JPS62210341A - Control device for defrosting of air-conditioning machine - Google Patents

Control device for defrosting of air-conditioning machine

Info

Publication number
JPS62210341A
JPS62210341A JP61054022A JP5402286A JPS62210341A JP S62210341 A JPS62210341 A JP S62210341A JP 61054022 A JP61054022 A JP 61054022A JP 5402286 A JP5402286 A JP 5402286A JP S62210341 A JPS62210341 A JP S62210341A
Authority
JP
Japan
Prior art keywords
temperature
time
heat exchanger
defrosting
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61054022A
Other languages
Japanese (ja)
Inventor
Shigeru Nariai
成相 茂
Masahiro Watanabe
渡邉 雅洋
Makoto Kaihara
海原 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61054022A priority Critical patent/JPS62210341A/en
Publication of JPS62210341A publication Critical patent/JPS62210341A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effect defrosting after deciding whether actual heating capacity exists or not surely by a method wherein a set temperature storing means, storing a boundary value temperature in accordance with an indoor airflow amount, is equipped to change the value of a set temperature difference in accordance with the amount of indoor airflow. CONSTITUTION:If the amount of indoor airflow is large, the sucking refrigerant temperature Ts of a compressor 1, the inlet pipeline temperature (t1) of an indoor side heat exchanger 3 and the temperature (t2) of a pipeline at the center of the heat exchanger 3 are reduced gradually when an outdoor heat exchanger 5 is not frosted yet, however, when the state of frosting, which reduces heating capacity remarkably, is achieved, the inlet pipeline temperature (t1) of the indoor side heat exchanger 3 is reduced extremely. When said respective temperature are shown by (t1'), (t2'), T's in the case the amount of indoor airflow is small, the values of (t1'), (t2') are higher than said respective values (t1), (t2) but the value of (t1')-(t2') is smaller than the value of (t1)-(t2). Therefore, the more proper decision of defrosting operation may be effected by changing the value of compared temperature difference in accordance with the amount of indoor airflow. At the same time, when the central pipeline temperature (t2) is reduced and a temperature difference (t1)-(t2) becomes lower than a set pipeline temperature (t), heating capacity is reduced and defrosting is needed. The decision of defrosting is effected by switching the set pipeline temperature (t1) to the degree of airflow amount of strong, medium and weak.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調和機の除
電制御装置に関するもので、特に室外側熱交換器の着霜
を室内側で検知し得るようにした空気調和機に関するも
のである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a static elimination control device for a separate heat pump type air conditioner, and in particular, it is capable of detecting frost on an outdoor heat exchanger indoors. It is related to air conditioners.

従来の技術 従来、特公昭59−34255号公報に示されるように
、室内側熱交換器の温度変化と室内温度の変化の両者に
基づいて室外側熱交換器への着霜状態を検知し、暖房運
転と除霜運転を制御する技術が開発されている。
BACKGROUND ART Conventionally, as shown in Japanese Patent Publication No. 59-34255, the state of frost on an outdoor heat exchanger is detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change. Technologies have been developed to control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、室内熱交換器の補
正温度Tcと室内温度Taとの差(Tc−Ta)が、そ
の最大値(Tc  Ta)maxよりも一定値低下した
とき、除霜信号が得られるようになっているが、前記室
内熱交換器の補正温度Tcは、最小の設定風量までの補
正値であり、空気調和5浅を部屋の中で使用した場合、
室内熱交換器の前に設置しているフィルターにほこり等
がつまり、空気調和機の最小設定風量より低下すること
が常であり、前記補正温度Tcと室内温度Taとの差(
Tc−Ta)が、その最大値(Tc−Ta)m a x
から一定値低下することがない場合があり、室外熱交換
器が着霜しているにもかかわらず除霜運転を行なわない
という実用上の問題がある。
Problems to be Solved by the Invention However, in this conventional configuration, the difference (Tc - Ta) between the corrected temperature Tc of the indoor heat exchanger and the indoor temperature Ta is a constant value that is smaller than the maximum value (Tc Ta) max. When the temperature drops, a defrosting signal is obtained, but the correction temperature Tc of the indoor heat exchanger is a correction value up to the minimum set air volume, and when the air conditioner 5 shallow is used in the room. case,
The filter installed in front of the indoor heat exchanger is often clogged with dust, etc., which causes the air volume to drop below the minimum setting of the air conditioner, and the difference between the correction temperature Tc and the indoor temperature Ta (
Tc-Ta) is its maximum value (Tc-Ta)max
There are cases where the temperature does not decrease to a certain value even though the outdoor heat exchanger is frosted, and there is a practical problem in that the defrosting operation is not performed even though the outdoor heat exchanger is frosted.

また、風量も強風の方が弱風よりも高圧が上がり同じ室
内側熱交換器温度においても50庵と60田では、室外
側熱交換器の着霜状態が異なり、適確な除霜判定はでき
なかった。
In addition, the air volume is higher in strong winds than in weak winds, and even at the same indoor heat exchanger temperature, the frosting conditions on the outdoor heat exchangers are different between 50an and 60den, making it difficult to make accurate defrost judgments. could not.

以上のように、従来の技術には間1点かあり、改善が要
求されるものである。
As described above, the conventional technology has at least one drawback, and improvements are required.

本発明は、上記従来の問題点に鑑み、従来技術の利点を
損うことなく、動作の確実化がはかれる除1制御装置を
提供するものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention provides a control device that can ensure reliable operation without sacrificing the advantages of the prior art.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図に示すよ
うに冷凍サイクルを暖房サイクルから除1サイクルに制
御する制御装置を、前記圧縮機の暖房運転開始からの時
間を計測する第1の時間計測手段と、あらかじめ設定さ
れた時間を記憶している第1の設定時間経過信号と、前
記第1の時間計測手段により検出した時間と、前記第1
の設定時間経過信号に設定された時間の一致を検出し出
力する第1の比較手段と、前記圧縮機の一時運転停止後
、再運転開始からの時間を計測する第2の時間計測手段
と、あらかじめ設定された時間を記憶している第2の設
定時間経過信号と、前記第2の時間計測手段により検出
した時間と前記第2の設定時間経過信号に設定された時
間の一致を検出し出力する第2の比較手段と、暖房運転
時に前記室内熱交換器の冷媒入口側に連結された配管の
温度を検出する第1の温度検出手段と、前記室内側熱交
換器の中央部に連結された配管の温度を検出する第2の
温度検出手段と、室内の風量の切換えを行ない、設定温
度経過信号に設定変更を出力する風量調節手段と、暖房
サイクルを除霜サイクルに切換えるある設定温度値を記
憶した設定温度経過信号と、暖房サイクルを除霜サイク
ルに切換えるある設定温度値を記憶した設定温度経過信
号と、前記第1の温度検出手段により検出した温度と第
2の温度検出手段により検出した温度との差温か前記設
定温度経過信号に記憶されたある設定温度より低下した
ことを検出し出力する第3の比較手段と、前記第1・2
の比較手段による設定時間経過信号と前記第3の比較手
段による差温値低下信号により、暖房サイクルから除霜
サイクルへの切換えを判定する判定手段と、前記判定手
段のiカに応じて前記冷凍サイクルを暖房運転から除霜
運転へ制御する選択出力手段より構成したものである。
Means for Solving the Problems In order to solve the above problems, the present invention, as shown in FIG. a first time measuring means for measuring the time from
a first comparing means for detecting and outputting the coincidence of the time set in the set time elapsed signal; and a second time measuring means for measuring the time from the start of restarting the compressor after the temporary operation stop of the compressor. A second set time elapsed signal that stores a preset time, and a match between the time detected by the second time measuring means and the time set in the second set time elapsed signal is detected and output. a first temperature detection means that detects the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger during heating operation; a second temperature detection means for detecting the temperature of the piping, an air volume adjustment means for switching the indoor air volume and outputting a setting change as a set temperature elapsed signal, and a certain set temperature value for switching the heating cycle to the defrosting cycle. a set temperature elapsed signal that stores a certain set temperature value for switching the heating cycle to a defrosting cycle, a temperature detected by the first temperature detection means, and a temperature detected by the second temperature detection means. a third comparison means for detecting and outputting a difference in temperature from a certain set temperature stored in the set temperature elapsed signal;
determining means for determining switching from the heating cycle to the defrosting cycle based on the set time elapsed signal from the comparing means and the differential temperature value decrease signal from the third comparing means; It is composed of selection output means for controlling the cycle from heating operation to defrosting operation.

作  用 この構成により、室内風量に応じた境界値温度を記憶し
た設定温度経過信号と、さらに、本発明では室内風量に
応じて記憶する設定温度差の値を変化させ得るため、室
内風量の変化による過熱度の違いによる温度差の違いも
比較できるためより正確に着霜状態を検出できる。
Effect: With this configuration, the set temperature elapsed signal that stores the boundary value temperature according to the indoor air volume, and also the value of the set temperature difference that is stored according to the indoor air volume in the present invention, can be changed, so that the change in the indoor air volume can be changed. Since the difference in temperature due to the difference in the degree of superheating can be compared, the frosting state can be detected more accurately.

実施例 以下、本発明の一実施例を第2図〜第5図を参照にして
説明する。第2図は、本発明の一実施例を示す冷凍サイ
クル図である。同図において、冷凍サイクルは圧縮機1
、四方切遺弁2、室内側熱交換器3、減圧器4、室外側
熱交換器5を順次連結することにより構成されている。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 2 to 5. FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention. In the same figure, the refrigeration cycle includes compressor 1
, a four-way valve 2, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5 are connected in sequence.

6は配管温度検出素子であり、暖房時において室内側熱
交換器3(凝縮器)の冷媒入口側となる配管に取り付け
られている。同様に6′も配管温度検出素子であり、室
内側熱交換器の中央部の配管に取り付けられて熱交換器
中央部の冷媒温度を検出するものである。
Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. Similarly, 6' is a pipe temperature detection element, which is attached to the pipe at the center of the indoor heat exchanger and detects the refrigerant temperature at the center of the heat exchanger.

この場合、冷房運転時は同図の実線矢印の方向に冷媒が
流れ、暖房運転時には四方切換弁2が切換わることによ
り同図の破線矢印の方向に冷媒か流れるようになってい
る。さらに、前記圧縮機1、四方切換弁2、減圧器4、
室外側熱交換器5および室外送風機8によって室外ユニ
・y トAが構成されている。また上記室内側熱交換器
3および室内送風機7、さらに配管温度検出素子6と6
′、タイマ機能および温度調節機能などがプログラムさ
れたマイクロコンピュータ(以下、マイコンと略称する
。)を有する運転制御部(図示せず)は室内ユニッ)B
に設けられている。ここで配管温度検出素子6は、室内
送風機、7の送風の影Vを受けない通風回路からはずれ
た箇所に取付けられている。
In this case, during cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 is switched so that the refrigerant flows in the direction of the broken line arrow in the figure. Furthermore, the compressor 1, the four-way switching valve 2, the pressure reducer 4,
The outdoor heat exchanger 5 and the outdoor blower 8 constitute an outdoor unit A. In addition, the indoor heat exchanger 3 and the indoor blower 7, and the pipe temperature detection elements 6 and 6
', an operation control section (not shown) having a microcomputer (hereinafter abbreviated as microcomputer) programmed with a timer function, temperature control function, etc. is an indoor unit) B.
It is set in. Here, the pipe temperature detection element 6 is installed at a location away from the ventilation circuit where it is not affected by the air flow V of the indoor blower 7.

また、室内ユニットBの近辺でも良い。Alternatively, the location may be near indoor unit B.

第3図は運転制御部における主要回路図である。FIG. 3 is a main circuit diagram of the operation control section.

同図においてマイコン9内には運転時間を判定するタイ
ム七−フ回路を記憶する記憶部10とこの記憶部10に
記憶されたタイムセーフ回路と入力値とのアンド回路か
ら適宜出力信号を発生する駆動信号発生手段11がある
。前記マイコン9の入力側にはコンパレータ12を介し
て温度検出手段である配管温度検出素子6(例えば配管
サーミスタあるいは熱電対素子等)と必要に応じて抵抗
値が変えられる抵抗13で構成される第1の温度検出手
段と、熱交換器温度検出素子6′(例えば配管サーミス
タあるいは熱電対素子等)と必要に応じて抵抗値が変え
られる抵抗13′の信号を処理する演算処理部25風量
切換スイツチに応動するスイッ−F−14,15及びそ
れぞれの端子に接続された抵抗16,17.18(抵抗
16<17<I E3 )抵抗値が変えられる抵抗26
が接続されている。
In the same figure, the microcomputer 9 includes a memory section 10 that stores a time-seven-failure circuit for determining operating time, and an AND circuit between the time safe circuit stored in the memory section 10 and an input value to generate an appropriate output signal. There is a drive signal generating means 11. On the input side of the microcomputer 9, a comparator 12 is connected to a pipe temperature detection element 6 (for example, a pipe thermistor or a thermocouple element) as a temperature detection means, and a resistor 13 whose resistance value can be changed as necessary. 1, a heat exchanger temperature detection element 6' (for example, a piping thermistor or a thermocouple element, etc.), and an arithmetic processing unit 25 that processes signals from a resistor 13' whose resistance value can be changed as necessary. Switches F-14 and F-15 respond to this and resistors 16, 17 and 18 (resistance 16<17<I E3 ) connected to their respective terminals (resistance 26 whose resistance value can be changed)
is connected.

また出力側には、スイッチ用トランジスタTR1〜TR
4を介して駆動手段である四方切換弁コイルを駆動する
リレーR1,室内送風機7を駆動するリレーR2、室外
送風機8を駆動するリレーR3、圧縮機1を駆動するリ
レーR4が接読されている。
In addition, on the output side, switch transistors TR1 to TR
4, relay R1 that drives the four-way switching valve coil that is the drive means, relay R2 that drives the indoor blower 7, relay R3 that drives the outdoor blower 8, and relay R4 that drives the compressor 1 are read directly. .

ここで、第3図の構成と第1の構成を対比すると、配管
温度検出素子6および抵抗13は第1図の第1の温度検
出手段に相当し、熱交換器温度検出素子ら′および抵抗
13′は第2の温度検出手段に相当し、コンパレータ1
2および演算処理部20は第1図の第2の比較手段に相
当し、抵抗18゜17.18によって作られる信号は第
1図の設定温度経過信号の信号に相当し、記憶部10を
含むマイコン9は第1図の設定時間経過信号、時間計測
手段、判定手段、選択出力手段に相当し、中でも駆動信
号発生手段11は判定手段、選択出力手段に相当する。
Here, when comparing the configuration of FIG. 3 with the first configuration, the piping temperature detection element 6 and the resistor 13 correspond to the first temperature detection means in FIG. 13' corresponds to the second temperature detection means, and comparator 1
2 and the arithmetic processing section 20 correspond to the second comparing means in FIG. The microcomputer 9 corresponds to the set time elapsed signal, time measurement means, determination means, and selection output means in FIG. 1, and the drive signal generation means 11 corresponds to the determination means and selection output means.

次に暖房運転の開始から除霜運転に至るまでの動作につ
いて説明する。
Next, the operation from the start of heating operation to defrosting operation will be explained.

圧縮機1の吐出冷媒温度をTd、圧縮機1の吸入冷媒温
度をTs、圧縮機1の吐出圧力をPd、圧縮、渫1の吸
入圧力をPsとし、ポIJ I−ロープ指数をn(ただ
し1 < n < Kの関係で、Kは断熱圧縮指数)と
すると、吐出冷媒温度Tdは次式で表わしたがって、室
外側熱交換器5が未着霜時は吸入冷媒温度Tsが高く、
又吐出冷媒温度Tdも高い。そして外気が下がり、着雪
が成長するにつれて吸入冷媒温度Tsは低下し、吐出冷
媒温度Tdも下がる。同時に、吸入圧力Ps、吐出圧力
Pdも下がる。本発明における配管温度検出素子6は、
室内側熱交換器3の入口配管に設けられ、圧縮機1から
吐出された高温高圧の過熱冷媒ガスが流れる部分の温度
を検出するが、実際その温度は吐出ガスに比べて内外接
続配管等での熱損失により所定温度低下した温度である
。また、熱交換器温度検出素子6′は室内側熱交換器3
のほぼ中央部に設けられ、圧縮機1から吐出された高温
高圧の冷媒ガスが流れる部分であり、気相の吐出冷媒ガ
スから、気液2相状態、液相へと変化する部分であるが
、その温度はほぼ一定と見なされ、一般的に凝縮温度と
称されるものである。又、前記熱交換器3の入口配管の
温度と前記凝縮温度の関係は、圧縮機1から吐出された
冷媒ガスが、過熱域の少ないガス状態で熱交換器3に流
入すると、その温度差は少なくなってくる。また、この
温度差は室内風量によっても変化し、室内風量が大の場
合は過熱度が上昇し温度差は大きくなり室内風量が小の
場合は温度差は小さくなる。
The discharge refrigerant temperature of the compressor 1 is Td, the suction refrigerant temperature of the compressor 1 is Ts, the discharge pressure of the compressor 1 is Pd, the suction pressure of the compressor 1 is Ps, and the po IJ I-rope index is n (however, 1 < n < K, where K is an adiabatic compression index), the discharge refrigerant temperature Td is expressed by the following formula. Therefore, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts is high;
Furthermore, the discharge refrigerant temperature Td is also high. Then, as the outside air cools and the snow builds up, the suction refrigerant temperature Ts decreases, and the discharge refrigerant temperature Td also decreases. At the same time, the suction pressure Ps and the discharge pressure Pd also decrease. The pipe temperature detection element 6 in the present invention is
It is installed in the inlet pipe of the indoor heat exchanger 3 and detects the temperature of the part through which the high-temperature, high-pressure superheated refrigerant gas discharged from the compressor 1 flows; This is the temperature that has decreased by a predetermined temperature due to heat loss. Furthermore, the heat exchanger temperature detection element 6' is connected to the indoor heat exchanger 3.
This is the part where the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 flows, and it is the part where the discharged refrigerant gas changes from the gas phase to the gas-liquid two-phase state and then to the liquid phase. , whose temperature is considered to be approximately constant and is commonly referred to as the condensation temperature. The relationship between the temperature of the inlet pipe of the heat exchanger 3 and the condensation temperature is such that when the refrigerant gas discharged from the compressor 1 flows into the heat exchanger 3 in a gas state with a small superheated region, the temperature difference is It's getting less. Further, this temperature difference also changes depending on the indoor air volume; when the indoor air volume is large, the degree of superheating increases and the temperature difference becomes large, and when the indoor air volume is small, the temperature difference becomes small.

したがって、第4図に示すように、室外熱交換器5が未
着霜時は圧縮機1の吸入冷媒温度Ts。
Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature of the compressor 1 is Ts.

進むにつれて徐々に低下し、そして暖房能力を大幅に低
下させる着霜状態に至ると、室内側熱交換器3の入口配
管温度t1は極端に低くなる。
As the temperature progresses, the temperature gradually decreases, and when a frost condition occurs that significantly reduces the heating capacity, the temperature t1 of the inlet pipe of the indoor heat exchanger 3 becomes extremely low.

また同図中のt′1+  ”2+ ”sに示すのは室内
風量が小の場合の入口配管温度、中央部配管温度、圧縮
機吸入温度を示し、破線がその挙動を示している。同図
のように”1+  t’2  の値はそれぞれt′1+
  j’2  よりも高いが、肖−七′2  の温度差
の値ハt1−t2  の温度差よりも小さい、このため
比較する温度差の値を室内風量に応じて変化させること
によりさらに適確な除霜運転の判断を行なうことができ
る。
Furthermore, t'1+ ``2+''s in the same figure shows the inlet pipe temperature, center pipe temperature, and compressor suction temperature when the indoor air volume is small, and the broken line shows the behavior. As shown in the figure, the value of ``1+ t'2 is t'1+
j'2, but smaller than the temperature difference t1-t2. Therefore, the value of the temperature difference to be compared can be changed more accurately according to the indoor air volume. It is possible to make accurate defrosting operation decisions.

同時に、熱交換器3の中央部配管温度t2も低下し、そ
の差がなくなり、はとんど等しい状態に進行する。すな
わち、入口配管温a t 1と中央部配管温度t2との
差温度tが設定配管温度を以下になれば暖房能力は低下
し着霜が進んでいるので除霜する必要がある。
At the same time, the central piping temperature t2 of the heat exchanger 3 also decreases, the difference disappears, and the temperatures progress to almost the same state. That is, if the difference temperature t between the inlet pipe temperature a t 1 and the center pipe temperature t2 becomes less than the set pipe temperature, the heating capacity decreases and frost formation has progressed, so it is necessary to defrost.

また、強風、中風、弱風においては、圧縮機1ける、高
圧、吐出温度が異なる。すなわち、強風、中風、弱風で
は一般的に室内側熱交換器3の入口配管温度tも異なり
、設定配管温度t1を強風、中風、弱風は切喚えて除霜
判定を行っている。
Furthermore, the compressor's high pressure and discharge temperature are different in strong wind, medium wind, and weak wind. That is, the inlet pipe temperature t of the indoor heat exchanger 3 generally differs between strong winds, medium winds, and weak winds, and the defrosting determination is performed by changing the set pipe temperature t1 for strong winds, medium winds, and weak winds.

このように室内側熱交換器3の入口配管温度t1は、過
熱域冷媒ガスの温度であるため、送風機7の風量の影響
を受けにくく、また、熱交換器3の中央部配管温度t2
は凝縮温度を検知しているので安定しており、その温度
差t1−t2  を測定することにより適確な除霜運転
の判断を行なうことができ、室内風量に伴なう冷凍サイ
クルの変化に応じた除霜運転の判定が行なえる。
In this way, since the inlet pipe temperature t1 of the indoor heat exchanger 3 is the temperature of the refrigerant gas in the superheated region, it is not easily affected by the air volume of the blower 7, and the central pipe temperature t2 of the heat exchanger 3 is
Since it detects the condensing temperature, it is stable, and by measuring the temperature difference t1-t2, it is possible to make an accurate decision on defrosting operation, and it is possible to make accurate decisions about defrosting operation due to changes in the refrigeration cycle due to indoor air volume. The defrosting operation can be determined accordingly.

すなわち、第5図のステップ1にて、風量が強風か中風
か弱風かを判定し、風量切換スイッチ14.15及びそ
れぞれの端子に接続された抵抗値16.17. 18.
  (抵抗18<17<18 )で抵抗値を変えそれに
応じ設定温度t3を風量強、中、弱によって変えている
。その後ステップ4で示すように暖房運転が開始される
と、マイコン9る(ステップ3)、このタイマーカウン
トセットは、暖房運転開始からT1時間(例えば1時間
)暖房運転を確保するためのもので、例えばT1時間暖
房を連続することも一つの手段である。
That is, in step 1 of FIG. 5, it is determined whether the air volume is strong, medium, or weak, and the air volume selector switch 14, 15 and the resistance values 16, 17, . 18.
The resistance value is changed (resistance 18<17<18) and the set temperature t3 is changed accordingly depending on the air flow rate: high, medium, or low. After that, when the heating operation is started as shown in step 4, the microcomputer 9 (step 3) sets the timer count to ensure the heating operation for T1 hours (for example, 1 hour) from the start of the heating operation. For example, one means is to continue heating for T1 hours.

そしてタイマーカウントがセットされると、ステップ4
でT1時間経過が判定される。T1時間経過するまでは
暖房運転が継続される。
And once the timer count is set, step 4
It is determined that the T1 time has passed. The heating operation is continued until the time T1 has elapsed.

そしてT1時間が経過するとステップ5へ移り、第2タ
イマーカウンタがセットされ、ステップ6に移って圧縮
機1が運転しているか否かがマイコン9内にて判定され
る。仮に運転が行なわれていなかったら、(ステップ5
を満足していなければ)ステップ6へ戻り第1タイマー
カウンタはリセットされる。
When the time T1 has elapsed, the process moves to step 5, where a second timer counter is set, and the process moves to step 6, where it is determined in the microcomputer 9 whether or not the compressor 1 is operating. If no driving is performed (step 5)
(if not satisfied), the process returns to step 6 and the first timer counter is reset.

次にステップ7の条件が満足されるとステップ8にて1
2時間(例えば4分)経過が判定される。
Next, when the condition of step 7 is satisfied, 1 is reached in step 8.
It is determined that two hours (for example, four minutes) have passed.

そして圧縮機1が連続して12時間運転が行なわれると
ステップ11へ移り、配管温度検出素子6による配管温
度t1の読み込みが行なわれる。
When the compressor 1 has been continuously operated for 12 hours, the process moves to step 11, where the pipe temperature detection element 6 reads the pipe temperature t1.

次にステップ9へ移り、熱交換器温度検出素子6′によ
る熱交換器温度t2の読み込みが行なわれ、さらにステ
ップ10に移って再び圧縮機1が運転しているか否かの
判定が行なわれる。
Next, the process moves to step 9, where the heat exchanger temperature t2 is read by the heat exchanger temperature detection element 6', and further, the process moves to step 10, where it is again determined whether or not the compressor 1 is operating.

そしてステップ11に移って配管温度t1と熱交換器温
度t2の差温か、設定温度tよりも低いかが判定される
。具体的には第3図のコンパレータ12が判定する。
Then, the process moves to step 11, and it is determined whether the temperature difference between the pipe temperature t1 and the heat exchanger temperature t2 is lower than the set temperature t. Specifically, the comparator 12 in FIG. 3 makes the determination.

そしてステップ11の条件が満足されるとステップ12
へ移り、除霜運転が開始される。すなわち、第3図のト
ランジスタTR1・TR2・TR3・TR4がそれぞれ
動作し、四方切良弁2を切換え、必要に応じてその前に
一定時間停止し、室内送風機7および室外送風機8を停
止する。そして冷房サイクルにて除霜を行ない、この除
霜運転の内容は従来周知のため、詳細な説明を省略する
。また暖房運転の復帰についても従来より周知の如く、
適宜手段にて実施できる。
Then, when the conditions of step 11 are satisfied, step 12
The defrosting operation starts. That is, the transistors TR1, TR2, TR3, and TR4 shown in FIG. 3 operate, respectively, to switch the four-way control valve 2, and if necessary, stop the operation for a certain period of time beforehand, thereby stopping the indoor blower 7 and the outdoor blower 8. Defrosting is then performed in the cooling cycle, and since the content of this defrosting operation is well known, detailed explanation will be omitted. Also, regarding the return of heating operation, as is well known,
This can be done by any appropriate means.

なお、本実施例においては、除霜運転を暖房サイクルか
ら冷房サイクルの切換えによって行なうようにしたが、
例えば暖房サイクルを維持したままとして室外側熱交換
器へ別途蓄熱していた冷媒を流す構成あるいは、側熱源
にて雷を溶かす構成としてもよいことは言うまでもない
。また圧縮機1は除霜運転へ切換え時には連続運転とし
、暖房運転復帰前に一時停止させるようにしてもよい。
In this embodiment, the defrosting operation is performed by switching from the heating cycle to the cooling cycle.
For example, it goes without saying that a configuration may be adopted in which the heating cycle is maintained and a separately stored refrigerant is flowed to the outdoor heat exchanger, or a configuration in which the lightning is melted by a side heat source. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped before returning to heating operation.

発明の効果 以上述べたように本発明によれば、上記構成により、過
熱域冷媒ガス温度を室内側熱交換器入口配管にて検出し
、さらに気液2相域の冷媒凝縮温度を室内側熱交換器の
中央部にて検出して、その差温を知り、適確な除霜運転
を温度検出2点で行なうことができ、構成が非常に簡単
で、また冷媒が暖房運転を行なう熱量を十分に有してい
るか否かの判定が、室内側熱交換器の入口側と中央部の
温度差で行なえ、室内風量の設定が異なっても設定温度
を切換えるため、実際の暖房能力の有無を確実に判断し
て除霜を行なうことができる。
Effects of the Invention As described above, according to the present invention, with the above configuration, the refrigerant gas temperature in the superheated region is detected at the indoor heat exchanger inlet piping, and the refrigerant condensation temperature in the gas-liquid two-phase region is detected in the indoor heat exchanger. By detecting the temperature difference in the center of the exchanger, it is possible to perform accurate defrosting operation with two temperature detection points. Whether or not there is sufficient heating capacity can be determined based on the temperature difference between the inlet side and the center of the indoor heat exchanger, and even if the indoor air volume setting is different, the set temperature can be changed, so the presence or absence of actual heating capacity can be determined. Defrosting can be performed based on reliable judgment.

すなわち、本発明は完全に着;渭が発生している冷媒の
温度が熱交換器の入口部と中央部に差がなく、未着霜時
に入口冷媒温度の方が中央部の冷媒温度に比べて著しく
高い点に着眼し、入口側の冷媒温度と中央部の冷媒温度
を検出することによって、未着霜から着霜に至るまでの
温度差変化が大きくとれ、2点の温度検出で限界に近い
暖房能力を引き出すことができる。また、本発明は、暖
房開始から一定時間経過するまで着霜を検出しないため
、その一定時間は暖房能力が確保され、快適さが損なわ
れることもない。
In other words, the present invention is completely implemented; there is no difference in the temperature of the refrigerant where the frost is generated between the inlet part and the center part of the heat exchanger, and when there is no frost, the inlet refrigerant temperature is higher than the refrigerant temperature in the center part. By focusing on the point where the temperature is extremely high and detecting the refrigerant temperature on the inlet side and the refrigerant temperature in the center, it is possible to obtain a large temperature difference change from non-frost to frost, and it is possible to reach the limit by detecting the temperature at two points. It is possible to draw out similar heating capacity. Furthermore, since the present invention does not detect frost formation until a certain period of time has elapsed from the start of heating, heating capacity is ensured during that certain period of time, and comfort is not impaired.

また、暖房運転中、圧縮機が一時停止後、再運転開始か
ら一定時間経過するまで着霜を検出しないため、例えば
サーモ○FF時などの圧縮機再運転直後において、上昇
途中の室内熱交換器配管温度を検知し、誤って未着霜に
もかかわらず、除1運転を開始することもない。
In addition, during heating operation, after the compressor is temporarily stopped, frost formation is not detected until a certain period of time has elapsed since the restart of operation. The piping temperature is detected, and there is no possibility of accidentally starting the de1 operation even though there is no frost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の除霜制御装置を機能実現手段で表現し
たブロック図、第2図は本発明の一実施例を示す空気調
和機の冷凍サイクル図、第3図は同空気調和機における
除霜制御装置の回路図、第4図は同除霜制御装置におけ
る室内側熱交換器へ流入する冷媒温度と室内側熱交換器
の中央部の冷媒温度と圧縮機吸入冷媒温度の関係を示す
特性図、第5図は同除霜制御装置の動作内容を示すフロ
ーチャートである。 1・・・・・・圧縮機、2・・・・・・四方切換弁、3
・・・・・室内側熱交換器、5・・・・・・室外側熱交
換器、6・・・・・・配管温度検出素子、6′・・・・
・・熱交換器の中央部配管温度、9・・・・・・マイク
ロコンピュータ、10・・・・・・記憶部、11・・・
・・・1動信号発生手段、12・・・・・・コンパレー
タ、16,17,18,27・・・・・・抵抗、A・川
・・室外ユニット、B・・・・・・室内ユニット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 /−圧侶浅 2− 四方切俟介 3−−一室内便順セη夾、器 4−−一弐圧器 5−一一窒外側蔦交鉄器 A−m−室外ユニット B−一一皇丙ユニット 6−−−貿f纏友秩少棄子 g’−一゛熟交挾器Mθ夾出素子 /3.IE’、 17−・−抵抗 I6−  演算熱3!部 第4図
Fig. 1 is a block diagram expressing the defrosting control device of the present invention using function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a block diagram of the defrosting control device of the present invention. The circuit diagram of the defrosting control device, Figure 4, shows the relationship between the refrigerant temperature flowing into the indoor heat exchanger, the refrigerant temperature in the center of the indoor heat exchanger, and the compressor suction refrigerant temperature in the defrosting control device. The characteristic diagram and FIG. 5 are flowcharts showing the operation details of the defrosting control device. 1... Compressor, 2... Four-way switching valve, 3
...Indoor heat exchanger, 5...Outdoor heat exchanger, 6...Piping temperature detection element, 6'...
...Central piping temperature of heat exchanger, 9...Microcomputer, 10...Storage section, 11...
1. Dynamic signal generating means, 12.. Comparator, 16, 17, 18, 27.. Resistor, A.. Outdoor unit, B.. Indoor unit. . Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Diagram/- Pressure shallow 2 - Yomokiri chusuke 3 - 1 indoor unit order se η , vessel 4 - 1 pressure vessel 5 - 1 1 nitrogen outside tsuta exchange ironware A - m - outdoor unit B - 1 1 Emperor C unit 6---Trade f comrade friend chichichichichiko g'-1゛Mature interlacing device Mθ extraction element/3. IE', 17--Resistance I6- Operation heat 3! Part 4

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧装置、室外側熱交換器を
具備した冷凍サイクルに、暖房サイクルと除霜サイクル
を切換えるサイクル切換手段を設け、さらに前記サイク
ル切換手段を、暖房サイクルから除霜サイクルに切換え
る制御装置を、前記圧縮機の暖房運転開始からの時間を
計測する第1の時間計測手段と、あらかじめ設定された
時間を記憶している第1の設定時間記憶手段と、前記第
1の時間計測手段により検出した時間と前記第1の設定
時間記憶手段に設定された時間の一致を検出し出力する
第1の比較手段と、前記圧縮機の一時運転停止後、再運
転開始からの時間を計測する第2の時間計測手段と、あ
らかじめ設定された時間を記憶している第2の設定時間
記憶手段と、前記第2の時間計測手段により検出した時
間と前記第2の設定時間記憶手段に設定された時間の一
致を検出し出力する第2の比較手段と、暖房運転時に前
記室内側熱交換器の冷媒入口側に連結された配管の温度
を検出する第1の温度検出手段と、前記室内側熱交換器
の中央部に連結された配管の温度を検出する第2の温度
検出手段と、暖房サイクルを除霜サイクルに切換えるあ
る設定温度値を記憶した設定温度記憶手段と、室内の風
量を切換え、その風量を判別する風量調節手段と、その
判別手段からの出力信号により前記設定温度記憶手段の
境界値温度を切換える設定温度切換手段と、前記第1の
温度検出手段により検出した温度と第2の温度検出手段
により検出した温度との差が前記設定温度記憶手段に記
憶されたある設定温度より低下したことを検出し出力す
る第3の比較手段と、前記第1・2の比較手段による設
定時間経過信号と前記第3の比較手段による差温値低下
信号により、暖房サイクルから除霜サイクルへの切換え
を判定する判定手段と、前記判定手段の出力に応じて前
記冷凍サイクルを暖房運転から除霜運転へ制御する選択
出力手段より構成した空気調和機の除霜制御装置。
A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means is configured to switch between a heating cycle and a defrosting cycle. A control device for switching to a cycle is controlled by a first time measuring means for measuring time from the start of heating operation of the compressor, a first set time storage means for storing a preset time, and a first set time storage means for storing a preset time; a first comparing means for detecting and outputting a match between the time detected by the time measuring means and the time set in the first set time storage means; a second time measurement means for measuring time; a second set time storage means for storing a preset time; and a memory for the time detected by the second time measurement means and the second set time. a second comparison means for detecting and outputting a coincidence of times set in the means; and a first temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger during heating operation. , a second temperature detection means for detecting the temperature of the pipe connected to the central part of the indoor heat exchanger; a set temperature storage means for storing a certain set temperature value for switching the heating cycle to the defrosting cycle; a set temperature switching means for switching the boundary value temperature of the set temperature storage means based on an output signal from the discriminating means; a third comparison means for detecting and outputting that the difference between the temperature and the temperature detected by the second temperature detection means has fallen below a certain set temperature stored in the set temperature storage means; determining means for determining switching from the heating cycle to the defrosting cycle based on a set time elapsed signal from the comparing means and a differential temperature value decrease signal from the third comparing means; A defrosting control device for an air conditioner comprising selection output means for controlling from heating operation to defrosting operation.
JP61054022A 1986-03-12 1986-03-12 Control device for defrosting of air-conditioning machine Pending JPS62210341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61054022A JPS62210341A (en) 1986-03-12 1986-03-12 Control device for defrosting of air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054022A JPS62210341A (en) 1986-03-12 1986-03-12 Control device for defrosting of air-conditioning machine

Publications (1)

Publication Number Publication Date
JPS62210341A true JPS62210341A (en) 1987-09-16

Family

ID=12958958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054022A Pending JPS62210341A (en) 1986-03-12 1986-03-12 Control device for defrosting of air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS62210341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110766A (en) * 2013-05-29 2014-10-22 广东美的制冷设备有限公司 Method for controlling intelligent defrosting of air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110766A (en) * 2013-05-29 2014-10-22 广东美的制冷设备有限公司 Method for controlling intelligent defrosting of air conditioner

Similar Documents

Publication Publication Date Title
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62218748A (en) Defrosting controller for air-conditioning machine
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPS62210336A (en) Control device for defrosting of air-conditioning machine
JPS62210341A (en) Control device for defrosting of air-conditioning machine
JPS62186155A (en) Defrosting control unit of air conditioner
JPH0566489B2 (en)
JPS62218751A (en) Defrosting controller for air-conditioning machine
JPH0566498B2 (en)
JPS62218749A (en) Defrosting controller for air-conditioning machine
JPS62218750A (en) Defrosting controller for air-conditioning machine
JPS62233632A (en) Control device for defrosting of air conditioner
JPS62213637A (en) Defrost control device for air conditioner
JPH0566488B2 (en)
JPS62223551A (en) Defrosting control unit of air conditioner
JPS62223549A (en) Defrosting control unit of air conditioner
JPH0454858B2 (en)
JPH067020B2 (en) Defrost control device for air conditioner
JPH0566491B2 (en)
JPH0566497B2 (en)
JPH0566490B2 (en)
JPS62213638A (en) Defrost control device for air conditioner
JPH0566496B2 (en)
JPH0583819B2 (en)
JPS63189731A (en) Defrosting controller of air conditioner