JPS62213637A - Defrost control device for air conditioner - Google Patents

Defrost control device for air conditioner

Info

Publication number
JPS62213637A
JPS62213637A JP61054035A JP5403586A JPS62213637A JP S62213637 A JPS62213637 A JP S62213637A JP 61054035 A JP61054035 A JP 61054035A JP 5403586 A JP5403586 A JP 5403586A JP S62213637 A JPS62213637 A JP S62213637A
Authority
JP
Japan
Prior art keywords
temperature
time
current
cycle
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61054035A
Other languages
Japanese (ja)
Inventor
Masaki Koyama
正樹 小山
Keiichi Kuriyama
栗山 啓一
Makoto Kaihara
海原 誠
Ryozo Jabami
蛇場見 良三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61054035A priority Critical patent/JPS62213637A/en
Publication of JPS62213637A publication Critical patent/JPS62213637A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a positive operation by a method wherein a defrost operation is controlled when a desired time is elapsed after a starting time of heating operation by a difference in sensed temperatures of two temperature sensing means or a sensed electrical current of an electrical current sensing means and after a desired time from a reoperation of a compressor is elapsed. CONSTITUTION:When a heating operation is started, a timer count of a desired time T is counted by a microcomputer 9 and then a heating operation is continued. After the time T is elapsed, an inputting of a piping temperature (t1) by a piping temperature sensing element 6 and an inputting of a heat exchanging temperature (t2) by a heat exchanger temperature sensing element 6' are performed. A comparator 12 may judge if a temperature difference between (t1) and (t2) is lower than the set temperature (t) and in the case that a value of (t1-t2) is higher than the set temperature, a comparator 18 may judge if the electrical current value I is lower than the set electrical current I1. If the condition of t>=t1-t2 or I<=I1 is fulfilled, each of the transistors TR1, TR2, TR3, TR4 is operated, a four-way changing-over valve 2 is changed over and a frost removing operation is carried out in a refrigerating cycle.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調和機の除
霜制御装置に関するもので、特に室外側熱交換器の着霜
を室内側で検知し得るようにした空気調和機に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat pump air conditioner, and particularly to a defrosting control device for detecting frost on an outdoor heat exchanger indoors. This relates to an air conditioner.

従来の技術 従来、特公昭59−34255号公報に示されるように
、室内側熱交換器の温度変化と室内温度の変化の両者に
基づいて室外側熱交換器への着霜状態を検知し、暖房運
転と除霜運転を制御する技術が開発されている。
BACKGROUND ART Conventionally, as shown in Japanese Patent Publication No. 59-34255, the state of frost on an outdoor heat exchanger is detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change. Technologies have been developed to control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、室内熱交換器の補
正温度Tcと室内温度Taとの差(Tc−Ta)が、そ
の最大値(Tc−Ta)maxよりも一定値低下したと
き、除霜信号が得られるようになっているが、前記室内
熱交換器の補正温度Tcは、最小の設定風量までの補正
値であり、空気調和機を部屋の中で使用した場合、室内
熱交換器の前に設置しているフィルターにほこり等がつ
まり、空気調和機の最小設定風量より低下することが常
であり、前記補正温度Tcと室内温度Taとの差(Tc
−Ta)が、その最大値(Tc−Ta)maxから一定
値低下することがない場合があり、室外熱交換器が着霜
しているにもかかわらず除霜運転を行なわないという実
用上の問題がある。
Problems to be Solved by the Invention However, in this conventional configuration, the difference (Tc-Ta) between the corrected temperature Tc of the indoor heat exchanger and the indoor temperature Ta is more constant than its maximum value (Tc-Ta)max. When the value decreases, a defrost signal is obtained, but the corrected temperature Tc of the indoor heat exchanger is a corrected value up to the minimum set air volume, and if the air conditioner is used in the room. In this case, the filter installed in front of the indoor heat exchanger is usually clogged with dust and the air volume is lower than the minimum setting of the air conditioner, and the difference between the corrected temperature Tc and the indoor temperature Ta (Tc
-Ta) may not decrease by a certain value from its maximum value (Tc-Ta)max, which may cause practical problems such as not performing defrosting operation even though the outdoor heat exchanger is frosted. There's a problem.

本発明は、上記従来の問題点に鑑み、従来技術の利点を
損うことなく、動作の確実化がはかれる除霜制御装置を
提供するものである。
In view of the above-mentioned conventional problems, the present invention provides a defrosting control device that can ensure reliable operation without sacrificing the advantages of the conventional technology.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図に示すよ
うに冷凍サイクルを暖房サイクルから除霜サイクルに制
御する制御装置を、前記圧縮機の暖房運転開始からの時
間を計測する第1の時間計測手段と、あらかじめ設定さ
れた時間を記憶している第1の設定時間記憶手段と、前
記第1の時間計測手段により検出した時間と前記第1の
設定時間記憶手段に設定された時間の一致を検出し出力
する第1の比較手段と、暖房運転時に前記室内熱交換器
の冷媒入口側に連結された配管の温度を検出する第1の
温度検出手段、前記室内側熱交換器の中央部に連結され
た配管の温度を検出する第2の温度検出手段と、暖房サ
イクルを除霜サイクルに切換えるある設定温度値を記憶
した設定温度記憶手段と、前記第1の温度検出手段によ
り検出した温度と第2の温度検出手段により検出した温
度との差が前記設定温度記憶手段に記憶されたある設定
温度より低下したことを検出し出力する第2の比較手段
と、電源電流を検出する電流検出手段と、暖房サイクル
を除霜サイクルに切換える境界値電流を記憶した設定電
流記憶手段と、前記電流検出手段により検出した電流が
、前記設定電流記憶手段に記憶された境界値電流より低
下したことを検出し、出力する第3の比較手段と、圧縮
機停止後の暖房再運転開始からの時間を計測する第2の
時間計測手段と、あらかじめ設定された時間を記憶して
いる第2の設定時間記憶手段と、前記第2の時間計測手
段により検出した時間と前記第2の設定時間記憶手段に
設定された時間の一致を検出し出力する第4の比較手段
と、前記第1の比較手段による設定時間経過信号と前記
第2の比較手段による差温値低下信号或いは前記第1の
比較手段による設定時間経過信号と前記第3の比較手段
による境界値低下信号と、前記第4の比較手段による設
定時間経過信号により、暖房サイクルから除霜サイクル
への切換えを判定する判定手段と、前記判定手段の出力
に応じて前記冷凍サイクルを暖房運転から除霜運転へ制
御する選択手段より構成したものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a control device that controls the refrigeration cycle from the heating cycle to the defrosting cycle as shown in FIG. a first time measuring means for measuring the time from , a first set time storage means for storing a preset time, and a time detected by the first time measuring means and the first setting. a first comparison means that detects and outputs the coincidence of times set in the time storage means; and a first temperature detection means that detects the temperature of the pipe connected to the refrigerant inlet side of the indoor heat exchanger during heating operation. , a second temperature detection means for detecting the temperature of the pipe connected to the central part of the indoor heat exchanger; a set temperature storage means for storing a certain set temperature value for switching the heating cycle to the defrosting cycle; a second comparison that detects and outputs that the difference between the temperature detected by the first temperature detection means and the temperature detected by the second temperature detection means has fallen below a certain set temperature stored in the set temperature storage means; a current detection means for detecting a power supply current; a set current storage means for storing a boundary value current for switching a heating cycle to a defrosting cycle; and a current detected by the current detection means is stored in the set current storage means. a third comparison means that detects that the current has decreased below the set boundary value current and outputs it; a second time measurement means that measures the time from the start of heating restart after the compressor is stopped; and a preset time. and a fourth comparison for detecting and outputting a match between the time detected by the second time measuring means and the time set in the second set time storing means. and a set time elapsed signal by the first comparing means and a differential temperature value decrease signal by the second comparing means, or a set time elapsed signal by the first comparing means and a boundary value decrease by the third comparing means. a determining means for determining switching from the heating cycle to the defrosting cycle based on the signal and a set time elapsed signal from the fourth comparing means; and a determining means for switching the refrigeration cycle from the heating operation to the defrosting operation in accordance with the output of the determining means. It is composed of a selection means for controlling.

作  用 この構成により、暖房運転開始から所定時間が経過する
までは暖房運転が確保され、その所定時間経過後におい
て、2つの温度検出手段の検出温度差或いは電流検出手
段の検出電流および圧縮機再運転からの所定時間経過後
により、除霜運転が制御される。
Effect: With this configuration, heating operation is ensured until a predetermined time has elapsed from the start of heating operation, and after the predetermined time elapses, the detected temperature difference between the two temperature detecting means, the detected current of the current detecting means, and the compressor are restarted. The defrosting operation is controlled after a predetermined period of time has passed since the operation.

実血例 以下、本発明の一実施例を第2図〜第6図を参照にして
説明する。第2図は、本発明の一実施例を示す冷凍サイ
クル図である。同図において、冷凍サイクルは圧縮機1
、四方切換弁2、室内側熱交換器a、減圧器4、室外側
熱交換器5を順次連結することにより構成されている。
EXAMPLE OF REAL BLOOD Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 2 to 6. FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention. In the same figure, the refrigeration cycle includes compressor 1
, a four-way switching valve 2, an indoor heat exchanger a, a pressure reducer 4, and an outdoor heat exchanger 5 are connected in sequence.

6は配管温度検出素子であり、暖房時において室内側熱
交換器3(凝縮機)の冷媒入口側となる配管に取り付け
られている。同様に6′も配管温度検出素子であり、室
内側熱交換器の中央部の配管に取り付けられて熱交換器
中央部の冷媒温度を検出するものである。
Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. Similarly, 6' is a pipe temperature detection element, which is attached to the pipe at the center of the indoor heat exchanger and detects the refrigerant temperature at the center of the heat exchanger.

この場合、冷房運転時は同図の実線矢印の方向に冷媒が
流れ、暖房運転時には四方切換弁2が切換わることによ
り同図の破線矢印の方向に冷媒が流れるようになってい
る。さらに、前記圧縮機1、四方切換弁2、減圧器4、
室外側熱交換器5および室外送風機8Iこよって室外ユ
ニットAが構成されている。また上記室内側熱交換器3
および室内送風機7、さらに配管温度検出素子6と6′
、電源電流を検出する電流検出素子17、タイマ機能お
よび温度調節機能などがプログラムされたマイクロコン
ピュータ(以下、マイコンと略称する)を有する運転制
御部(図示せず)は室内ユニットBに設けられている。
In this case, during cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 is switched so that the refrigerant flows in the direction of the broken line arrow in the figure. Furthermore, the compressor 1, the four-way switching valve 2, the pressure reducer 4,
The outdoor heat exchanger 5 and the outdoor blower 8I constitute an outdoor unit A. In addition, the indoor heat exchanger 3
and indoor blower 7, and pipe temperature detection elements 6 and 6'
, an operation control section (not shown) having a microcomputer (hereinafter referred to as microcomputer) programmed with a current detection element 17 for detecting the power supply current, a timer function, a temperature control function, etc. is provided in the indoor unit B. There is.

ここで配管温度検出素子6は、室内送風機7の送風の影
響を受けない通風回路からはずれた箇所に取り付けられ
ている。また、室内ユニットBの近辺でも良い。
Here, the pipe temperature detection element 6 is attached at a location away from the ventilation circuit where it is not affected by the air blowing from the indoor blower 7. Alternatively, the location may be near indoor unit B.

第3図は運転制御部における主要回路図である。FIG. 3 is a main circuit diagram of the operation control section.

同図においてマイコン9内には運転時間を判定するタイ
ムカウント値を記憶する記憶部10とこの記憶部10に
記憶されたタイムカウント値と入力値との比較により適
宜出力信号を発生する駆動信号発生手段および再運転時
間を判定するタイマカウント値を記憶する記憶部10と
この記憶部10に記憶されたタイマカウント値と入力値
との比較により適宜出力信号を発生する駆動信号発生手
段11がある。前記マイコン9の入力側にはコンパレー
タ12を介して温度検出手段である配管温度検出素子6
(例えば配管サーミスタあるいは熱電対素子等)と必要
に応じて抵抗値が変えられる抵抗13で構成される第1
の温度検出手段と、熱交換器温度検出素子d(例えば配
管サーミスタあるいは熱電対素子等)と必要に応じて抵
抗値が変えられる抵抗13’の信号を処理する演算処理
部16、並びに必要に応じて抵抗値が変えられる抵抗1
4゜15が接続されている。コンパレータ18を介して
電流検出手段である電流検出素子17(例えば電流変成
器)と電流値を電圧値に変換する電流−電圧変換回路2
1と必要に応じて抵抗値が変られる電流設定用抵抗19
.20が接続されている。
In the figure, the microcomputer 9 includes a storage section 10 that stores a time count value for determining the operating time, and a drive signal generator that generates an appropriate output signal by comparing the time count value stored in the storage section 10 with an input value. There are a storage section 10 for storing a timer count value for determining the re-operation time and a drive signal generation means 11 for generating an appropriate output signal by comparing the timer count value stored in the storage section 10 with an input value. A pipe temperature detection element 6 serving as a temperature detection means is connected to the input side of the microcomputer 9 via a comparator 12.
(for example, a piping thermistor or thermocouple element, etc.) and a resistor 13 whose resistance value can be changed as necessary.
temperature detecting means, a heat exchanger temperature detecting element d (for example, a piping thermistor or a thermocouple element, etc.), an arithmetic processing unit 16 that processes the signals of the resistor 13' whose resistance value can be changed as necessary, and as necessary. Resistor 1 whose resistance value can be changed by
4°15 is connected. A current detection element 17 (for example, a current transformer) as a current detection means and a current-voltage conversion circuit 2 that converts a current value into a voltage value via a comparator 18
1 and a current setting resistor 19 whose resistance value can be changed as necessary.
.. 20 are connected.

また出力側には、スイッチ用トランジスタTR1〜TR
4を介して駆動手段である四方切換弁コイルを駆動する
リレーR1、室内送風機7を駆動するリレーR2、室外
送風機8を駆動するリレーここで、第3図の構成と第1
の構成を対比すると、配管温度検出素子6および抵抗1
3は第1図の第1の温度検出手段に、熱交換器温度検出
素子6′および抵抗13′は第2の温度検出手段に、コ
ンパレータ12および演算処理部16は第1図の第2の
比較手段に、抵抗14・15によって作られる電圧は第
1図の設定温度記憶手段の信号に、電流検出素子17及
び電流電圧変換回路21は第1図の電流検出手段に、コ
ンパレータ18は第1図の第3の比較手段に、抵抗19
・20によって作られる電圧は第1図の設定電流記憶手
段の信号に、記憶部10を含むマイコン9は第1図の設
定時間記憶手段、時間計測手段、判定手段、選択出力手
段に相当し、中でも駆動信号発生手段11は判定手段、
選択出力手段に相当する。
In addition, on the output side, switch transistors TR1 to TR
4, a relay R1 drives a four-way switching valve coil, which is a driving means, a relay R2 drives an indoor blower 7, a relay drives an outdoor blower 8, and the configuration shown in FIG.
Comparing the configurations of , pipe temperature detection element 6 and resistor 1
3 is used as the first temperature detection means in FIG. The voltage generated by the resistors 14 and 15 is used as the signal of the set temperature storage means shown in FIG. 1, the current detection element 17 and the current voltage conversion circuit 21 are used as the current detection means shown in FIG. The third comparison means in the figure includes a resistor 19.
・The voltage generated by 20 corresponds to the signal of the set current storage means shown in FIG. 1, and the microcomputer 9 including the storage section 10 corresponds to the set time storage means, time measurement means, determination means, and selection output means shown in FIG. Among them, the drive signal generating means 11 is a determining means,
This corresponds to selection output means.

次に暖房運転の開始から除霜運転に至るまでの動作につ
いて説明する。
Next, the operation from the start of heating operation to defrosting operation will be explained.

圧縮機1の吐出冷媒温度をTd、圧縮機1の吸入冷媒温
度をTs、圧縮機1の吐出圧力をPd。
The discharge refrigerant temperature of the compressor 1 is Td, the suction refrigerant temperature of the compressor 1 is Ts, and the discharge pressure of the compressor 1 is Pd.

圧縮機1の吸入圧力をPsとし、ポリトロープ指数をn
(ただし1 < n < kの関係で、kは断熱圧縮指
数)とすると、吐出冷媒温度Tdは次式で表わされる したがって、室外側熱交換器5が未着霜時は吸入冷媒温
度Tsが高く、又吐出冷媒温度Tdも高い。そして外気
が下がり、着霜が成長するにつれて吸入冷媒温度Tsは
低下し、吐出冷媒温度Tdも下がる。同時に、吸入圧力
Ps、吐出圧力Pdも下がる。本発明における配管温度
検出素子6は、室内側熱交換器3の入口配管に設けられ
、圧縮機1から吐出された高温高圧の過熱域冷媒ガスが
流れる部分の温度を検出するが、実際その温度は吐出ガ
スに比べて内外接続配管等での熱損失により所定温度低
下した温度である。また、熱交換器温度検出素子dは室
内側熱交換器3のほぼ中央部に設けられ、圧縮機1から
吐出された高温高圧の冷媒ガスが流れる部分であり、気
相の吐出冷媒ガスから、気相2相状態、液相へと変化す
る部分であるが、その温度はほぼ一定と見なされ、一般
的に凝縮温度と称されるものである。又、前記熱交換器
3の入口配管の温度と前記凝縮温度の関係は、圧縮機1
から吐出された冷媒ガスが、過熱域の少ないガス状態で
熱交換器3に流入すると、その温度差は少なくなってく
る。したがって、第4図に示すように、室外側熱交換器
5が未着霜時は圧縮° 機1の吸入冷媒温度Ts、室内
側熱交換器3の入口配管温度t1、熱交換器3の中央部
の配管温度t2はともに高く、着霜が進むにつれて徐々
に低下し、そして暖房能力を大幅に低下させる着霜状態
に至ると、室内側熱交換器3の入口配管温度t1は極端
に低下し、同時に、熱交換器3の中央部配管温度t2も
低下し、その差がなくなり、はとんど等しい状態に進行
する。また、空気調和機の電源電流は概ね吐出冷媒温度
Tdに比例追随す空気調和機の冷凍サイクルに於ける冷
媒量が減少した場合には、相対的に低い電流値となる傾
向がある。すなわち、入口配管温度t1 と中央部配管
温度t2との差温度tが設定配管温度を以下になれば暖
房能力は低下し着霜が進んでいるので除霜する必要があ
る。このように室内側熱交換器3の入口配管温度t1は
、過熱域冷媒ガスの温度であるため、送風機7の風量の
影響を受けにくく、また、熱交換器3の中央部配管温度
t2は凝縮温度を検知しているので安定しており、その
温度差t1− t2を測定することにより適確な除霜運
転の判断を行なうことができる。
The suction pressure of compressor 1 is Ps, and the polytropic index is n
(where 1 < n < k, where k is the adiabatic compression index), the discharge refrigerant temperature Td is expressed by the following formula. Therefore, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts is high. , and the discharge refrigerant temperature Td is also high. Then, as the outside air drops and frost grows, the suction refrigerant temperature Ts decreases, and the discharge refrigerant temperature Td also decreases. At the same time, the suction pressure Ps and the discharge pressure Pd also decrease. The pipe temperature detection element 6 in the present invention is installed in the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the high-temperature, high-pressure superheated refrigerant gas discharged from the compressor 1 flows. is a temperature lower than that of the discharged gas by a predetermined temperature due to heat loss in internal and external connecting pipes, etc. The heat exchanger temperature detection element d is provided almost in the center of the indoor heat exchanger 3, and is a part through which the high temperature and high pressure refrigerant gas discharged from the compressor 1 flows. Although this is the part that changes from a two-phase gas phase to a liquid phase, its temperature is considered to be approximately constant and is generally referred to as the condensation temperature. Furthermore, the relationship between the temperature of the inlet pipe of the heat exchanger 3 and the condensation temperature is the same as that of the compressor 1.
When the refrigerant gas discharged from the refrigerant gas flows into the heat exchanger 3 in a gas state with less superheated region, the temperature difference becomes smaller. Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts of the compressor 1, the inlet pipe temperature t1 of the indoor heat exchanger 3, and the center of the heat exchanger 3 are The pipe temperature t2 of the indoor heat exchanger 3 is both high, and gradually decreases as frosting progresses, and when a frosting state that significantly reduces the heating capacity is reached, the inlet pipe temperature t1 of the indoor heat exchanger 3 drops extremely. At the same time, the central piping temperature t2 of the heat exchanger 3 also decreases, the difference disappears, and the temperatures proceed to almost the same state. In addition, the power supply current of the air conditioner generally follows the discharge refrigerant temperature Td in proportion. When the amount of refrigerant in the refrigeration cycle of the air conditioner decreases, the current value tends to be relatively low. That is, if the difference temperature t between the inlet pipe temperature t1 and the center pipe temperature t2 becomes less than the set pipe temperature, the heating capacity decreases and frost formation has progressed, so it is necessary to defrost. In this way, the inlet pipe temperature t1 of the indoor heat exchanger 3 is the temperature of the refrigerant gas in the superheated region, so it is not easily affected by the air volume of the blower 7, and the central pipe temperature t2 of the heat exchanger 3 is the temperature of the refrigerant gas in the superheated region. Since the temperature is detected, it is stable, and by measuring the temperature difference t1 - t2, it is possible to make an appropriate decision on defrosting operation.

次に冷凍サイクル内の冷媒量が不足した場合及び長期間
使用により徐々に洩れた場合及び圧縮機停止後の再運転
時の挙動につき第6図を用いて説明する。定常の冷媒量
に対して、冷媒量が不足すると、公知の如く冷凍サイク
ル内での冷媒循環量が減少することとなり、圧縮機から
吐出される冷媒の温度は上昇し同様に吸入冷媒温度も上
昇する。
Next, the behavior when the amount of refrigerant in the refrigeration cycle is insufficient, when the refrigerant gradually leaks due to long-term use, and when the compressor is restarted after stopping will be explained using FIG. As is well known, when the amount of refrigerant is insufficient compared to the steady amount of refrigerant, the amount of refrigerant circulating within the refrigeration cycle decreases, the temperature of the refrigerant discharged from the compressor increases, and the temperature of the suction refrigerant also increases. do.

又その両者の温度差も大きくなる。一方当然冷凍サイク
ルでは圧力が低下することとなり、蒸発器での冷媒温度
も圧力低下に伴って下降することとなり、外気との熱交
換により、暖房運転時は、定常冷媒量運転時より着霜が
進むこととなる。一方電源電流は冷媒循環量が減少する
ことにより、高圧圧力が下がり、かつ高圧と低圧差が小
さくなり圧縮機の仕事量が減少することとなり定常運転
に比較して減少する。従って圧縮機1の吸入冷媒温度T
111室内側熱交換器の入口温度t1 と室内熱交換器
中央部配管温度t2の差Δt1電源電流値iは、第4図
の状態と比較してそれぞれ、上昇、上昇、下降傾向とな
る。従って除霜開始判定条件が熱交換器配管温度差値の
みであると、冷媒量不足の場合は、著聞が進行しても除
霜動作に入らないこととなる。
Furthermore, the temperature difference between the two also increases. On the other hand, in the refrigeration cycle, the pressure naturally decreases, and the refrigerant temperature in the evaporator also decreases with the pressure decrease, and due to heat exchange with the outside air, frost formation is less likely during heating operation than during constant refrigerant flow operation. We will move on. On the other hand, the power supply current decreases compared to steady operation because the amount of refrigerant circulation decreases, the high pressure decreases, and the difference between the high and low pressures becomes smaller, reducing the amount of work of the compressor. Therefore, the suction refrigerant temperature T of compressor 1
111 The difference Δt1 between the indoor heat exchanger inlet temperature t1 and the indoor heat exchanger center pipe temperature t2, the power supply current value i, tends to rise, rise, and fall, respectively, compared to the state shown in FIG. Therefore, if the defrosting start determination condition is only the heat exchanger pipe temperature difference value, if the amount of refrigerant is insufficient, the defrosting operation will not start even if the defrosting progresses.

ここで、電源電流値iの判定点11を適切に設定するこ
とにより、このような場合にも適切な除霜動作を行うこ
とができる。
Here, by appropriately setting the determination point 11 of the power supply current value i, an appropriate defrosting operation can be performed even in such a case.

次に除霜運転終了後、暖房運転を開始しある一¥の吹田
温度以上になると、公知の如く圧縮機が停止し、その後
暖房再運転を開始した場合について説明する。すなわち
、暖房再運転時は室内側熱交換器3の入口配管温度t1
は低く、同時に熱交換器3の中央部配管温度t2も低く
、その差がない。従って、入口配管温度t1と中央部配
管温度t2との差温tが設定配管温度を以下の状態とな
り除霜運転の判断を行なうこととなる。
Next, a case will be described in which the heating operation is started after the defrosting operation is finished, and when the Suita temperature exceeds a certain 1 yen, the compressor stops as is known, and then the heating operation is restarted. That is, when the heating is restarted, the inlet pipe temperature t1 of the indoor heat exchanger 3
is low, and at the same time, the central pipe temperature t2 of the heat exchanger 3 is also low, and there is no difference therebetween. Therefore, the temperature difference t between the inlet pipe temperature t1 and the center pipe temperature t2 makes the set pipe temperature less than or equal to the setting value, and a defrosting operation is determined.

そこで、圧縮機停止後の暖房再運転時においては、圧縮
機ON状態である一定時間T以上経過後に判定開始する
ことにより除霜動作を正しく判定することができる。
Therefore, when the heating is restarted after the compressor is stopped, the defrosting operation can be correctly determined by starting the determination after a predetermined time T or more has elapsed during the compressor ON state.

以上の説明に基づき、第3図に示す制御回路は、第5図
に示すフローチャートの内容の制御を行なう。
Based on the above explanation, the control circuit shown in FIG. 3 controls the contents of the flowchart shown in FIG.

すなわち、第5図のステップ1で示すように暖房運転が
開始されると、マイコン9で所定時間Tのタイマーカウ
ントがカウントされる(ステップ2)。このタイマーカ
ウントセットは、暖房運転ことも一つの手段である。
That is, when the heating operation is started as shown in step 1 of FIG. 5, the microcomputer 9 counts a timer count for a predetermined time T (step 2). This timer count set is also used for heating operation.

そしてタイマーカウントがセットされると、ステップ3
で1時間経過が判定される。1時間経過するまでは暖房
運転が継続される。
And once the timer count is set, step 3
It is determined that one hour has passed. Heating operation continues until one hour has passed.

そして7時間が経過するとステップ4へ移り、配管温度
検出素子6による配管温度t1の読み込みが行なわれる
。次にステップ5へ移り、熱交換器温度検出素子dによ
る熱交換器温度t2の読み込みが行なわれ、ステップ6
に移って配管温度t1と熱交換器温度t2の差温が、設
定温度tよりも低いかが判定される。具体的には第3図
のコンパレータ12が判定する。ステップ6において配
管温度t、と熱交換器温度t2の差が設定温度よりも高
い場合には、ステップ7に移って電流値Iが設定電流値
11 よりも低いかどうかが判定される。具体的には第
3図のコンパレータ18が判定する。
After seven hours have elapsed, the process moves to step 4, where the pipe temperature detection element 6 reads the pipe temperature t1. Next, the process moves to step 5, where the heat exchanger temperature t2 is read by the heat exchanger temperature detection element d, and step 6
Moving on, it is determined whether the temperature difference between the pipe temperature t1 and the heat exchanger temperature t2 is lower than the set temperature t. Specifically, the comparator 12 in FIG. 3 makes the determination. If in step 6 the difference between the pipe temperature t and the heat exchanger temperature t2 is higher than the set temperature, the process moves to step 7 and it is determined whether the current value I is lower than the set current value 11. Specifically, the comparator 18 shown in FIG. 3 makes the determination.

そしてステップ6又はステップ8の条件が満足されると
ステップ9へ移り、除霜運転が開始される。すなわち、
第3図のトランジスタTR1・TR2・TR3・TR4
がそれぞれ動作し、四方切換弁2を切換え、必要に応じ
てその前に一定時間停止し、室内送風機7および室外送
風機8を停止する。そして冷房サイクルにて除霜を行な
う。
When the conditions of step 6 or step 8 are satisfied, the process moves to step 9 and defrosting operation is started. That is,
Transistors TR1, TR2, TR3, TR4 in Figure 3
operate respectively, switch the four-way selector valve 2, and if necessary, stop for a certain period of time before that to stop the indoor blower 7 and the outdoor blower 8. Then, defrost is performed in the cooling cycle.

この除霜運転の内容は従来周知のため、詳細な説明を省
略する。また暖房運転の復帰(ステップ10)について
も従来より周知の如く、適宜手段にて実施できる。次に
、ある一定の吹出温度以上になると圧縮機が停止(ステ
ップ11)、圧縮機が再運転(ステップ12)するとマ
イコン9で所定時間Tのタイマーカウントがカウントさ
れる。
Since the content of this defrosting operation is conventionally well known, detailed explanation will be omitted. Furthermore, the restoration of the heating operation (step 10) can be carried out by any suitable means, as is well known in the art. Next, when the blowing temperature exceeds a certain level, the compressor stops (step 11), and when the compressor restarts (step 12), the microcomputer 9 counts a predetermined time T.

このタイマーカウントセクトは、暖房運転復帰前から7
時間(例えば1分)経過後に判定される。
This timer count sector is 7 from before returning to heating operation.
The determination is made after a period of time (for example, 1 minute) has elapsed.

1時間経過するまでは暖房運転が継続される。以降、第
5図のステップ4にもどり暖房、除霜のサイクルをくり
かえす。
Heating operation continues until one hour has passed. After that, return to step 4 in Figure 5 and repeat the heating and defrosting cycle.

なお、本実施例においては、除霜運転を暖房サイクルか
ら冷房サイクルの切換えによって行なうを流す構成ある
いは、側熱源にて霜を溶かす構成としてもよいことは言
うまでもない。また圧縮機1は除霜運転へ切換え時には
連続運転とし、暖房運転復帰前に一時停止させるように
してもよい。
In this embodiment, it goes without saying that the defrosting operation may be performed by switching from the heating cycle to the cooling cycle, or the frost may be melted using a side heat source. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped before returning to heating operation.

発明の効果 以上述べたように本発明によれば、上記構成により、過
熱域冷媒ガス温度を室内側熱交換器入口配管にて検出し
、さらに気液2相域の冷媒凝縮温度を室内側熱交換器の
中央部にて検出して、その差温を知り、適確な除霜運転
を温度検出2点又は電流検出1点で行なうことができ、
構成が非常に簡単で、また冷媒が暖房運転を行なう熱量
を十分に有しているか否かの判定が室内側熱交換器の入
口側と中央部の温度差で行なえるため、実際の暖房能力
の有無を確実に判断して除霜を行なうことができる。又
冷凍サイクルの冷媒が不足している場合は電流により適
確な除霜を行なうことができる。
Effects of the Invention As described above, according to the present invention, with the above configuration, the refrigerant gas temperature in the superheated region is detected at the indoor heat exchanger inlet piping, and the refrigerant condensation temperature in the gas-liquid two-phase region is detected in the indoor heat exchanger. By detecting the temperature difference in the center of the exchanger, you can perform accurate defrosting operation with two temperature detection points or one current detection point.
The configuration is very simple, and whether or not the refrigerant has enough heat for heating operation can be determined based on the temperature difference between the inlet side and the center of the indoor heat exchanger, so the actual heating capacity can be determined. Defrosting can be performed by reliably determining the presence or absence of In addition, when the refrigerant in the refrigeration cycle is insufficient, appropriate defrosting can be performed using electric current.

く、未着霜時に入口冷媒温度の方が中央部の冷媒温度に
比べて著しく高い点と入口側の冷媒温度と中央部の冷媒
温度の差と電源電流との比例関係に着服し、入口側の冷
媒温度と中央部の冷媒温度及び電#電流を検出すること
によって、未着霜から着霜に至るまでの温度差変化及び
電流変化が大きくとれ、2点の温度検出及び電流検出で
限界に近い暖房能力を引き出すことができる。本発明は
、暖房開始から一定時間経過するまで着霜を検出しない
ため、その一定時間は暖房能力が確保され、また、圧縮
機停止後の再運転においても一定時間経過するまで着霜
を検出しないため快適さが損なわれることもない。
This is due to the fact that the inlet refrigerant temperature is significantly higher than the refrigerant temperature at the center when there is no frost, and the proportional relationship between the difference between the refrigerant temperature at the inlet and the center and the power supply current. By detecting the refrigerant temperature in the central part and the refrigerant temperature and electric current, it is possible to obtain a large temperature difference change and current change from non-frosting to frosting, and it is possible to reach the limit with two points of temperature detection and current detection. It is possible to draw out similar heating capacity. Since the present invention does not detect frost formation until a certain period of time has elapsed from the start of heating, the heating capacity is ensured for that certain period of time, and even when restarting the compressor after stopping, frost formation is not detected until a certain period of time has elapsed. Therefore, comfort is not compromised.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の除霜制御装置を、蒐能実現手段で表現
したブロック図、第2図は本発明の一実施例を示す空気
調和機の冷凍サイクル図、第3図は同空気調和機におけ
・る除霜制御装置の回路図、第媒温度と圧縮機吸入冷媒
温度と空気調和機の電源電流の関係を示す特性図、第5
図は同除躍制御装置の動作を示すフローチャート、第6
図は同除霜条件における冷媒盪不足の場合の室内側熱交
換器の入口温度と室内熱交換器中央部温度の差と圧縮機
吸入冷媒温度と、空気調和はの電源電流の関係を示す特
性図である。 1・・・・・・圧縮機、2・・・・・・四方切換弁、3
・・・・・・室内側熱交換器、4・・・・・・減圧機、
5・・・・・・室外側熱交換器、6・・・・・・配管温
度検出素子、6′・・・・・・熱交換器の中央部配管温
度検出素子、9・・・・・・マイクロコンピュータ、1
0・・・・・・記憶部、11・・・・・・駆動信号発生
手段、12・18・・・・・・コンパレータ、13・1
3′・14・15・19・20・・・・・・抵抗、17
・・・・・・電流検出素子、21・・・・・・電流電圧
変換回路、A・・・・・・室外ユニット、B・・・・・
・室内ユニット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 /−一圧V&機 2− 四方切換弁 J−室内側熱交換器 4−減圧器 5−.1!l+側塾文捨器 6− 配管湿浬&$麦子 6′−−一 終交積器温演検出奈子 /7−−覚流検出末子 6− 配管温度検出素子 13 、13′、 /4.1
5. /9.20−を徒6′−−−熱文挟器温度検出素
子/4 −m−演算処理部? −m−マイクロコンピュ
ータ /7 −一 電流検出素子第4図 時間□ Ts −m=圧縮機f)吸入浮謀汲度 L  −−を源宅流雀 第5図 第6図 Aj  −m−室内偵I熟交挾器の入口配管温度−室内
側熱夾携器の中央配管温度 万一 圧#!!1機Q吸入浮謀温度 i  −m−電渾電流複
Fig. 1 is a block diagram of the defrosting control device of the present invention expressed as a means for realizing cooling, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a diagram of the refrigeration cycle of an air conditioner according to an embodiment of the present invention. A circuit diagram of the defrosting control device in the machine, a characteristic diagram showing the relationship between the temperature of the medium, the temperature of the compressor suction refrigerant, and the power supply current of the air conditioner, and the fifth
The figure is a flowchart showing the operation of the same jumping control device.
The figure shows the relationship between the difference between the inlet temperature of the indoor heat exchanger and the temperature at the center of the indoor heat exchanger, the compressor suction refrigerant temperature, and the power supply current of the air conditioner when there is insufficient refrigerant under the same defrosting conditions. It is a diagram. 1... Compressor, 2... Four-way switching valve, 3
... Indoor heat exchanger, 4 ... Pressure reducer,
5...Outdoor heat exchanger, 6...Piping temperature detection element, 6'...Central piping temperature detection element of heat exchanger, 9...・Microcomputer, 1
0... Storage unit, 11... Drive signal generation means, 12, 18... Comparator, 13.1
3'・14・15・19・20・・・Resistance, 17
... Current detection element, 21 ... Current voltage conversion circuit, A ... Outdoor unit, B ...
・Indoor unit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure/- Single pressure V & machine 2 - Four-way switching valve J - Indoor heat exchanger 4 - Pressure reducer 5 -. 1! l + Side school Bunsuteki 6- Piping wet water & $ Mugiko 6'--1 Final alternator warm detection Nako/7--Kaku flow detection terminal 6- Piping temperature detection element 13, 13', /4.1
5. /9.20- wasted 6' ---Thermographic clamp temperature detection element /4 -m- Arithmetic processing section? -m- Microcomputer /7 -1 Current detection element Figure 4 Time □ Ts -m = Compressor f) Suction flow rate L I Temperature of the inlet piping of the exchanger - Temperature of the central piping of the indoor heat absorber Pressure #! ! 1 machine Q inhalation temperature i - m - electric current complex

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧装置、室外側熱交換器を
具備した冷凍サイクルに、暖房サイクルと除霜サイクル
を切換えるサイクル切換手段を設け、さらに前記サイク
ル切換手段を、暖房サイクルから除霜サイクルに切換え
る制御装置を、前記圧縮機の暖房運転開始からの時間を
計測する第1の時間計測手段と、あらかじめ設定された
時間を記憶している第1の設定時間記憶手段と、前記第
1の時間計測手段により検出した時間と前記第2の設定
時間記憶手段に設定された時間の一致を検出し出力する
第1の比較手段と、暖房運転時に前記室内側熱交換器の
冷媒入口側に連結された配管の温度を検出する第1の温
度検出手段と、前記室内側熱交換器の中央部に連結され
た配管の温度を検出する第2の温度検出手段と、暖房サ
イクルを除霜サイクルに切換えるある設定温度値を記憶
した設定温度記憶手段と、前記第1の温度検出手段によ
り検出した温度と第2の温度検出手段により検出した温
度との差温が前記設定温度記憶手段に記憶されたある設
定温度より低下したことを検出し出力する第2の比較手
段と、電源電流を検出する電流検出手段と、暖房サイク
ルを除霜サイクルに切換える境界値電流を記憶した設定
電流記憶手段と、前記電流検出手段により検出した電流
が前記設定電流記憶手段に記憶された境界値電流により
低下したことを検知し、出力する第3の比較手段と、圧
縮機停止後の再運転開始からの時間を計測する第2の時
間計測手段と、あらかじめ設定された時間を記憶してい
る第2の設定時間記憶手段と、前記第2の時間計測手段
により検出した時間と前記第2の設定時間記憶手段に設
定された時間の一致を検出し出力する第4の比較手段と
、前記第1の比較手段による設定時間経過信号と前記第
2の比較手段による差温値低下信号、或いは前記第1の
比較手段による設定時間経過信号と、前記第3の比較手
段による境界値低下信号と、前記第4の比較手段による
設定時間経過信号により、暖房サイクルから除霜サイク
ルへの切換えを判定する判定手段と、前記判定手段の出
力に応じて前記冷凍サイクルを暖房運転から除霜運転へ
制御する選択出力手段より構成した空気調和機の除霜制
御装置。
A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means is configured to switch between a heating cycle and a defrosting cycle. A control device for switching to a cycle is controlled by a first time measuring means for measuring time from the start of heating operation of the compressor, a first set time storage means for storing a preset time, and a first set time storage means for storing a preset time; a first comparing means for detecting and outputting a match between the time detected by the time measuring means and the time set in the second set time storage means; a first temperature detection means for detecting the temperature of the connected pipes; a second temperature detection means for detecting the temperature of the pipe connected to the central part of the indoor heat exchanger; A set temperature storage means stores a certain set temperature value to be switched to, and a temperature difference between the temperature detected by the first temperature detection means and the temperature detected by the second temperature detection means is stored in the set temperature storage means. a second comparing means for detecting and outputting a temperature drop below a certain set temperature; a current detecting means for detecting a power supply current; and a set current storing means for storing a boundary value current for switching a heating cycle to a defrosting cycle; a third comparison means for detecting and outputting that the current detected by the current detection means has decreased due to a boundary value current stored in the set current storage means; and a third comparison means for detecting and outputting a decrease in the current detected by the current detection means, and a time elapsed from restarting the compressor after stopping the compressor. a second time measurement means for measuring, a second set time storage means for storing a preset time, and a time detected by the second time measurement means and the second set time storage means; a fourth comparison means for detecting and outputting a coincidence of set times, and a set time elapsed signal from the first comparison means and a temperature difference value decrease signal from the second comparison means, or the first comparison means determining means for determining switching from the heating cycle to the defrosting cycle based on the set time elapsed signal from the third comparing means, the boundary value decrease signal from the third comparing means, and the set time elapsed signal from the fourth comparing means; A defrosting control device for an air conditioner comprising selection output means for controlling the refrigeration cycle from heating operation to defrosting operation according to the output of the determination means.
JP61054035A 1986-03-12 1986-03-12 Defrost control device for air conditioner Pending JPS62213637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61054035A JPS62213637A (en) 1986-03-12 1986-03-12 Defrost control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054035A JPS62213637A (en) 1986-03-12 1986-03-12 Defrost control device for air conditioner

Publications (1)

Publication Number Publication Date
JPS62213637A true JPS62213637A (en) 1987-09-19

Family

ID=12959330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054035A Pending JPS62213637A (en) 1986-03-12 1986-03-12 Defrost control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS62213637A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591736A1 (en) * 2004-04-30 2005-11-02 Lg Electronics Inc. Defrosting method for an air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591736A1 (en) * 2004-04-30 2005-11-02 Lg Electronics Inc. Defrosting method for an air conditioner

Similar Documents

Publication Publication Date Title
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62218748A (en) Defrosting controller for air-conditioning machine
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPS62213637A (en) Defrost control device for air conditioner
JPS62210336A (en) Control device for defrosting of air-conditioning machine
JPS62186155A (en) Defrosting control unit of air conditioner
JPH0566498B2 (en)
JPS62186156A (en) Defrosting control unit of air conditioner
JPS62223551A (en) Defrosting control unit of air conditioner
JPS62213638A (en) Defrost control device for air conditioner
JPS62210341A (en) Control device for defrosting of air-conditioning machine
JPS62213636A (en) Defrost control device for air conditioner
JPS62233632A (en) Control device for defrosting of air conditioner
JPS62218750A (en) Defrosting controller for air-conditioning machine
JPS62218749A (en) Defrosting controller for air-conditioning machine
JPH067020B2 (en) Defrost control device for air conditioner
JPH0583819B2 (en)
JPH0566489B2 (en)
JPH0566496B2 (en)
JPS62210338A (en) Control device for defrosting of air-conditioning machine
JPS62223549A (en) Defrosting control unit of air conditioner
JPS62223548A (en) Defrosting control unit of air conditioner
JPS62218751A (en) Defrosting controller for air-conditioning machine
JPS62223553A (en) Defrosting control unit of air conditioner
JPS62210337A (en) Control device for defrosting of air-conditioning machine