は、設定電流
■2が復起するまで暖房運転が継続される。圧縮機始動
時の電流検出終了後は、ステップ8へ移り、へ管温度検
出素子6による配管温度、の読み込みが行われ、ステッ
プ9に移って配管温度tが設定配管温度t1よりも低い
か否か判定される。具体的には@3図のコンパレーター
14が判定する。
Then, when the timer cacunto is set, step 3
The T1 time elapsed is determined as 'l'lJ. The heating operation is continued until the time T1 has elapsed. Next, in step 4, it is determined whether the compressor is stopped or running, and if the compressor is stopped, it is determined that the compressor is started. Next, in step 5, the compressor start is detected, and in the next step 6, heating operation is ensured from the compressor start, i.e., preventing erroneously entering defrosting operation in the transient situation when the compressor is started. When the compressor is started, the heating operation is continued until the set current (2) is restored. After the current detection at the time of starting the compressor is completed, the process moves to step 8, where the pipe temperature is read by the pipe temperature detection element 6, and the process moves to step 9, where it is determined whether the pipe temperature t is lower than the set pipe temperature t1. It is determined whether Specifically, the comparator 14 in Figure @3 makes the determination.

ステップ9において、配管温度tが設定温度t1よりも
高い場合は、ステップ10へ移り、ステップ11の条件
が満足されるとステップ12へまた、配管温度tが設定
温度t1より低い場合も同様ステップ12へ移り除霜運
転が開始される。すなわち、第3図のトランジスタTR
,・TR2・TR3・TR4がそれぞれ動作し、四方切
換弁2を切換え、必要に応じてその前に圧縮機1を一定
時間停止し、室内送風機7および室外送風機8を停止す
る。そして冷房ブイタルにて除霜を行う。この除霜運転
の内容は従来周知のため、詳細な説明を省略する。また
暖房運転の復帰についても従来より周知の如く、適宜手
段にて実施できる。
In step 9, if the pipe temperature t is higher than the set temperature t1, the process moves to step 10, and if the conditions of step 11 are satisfied, the process moves to step 12.If the pipe temperature t is lower than the set temperature t1, the process moves to step 12. The defrosting operation starts. That is, the transistor TR in FIG.
, TR2, TR3, and TR4 respectively operate to switch the four-way switching valve 2, and if necessary, before that, the compressor 1 is stopped for a certain period of time, and the indoor blower 7 and the outdoor blower 8 are stopped. Then defrost using a cooling unit. Since the content of this defrosting operation is conventionally well known, detailed explanation will be omitted. Further, the restoration of the heating operation can be carried out by any suitable means as is well known in the art.

なお、本実施例においては、除雪運転を暖房サイクルか
ら冷房サイクルへの切換えによって行うようにしたが、
例えば暖房サイクルを維持したままとして室外側熱交換
器へ別途蓄熱していた冷媒を流す構成あるいは、別熱源
にて霜を溶かす構成としてもよいことは言うまでもない
。また圧縮機1は除霜運転へ切換え時には連続運転とし
、暖房運転復帰曲に一時停止させるようにしてもよい。
In this embodiment, the snow removal operation was performed by switching from the heating cycle to the cooling cycle.
For example, it goes without saying that a configuration may be adopted in which the heating cycle is maintained and a separately stored refrigerant is flowed to the outdoor heat exchanger, or a configuration in which a separate heat source is used to melt the frost. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped when returning to heating operation.

発明の効果 以上述べたように本発明によれば、上記した構成により
、過熱域冷媒ガスの温度を室内側熱交換器入口配管にて
検出し、まだ電源電流を検出し室内風量の影響をあまり
受けずに、適確な除霜運転を温度検出1点又は電流検出
1点で行うことができ、構成が非常に簡単であり、また
冷媒が、暖房を行う熱量を十分に有しているか否かの判
定が室内側熱交換器の入口側及び電源電流値で行えるた
め実際の暖房能力の有無を確実に判断して除霜を行うこ
とができる。また冷凍サイクルの冷媒が不足している場
合は電流により適確な除霜全行うことができる。すなわ
ち、本発明は完全に着霜が発生している冷媒の温度が熱
交換器の入口部、中間温度と電源電流との比例関係に着
眼し、入口側の冷媒温度及び電源電流分検出することに
よって、未着霜から着霜に至るまでの温度変化及び電流
変化が大きくとれ、各1点の温度検出及び電流検出で限
界に近い暖房能力を引き出すことができる。
Effects of the Invention As described above, according to the present invention, with the above-described configuration, the temperature of the refrigerant gas in the superheated region is detected at the indoor heat exchanger inlet piping, and the power supply current is still detected, so that the influence of the indoor air volume is less affected. It is possible to perform accurate defrosting operation with one point of temperature detection or one point of current detection, without having to be affected by heat, and has a very simple configuration. Since this can be determined based on the inlet side of the indoor heat exchanger and the power supply current value, defrosting can be performed by reliably determining the presence or absence of actual heating capacity. In addition, if there is a shortage of refrigerant in the refrigeration cycle, proper defrosting can be performed using electric current. That is, the present invention focuses on the proportional relationship between the temperature of the refrigerant where frost has completely formed at the inlet of the heat exchanger, the intermediate temperature, and the power supply current, and detects the temperature of the refrigerant at the inlet and the power supply current. As a result, temperature changes and current changes from non-frosting to frosting can be made large, and heating capacity close to the limit can be brought out by detecting temperature and current at one point each.

また、本発明は、暖房開始から一定時間経過するまで着
霜を検出しないため、その一定時間は暖房能力が確保さ
れ、快適さが損われることもない。
Furthermore, since the present invention does not detect frost formation until a certain period of time has elapsed from the start of heating, the heating capacity is ensured for that certain period of time, and comfort is not impaired.

また、ブーモスクツ1−OFF等により、暖房運転中に
圧縮機が停止することがあるが、圧縮機停止中及び始動
後、境界値電流に達するまでは除霜判定を行わないため
、これらの期間に除霜の誤動作を行うこともない。
In addition, the compressor may stop during heating operation due to BOOMOST 1-OFF, etc., but defrosting judgment is not performed while the compressor is stopped or after starting until the boundary value current is reached, so There is no possibility of defrosting malfunction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の除霜制御装置を機能実現手段で表現し
たブロック図、第2図は本発明の一実施例を示す空気調
和機の冷凍サイクル図、@3図は同空気調和機における
除霜制御装置の回路図、第4図は同除霜制御装置におけ
る室内側熱交換器へ流入する冷媒温度と圧縮機吸入冷媒
温度と空気調和機の電源電流の胸係を示す特性図、第5
図は同除霜制御装置の動作内容を示すフローチャート、
第6図は同除霜制御装置における冷媒量不足の場合の室
内側熱交換器へ流入する冷媒温度と圧縮機吸入冷媒温度
と、空気調和機の電源電流の関係を示す特性図、第7図
は、サーモスタットOFFを含む同除霜制御装置におけ
る室内側熱交換器へ流入する冷媒温度と圧縮機吸入冷媒
温度と空気調和機の電源電流の関係を示す特性図である
。 1・・・・・・圧縮機、2・・・・・・四方切換弁、3
・・・・・・室内側熱交換器、4・・・・・・減圧器、
5・・・・・・室外側熱交換器、6・・・・・・配管温
度検出素子、7・・・・・・室内送風機、8・・・・・
・室外送風機、9・・・・・・電流検出素子、11・・
・・・・マイクロコンピユータ、12・・・・・・EE
L  13・・・・・・駆動信号発生手段、14.18
・・・・・・コンパレータ、15.16.17・・・・
・・温度設定用抵抗、19.20・・・・・・電流設定
用抵抗、21・・・・・・電流電圧変換回路、A・・・
・・・室外ユニット、B・・・・・・室内ユニット。 )埋入の氏名 弁理士 中 尾 敏 男 はが1名/−
−一圧S成 2−−−四方辺拠介 3−一一室内創熟交換器 4−一一大圧器 5−一一室外愛匣交挟器 6−・配管易支撥出秦子 q−・′電流検出素子 A−一一皇νトユニット E−一一室丙ユニット 6一−−配管遍虞検と素子 ケーーー電脱検出素子 H−m−マイクロコンピュータ 12−−一艶S部 13−−−に勤信号発生手役 第 3 図           74.78−  ゴ
ンノマレータ15、#;、17.7デ 20−m−抵抗
21−−一電庶電圧変換@俗 T5 −−ERAltの吸入41家献 第4図     1−・−電源1姐 叫間 第5図 1−一一室内偲熟又央器9 人r輯こヤ「お五四( 晴間−→ 第 7 図                 Ts−
−−2E喝ホ驚のも(入X積策温爽工−−−重水電流値 ? 丁1        時 間 。
Fig. 1 is a block diagram expressing the defrosting control device of the present invention as a function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a block diagram of the defrosting control device of the present invention. Fig. 4 is a circuit diagram of the defrosting control device, and a characteristic diagram showing the relationship between the refrigerant temperature flowing into the indoor heat exchanger, the compressor suction refrigerant temperature, and the power supply current of the air conditioner in the same defrosting control device. 5
The figure is a flowchart showing the operation details of the defrosting control device.
Figure 6 is a characteristic diagram showing the relationship between the temperature of the refrigerant flowing into the indoor heat exchanger, the temperature of the compressor suction refrigerant, and the power supply current of the air conditioner when the amount of refrigerant is insufficient in the defrosting control device, and Figure 7 is a characteristic diagram showing the relationship between the refrigerant temperature flowing into the indoor heat exchanger, the compressor suction refrigerant temperature, and the power supply current of the air conditioner in the defrosting control device including the thermostat OFF. 1... Compressor, 2... Four-way switching valve, 3
...Indoor heat exchanger, 4...Pressure reducer,
5...Outdoor heat exchanger, 6...Piping temperature detection element, 7...Indoor blower, 8...
・Outdoor blower, 9...Current detection element, 11...
...Microcomputer, 12...EE
L 13...Drive signal generating means, 14.18
...Comparator, 15.16.17...
...Temperature setting resistor, 19.20...Current setting resistor, 21...Current voltage conversion circuit, A...
...Outdoor unit, B...Indoor unit. )Name embedded Patent attorney Toshi Nakao Male 1/-
- One pressure S formation 2 - Four-way support 3 - 11 Indoor sowing exchanger 4 - 11 Large pressure vessel 5 - 11 Outdoor love box interspersor 6 - Piping easy support qin q -・'Current detection element A - 11 unit E - 11 room 2 unit 61 - Piping inspection and element K - Voltage detection element Hm - Microcomputer 12 - 1 unit S part 13 - -- Signal generation hand No. 3 Figure 74.78- Gonomareta 15, #;, 17.7 De 20-m- Resistor 21--One current to common voltage conversion @T5 -- ERAlt's inhalation 41 Family presentation No. Figure 4 1-・- Power supply 1 -> 5th Figure 1-11 Indoor rejuvenation and central equipment 9
--- 2E cheers and surprises (entering x planning and heating --- heavy water current value? 1 hour.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧装置、室外側熱交換器を
具備した冷凍サイクルに、暖房サイクルと除霜サイクル
を切換えるサイクル切換手段を設け、さらに前記サイク
ル切換手段を、暖房サイクルから除霜サイクルに切換え
る制御装置を、暖房運転開始からの時間を計測する時間
計測手段と、あらかじめ設定された時間を記憶している
設定時間記憶手段と、前記時間計測手段により検出した
時間と前記設定時間記憶手段に設定された時間の一致を
検出し出力する第1の比較手段と、前記室内側熱交換器
の冷媒入口側に連結された配管の温度を検出する温度検
出手段と、暖房サイクルを除霜サイクルに切換える境界
値温度を記憶した設定温度記憶手段と、前記温度検出手
段により検出した温度が前記設定温度記憶手段に記憶さ
れた境界値温度より低下したことを検出し出力する第2
の比較手段と、電源電流を検出する電流検出手段と、暖
房サイクルを除霜サイクルに切換える境界値電流I_1
を記憶した設定電流I_1記憶手段と、前記電流検出手
段により検出した電流が、前記設定電流I_1記憶手段
に記憶された境界値電流より低下したことを検出し出力
する第3の比較手段と、あらかじめ設定された境界値電
流I_2を記憶している設定電流I_2記憶手段と、前
記電流検出手段により検出した電流と前記設定電流I_
2記憶手段に設定された境界値電流I_2より低下した
ことを検出し出力する第4の比較手段と、前記第1の比
較手段による設定時間T_1経過信号と前記第4の比較
手段による設定電流I_2復起信号と前記第2の比較手
段による境界値低下信号、或いは前記第1の比較手段に
よる設定時間T_1経過信号と前記第4の比較手段によ
る設定電流I_2復起信号と、前記第3の比較手段によ
る境界値低下信号により、圧縮機停止中を除き暖房サイ
クルから除霜サイクルへの切換えを判定する判定手段と
、前記判定手段の出力に応じて前記冷凍サイクルを暖房
運転から除霜運転へ制御する選択出力手段より構成した
空気調和機の除霜制御装置。
A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means is configured to switch between a heating cycle and a defrosting cycle. A control device for switching to a cycle includes a time measuring means for measuring time from the start of heating operation, a set time storage means for storing a preset time, and a time detected by the time measuring means and a memory for the set time. a first comparing means for detecting and outputting the coincidence of times set in the means; a temperature detecting means for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger; a set temperature storage means that stores a boundary value temperature for switching to the cycle; and a second temperature storage means that detects and outputs that the temperature detected by the temperature detection means has fallen below the boundary value temperature stored in the set temperature storage means.
a comparison means for detecting the power supply current, a current detection means for detecting the power supply current, and a boundary value current I_1 for switching the heating cycle to the defrosting cycle.
a set current I_1 storage means that stores the set current I_1; A set current I_2 storage means that stores the set boundary value current I_2, and a current detected by the current detection means and the set current I_2.
2. A fourth comparing means detects and outputs a decrease from the boundary value current I_2 set in the second storage means, and a set time T_1 elapsed signal from the first comparing means and a set current I_2 from the fourth comparing means. The restoration signal and the boundary value drop signal by the second comparison means, or the set time T_1 elapsed signal by the first comparison means and the set current I_2 restoration signal by the fourth comparison means, and the third comparison. determining means for determining switching from the heating cycle to the defrosting cycle, except when the compressor is stopped, based on a boundary value decrease signal from the means; and controlling the refrigeration cycle from the heating operation to the defrosting operation in accordance with the output of the determining means. A defrosting control device for an air conditioner, comprising a selection output means.
JP61074760A 1986-04-01 1986-04-01 Control device for defrosting of air conditioner Granted JPS62233633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61074760A JPS62233633A (en) 1986-04-01 1986-04-01 Control device for defrosting of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61074760A JPS62233633A (en) 1986-04-01 1986-04-01 Control device for defrosting of air conditioner

Publications (2)

Publication Number Publication Date
JPS62233633A true JPS62233633A (en) 1987-10-14
JPH0566498B2 JPH0566498B2 (en) 1993-09-21

Family

ID=13556553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61074760A Granted JPS62233633A (en) 1986-04-01 1986-04-01 Control device for defrosting of air conditioner

Country Status (1)

Country Link
JP (1) JPS62233633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223494A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Air conditioner
CN110686362A (en) * 2019-10-28 2020-01-14 宁波奥克斯电气股份有限公司 Operation control method and system of air conditioner, air conditioner and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223494A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Air conditioner
CN110686362A (en) * 2019-10-28 2020-01-14 宁波奥克斯电气股份有限公司 Operation control method and system of air conditioner, air conditioner and storage medium

Also Published As

Publication number Publication date
JPH0566498B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
KR900005722B1 (en) Defrosting control apparatus for a temperature control system
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPS62233633A (en) Control device for defrosting of air conditioner
JPS62210336A (en) Control device for defrosting of air-conditioning machine
JPS62213638A (en) Defrost control device for air conditioner
JPH0583819B2 (en)
JPH0566497B2 (en)
JPH0566496B2 (en)
JPS63189731A (en) Defrosting controller of air conditioner
JPH0566489B2 (en)
JPS62213637A (en) Defrost control device for air conditioner
JPS6341756A (en) Defrosting control device for air conditioner
JPS62223551A (en) Defrosting control unit of air conditioner
JPS62213639A (en) Defrost control device for air conditioner
JPS62218752A (en) Defrosting controller for air-conditioning machine
JPS62223548A (en) Defrosting control unit of air conditioner
JPH0566488B2 (en)
JPH0566491B2 (en)
JPS6338848A (en) Defrosting control device for air conditioner
JPS62210339A (en) Control device for defrosting of air-conditioning machine
JPS62218750A (en) Defrosting controller for air-conditioning machine
JPH0566490B2 (en)
JPS62223549A (en) Defrosting control unit of air conditioner
JPS62218749A (en) Defrosting controller for air-conditioning machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees