JPS62210336A - Control device for defrosting of air-conditioning machine - Google Patents

Control device for defrosting of air-conditioning machine

Info

Publication number
JPS62210336A
JPS62210336A JP61054014A JP5401486A JPS62210336A JP S62210336 A JPS62210336 A JP S62210336A JP 61054014 A JP61054014 A JP 61054014A JP 5401486 A JP5401486 A JP 5401486A JP S62210336 A JPS62210336 A JP S62210336A
Authority
JP
Japan
Prior art keywords
temperature
time
defrosting
cycle
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61054014A
Other languages
Japanese (ja)
Inventor
Shigeru Nariai
成相 茂
Akira Yokouchi
横内 朗
Masahiro Watanabe
渡邉 雅洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61054014A priority Critical patent/JPS62210336A/en
Publication of JPS62210336A publication Critical patent/JPS62210336A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effect defrosting after diciding whether actual heating capacity exists or not surely by a method wherein heating operation is secured until a predetermined time has elapsed after the starting of the heating operation, thereafter, defrosting operation is controlled by the difference in temperatures detected by two sets of temperature detecting means. CONSTITUTION:Heating operation is continued until a time T1, counted by a first timer, has elapsed, thereafter, a second timer counter is set and a compressor 1 is operated continuously for a time T2, for example, then, a temperature (t1) of a pipeline is read by a pipeline temperature detecting element 6 and a temperature (t2) of a heat exchanger is read by a heat exchanger temperature detecting element 6'. A comparator 12 decides whether a temperature difference between the temperatures (t1), (t2) is lower than a set temperature (t) or not and the heating operation is continued until the time T2 has elapsed. During this period, defrosting operation, which satisfies a condition in terms of temperature (t), is started. Transistors TR1.TR2.TR3.TR4 are operated respectively to switch a four-way changeover valve 2 to stop an indoor fan 7 and an outdoor fan 8 and defrosting is effected in cooling cycle.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調和機の除
霜制御装置に関するもので、特に室外側熱交換器の着霜
を室内側で検知し得るようにした空気調和機に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat pump air conditioner, and particularly to a defrosting control device for detecting frost on an outdoor heat exchanger indoors. This relates to an air conditioner.

従来の技術 従来、特公昭59−34255号公報に示されるように
、室内側熱交換器の温度変化と室内温度の変化の両者に
基づいて室外側熱交換器への着雪状態を検知し、暖房運
転と除霜運転を制御する技術が開発されている。
BACKGROUND ART Conventionally, as shown in Japanese Patent Publication No. 59-34255, snow accretion on an outdoor heat exchanger is detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change. Technologies have been developed to control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、室内熱交換器の補
正温度Tcと室内温度Ta・との差(Tc−Ta)が、
その最大値(Tc  Ta)max  よりも一定値低
下したとき、除霜信号が得られるようになっているが、
前記室内熱交換器の補正温度Tcは、最小の設定風景ま
での補正道であり、空気調和機を部屋の中で使用した場
合、室内熱交換器の前に設置しているフィルターにほこ
り等がつまり、空気調和機の最小設定風量より低下する
ことが常であり、前記補正温度Tcと室内温度Taとの
差(Tc−Ta)が、その最大値(Tc−Ta)max
 から一定値低下することがない場合があり、室外熱交
換器が着霜しているにもかかわらず除霜運転を行なわな
いという実用上の問題がある。
Problems to be Solved by the Invention However, in this conventional configuration, the difference (Tc - Ta) between the corrected temperature Tc of the indoor heat exchanger and the indoor temperature Ta.
When the temperature drops by a certain value from the maximum value (Tc Ta)max, a defrost signal is obtained.
The above correction temperature Tc of the indoor heat exchanger is a correction path to the minimum setting setting, and when the air conditioner is used in a room, dust etc. In other words, the air volume is always lower than the minimum setting of the air conditioner, and the difference between the corrected temperature Tc and the room temperature Ta (Tc - Ta) is the maximum value (Tc - Ta) max.
There are cases where the temperature does not decrease to a certain value even though the outdoor heat exchanger is frosted, and there is a practical problem in that the defrosting operation is not performed even though the outdoor heat exchanger is frosted.

以上のように、従来の技術には問題点があり、改善が要
求されるものである。
As described above, the conventional technology has problems, and improvements are required.

本発明は、上記従来の問題点に鑑み、従来技術の利点を
損うことなく、動作の確実化がはかれる除霜制御装置を
提供するものである。
In view of the above-mentioned conventional problems, the present invention provides a defrosting control device that can ensure reliable operation without sacrificing the advantages of the conventional technology.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図に示すよ
うに冷凍サイクルを暖房サイクルから除霜サイクルに制
御する制御装置を、前記圧縮機の暖房運転開始からの時
間を計測する第1の時間計測手段と、あらかじめ設定さ
れた時間を記憶している第1の設定時間記憶手段と、前
記第1の時間計測手段により検出した時間と前記第1の
設定時間計測手段により検出した時間の一致を検出し出
力する第1の比較手段と、前記、圧縮機の一時停止後、
再運転開始からの時間及び前記温度検出手段により検出
した温度が、前記設定温度記憶手段に記憶された境界値
温度より低下した時間を計測する第2の時間計測手段と
、前記第2の時間計測手段により検出した時間と第2の
設定時間計測手段により検出した時間の一致を検出し出
力する第2の比較手段と、前記室内熱交換器の冷媒入口
側に連結された配管の温度を検出する第1の温度検出手
段と、前記室内側熱交換器の中央部に連結された配管の
温度を検出する第2の温度検出手段と、前記圧縮機の一
時運転停止後、再運転開始からの時間を計測する第3の
時間計測手段と、あらかじめ設定された時間を記憶して
いる第3の設定時間記憶手段と、前記第3の時間計測手
段により検出した時間と前記第3の設定時間計測手段に
より検出した時間の一致を検出し出力する第3の比較手
段と、暖房サイクルを除霜サイクルに切換えるある設定
温度値を記憶した設定温度記憶手段と、前記第1の温度
検出手段により検出した温度と第2の温度検出手段によ
り検出した温度との差温か前記設定温度記憶手段に記憶
されたある設定温度より低下したことを検出し出力する
第4の比較手段と、前記第1・2・3の比較手段による
設定時間経過信号と前記第3の比較手段による差温値低
下信号により、暖房サイクルから除霜サイクルへの切換
えを判定する判定手段と、前記判定手続の出力に応じて
前記冷凍サイクルを暖房運転から除霜運転へ制御する選
択出力手段より構成したものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a control device that controls the refrigeration cycle from the heating cycle to the defrosting cycle as shown in FIG. a first time measuring means for measuring the time from , a first set time storage means for storing a preset time, and a time detected by the first time measuring means and the first setting. a first comparing means for detecting and outputting a coincidence of times detected by the time measuring means; and after the compressor is temporarily stopped;
a second time measuring means for measuring the time from the start of restart and the time at which the temperature detected by the temperature detecting means falls below the boundary value temperature stored in the set temperature storing means; and the second time measuring means a second comparing means for detecting and outputting a coincidence between the time detected by the means and the time detected by the second set time measuring means; and a second comparing means for detecting the temperature of the pipe connected to the refrigerant inlet side of the indoor heat exchanger. a first temperature detection means; a second temperature detection means for detecting the temperature of a pipe connected to a central portion of the indoor heat exchanger; a third time measuring means for measuring a preset time, a third set time storing means for storing a preset time, and a time detected by the third time measuring means and the third set time measuring means. a third comparison means for detecting and outputting the coincidence of the detected times; a set temperature storage means for storing a certain set temperature value for switching the heating cycle to the defrosting cycle; and a temperature detected by the first temperature detecting means. and a fourth comparing means for detecting and outputting a difference temperature between the temperature detected by the second temperature detecting means and the temperature detected by the second temperature detecting means, which is lower than a certain set temperature stored in the set temperature storing means; determining means for determining switching from the heating cycle to the defrosting cycle based on the set time elapsed signal from the comparing means and the differential temperature value decrease signal from the third comparing means; The system includes selection output means for controlling the heating operation to the defrosting operation.

作   用 この構成により、暖房運転開始から所定時間が経過する
までは暖房運転が確保され、その所定時間経過後におい
て、2つの温度検出手段の検出温度差により、除霜運転
が制御される。
Effect: With this configuration, the heating operation is ensured until a predetermined time has elapsed from the start of the heating operation, and after the elapse of the predetermined time, the defrosting operation is controlled based on the temperature difference detected by the two temperature detection means.

実施例 以下、本発明の一実施例を第2図〜第5図を参照にして
説明する。第2図は、本発明の一実施例を示す冷凍サイ
クル図である。同図において、冷凍サイクルは圧縮機1
、四方切換弁2、室内側熱交換器3、減圧器4、室外側
熱交換器5を順次連結することにより構成されている。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 2 to 5. FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention. In the same figure, the refrigeration cycle includes compressor 1
, a four-way switching valve 2, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5 are connected in sequence.

6は配管温度検出素子であり、暖房時において室内側熱
交換器3(凝縮機)の冷媒入口側となる配管に取り付け
られている。同様に6′も配管温度検出素子であり、室
内側熱交換器の中央部の配管に取り付けられて熱交換器
中央部の冷媒温度を検出するものである。
Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. Similarly, 6' is a pipe temperature detection element, which is attached to the pipe at the center of the indoor heat exchanger and detects the refrigerant temperature at the center of the heat exchanger.

この場合、冷房運転時は同図の実線矢印の方向に冷媒が
流れ、暖房運転時には四方切換弁2が切換わることによ
り同図の破線矢印の方向に冷媒が流れるようになってい
る。さらに、前記圧縮機1、四方切換弁2、減圧器4、
室外側熱交換器5および室外送風機8によって室外ユニ
ツ)Aが構成されている。また上記室内側熱交換器3お
よび室内送風機7、さらに配管温度検出素子6と6、タ
イマ機能および温度調節機能などがプログラムされたマ
イクロコンピュータ(以下、マイコンと略称する。)を
有する運転制御部(図示せず)は室内ユニツl−Hに設
けられている。ここで配管温度検出素子6は、室内送風
機7の送風の影響を受けない通風回路からはずれた箇所
に取付けられている。
In this case, during cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 is switched so that the refrigerant flows in the direction of the broken line arrow in the figure. Furthermore, the compressor 1, the four-way switching valve 2, the pressure reducer 4,
The outdoor heat exchanger 5 and the outdoor blower 8 constitute an outdoor unit A. In addition, an operation control unit (hereinafter referred to as microcomputer) having a microcomputer (hereinafter abbreviated as microcomputer) programmed with the indoor heat exchanger 3 and indoor blower 7, pipe temperature detection elements 6 and 6, a timer function, a temperature adjustment function, etc. (not shown) are provided in indoor units l-H. Here, the pipe temperature detection element 6 is attached at a location away from the ventilation circuit where it is not affected by the air blowing from the indoor blower 7.

また、室内ユニツl−Bの近辺でも良い。Alternatively, it may be near indoor unit 1-B.

第3図は運転制御部における主要回路図である。FIG. 3 is a main circuit diagram of the operation control section.

同図においてマイコン9内には運転時間を判定するタイ
ムセーフ回路を記憶する記憶部10とこの記憶部10に
記憶されたタイムセーフ回路と入力値とのアンド回路か
ら適宜出力信号を発生する駆動信号発生手段11がある
。前記マイコン9の入力側にはコンパレータ12を介し
て温度検出手段である配管温度検出素子6(例えば配管
サーミスタあるいは熱電対素子等)と必要に応じて抵抗
値が変えられる抵抗13で構成される第1の温度検出手
段と、熱交換器温度検出素子6(例えば配管サーミスタ
あるいは熱電対素子等)と必要に応じて抵抗値が変えら
れる抵抗13′の信号を処理する演算処理部16、並び
に必要に応じて抵抗値が変えられる抵抗14.15が接
続されている。また出力側には、スイッチ用トランジス
タTR1〜TR4を介して駆動手段である四方切換弁コ
イルを駆動するリレーJ、室内送風機7を駆動するリレ
ーR2、室外送風機8を駆動するリレーR3、圧縮機1
を駆動するリレーR4が接続されている。
In the same figure, the microcomputer 9 includes a storage unit 10 that stores a time-safe circuit for determining operating time, and a drive signal that generates an appropriate output signal from an AND circuit between the time-safe circuit stored in the storage unit 10 and an input value. There is a generating means 11. On the input side of the microcomputer 9, a comparator 12 is connected to a pipe temperature detection element 6 (for example, a pipe thermistor or a thermocouple element) as a temperature detection means, and a resistor 13 whose resistance value can be changed as necessary. 1, a heat exchanger temperature detection element 6 (for example, a piping thermistor or a thermocouple element, etc.), an arithmetic processing unit 16 that processes signals from a resistor 13' whose resistance value can be changed as necessary, and Resistors 14 and 15 whose resistance values can be changed accordingly are connected. Further, on the output side, there is a relay J that drives a four-way switching valve coil, which is a driving means, through switching transistors TR1 to TR4, a relay R2 that drives the indoor blower 7, a relay R3 that drives the outdoor blower 8, and a compressor 1.
A relay R4 that drives the is connected.

ここで、第3図の構成と第1の構成を対比すると、配管
温度検出素子6および抵抗13は第1図の第1の温度検
出手段に相当し、熱交換器温度検出素子6および抵抗1
3は第2の温度検出手段に相当し、コンパレータ12お
よび演算処理部16は第1図の第2の比較手段に相当し
、抵抗14・15によって作られる信号は第1図の設定
温度記憶手段の信号に相当し、記憶部10を含むマイコ
ン9は第1図の設定時間記憶手段、時間計測手段、判定
手段、選択出力手段に相当し、中でもW動信号発生手段
11は判定手段、選択出力手段に相当する。
Here, when comparing the configuration in FIG. 3 with the first configuration, the pipe temperature detection element 6 and the resistor 13 correspond to the first temperature detection means in FIG.
3 corresponds to the second temperature detection means, the comparator 12 and the arithmetic processing section 16 correspond to the second comparison means in FIG. 1, and the signals produced by the resistors 14 and 15 correspond to the set temperature storage means in FIG. The microcomputer 9 including the storage section 10 corresponds to the set time storage means, time measurement means, determination means, and selection output means in FIG. It corresponds to the means.

次に暖房運転の開始から除霜運転に至るまでの動作につ
いて説明する。
Next, the operation from the start of heating operation to defrosting operation will be explained.

圧縮機1の吐出冷媒温度をTd、圧縮機1の吸入冷媒温
度をTs、圧縮機1の吐出圧力をPd。
The discharge refrigerant temperature of the compressor 1 is Td, the suction refrigerant temperature of the compressor 1 is Ts, and the discharge pressure of the compressor 1 is Pd.

圧縮機1の吸入圧力をPIIとし、ポリトロープ指数を
n(ただし 1 < n < K  の関係で、Kは断
熱圧縮指数)とすると、吐出冷媒温度Tdは次式%式% したがって、室外側熱交換器5が未着霜時は吸入冷媒温
度Tsが高く、又吐出冷媒温度Tdも高い。そして外気
が下がり、着霜が成長するにつれて吸入冷媒温度Tsは
低下し、吐出冷媒温度Tdも下がる。同時に、吸入圧力
Ps、吐出圧力Pdも下がる。本発明における配管温度
検出素子6は、室内側熱交換器3の入口配管に設けられ
、圧縮機1から吐出された高温高圧の過熱域冷媒ガスが
流れる部分の温度を検出するが、男際その温度は吐出ガ
スに比べて内外接続配管等での熱損失により所定温度低
下した温度である。また、熱交換gFr温度検出素子6
は室内側熱交換器3のほぼ中央部に設けられ、圧縮機1
から吐出された高温島圧の冷媒ガスが流れる部分であり
、気相の吐出冷媒ガスから、気液2相状態、液相へと変
化する部分であるが、その温度はほぼ一定と見なされ、
一般的に凝縮温度と称されるものである。又、前記熱交
換器3の入口配管の温度と前記凝縮温度の関係は、圧縮
機1から吐出された冷媒ガスが、過熱域の少ないガス状
態で熱交換器3に流入すると、その温度差は少なくなっ
てくる。したがって、第4図に示すように、室外熱交換
器5が未着雷時は圧縮機1の吸入冷媒温度Ts、室内側
熱交換器3の入口配管温度t1、熱交換器3の中央部の
配管温度t2はともに高く、着霜が進むにつれて徐々に
低下し、そして暖房能力を大幅に低下させる着霜状態に
至ると室内側熱交換器3の入口配管温度t1は極端に低
下し、同時に、熱交換器3の中央部配管温度t2も低下
し、その差がなくなり、はとんど等しい状態に進行する
。すなわち、入口配管温度t1と中央部配管温度t2と
の差温度tが設定配管温度を以下になれば暖房能力は低
下し着霜が進んでいるので除霜する必要がある。このよ
うに室内側熱交換器3の入口配管温度t1は、過熱域冷
媒ガスの温度であるため、送風機7の風量の影響を受け
に<<、また、熱交換器3の中央部配管温度t2は凝縮
温度を検知しているので安定しており、その温度差t 
1− t 2を測定することにより適確な除霜運転の判
断を行なうことができる。
When the suction pressure of compressor 1 is PII and the polytropic index is n (where 1 < n < K, K is the adiabatic compression index), the discharge refrigerant temperature Td is calculated using the following formula: % Formula % Therefore, outdoor heat exchange When the container 5 is not frosted, the suction refrigerant temperature Ts is high, and the discharge refrigerant temperature Td is also high. Then, as the outside air drops and frost grows, the suction refrigerant temperature Ts decreases, and the discharge refrigerant temperature Td also decreases. At the same time, the suction pressure Ps and the discharge pressure Pd also decrease. The pipe temperature detection element 6 in the present invention is installed in the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the high-temperature, high-pressure superheated refrigerant gas discharged from the compressor 1 flows. The temperature is a predetermined temperature lower than that of the discharged gas due to heat loss in internal and external connecting pipes, etc. In addition, the heat exchange gFr temperature detection element 6
is provided almost in the center of the indoor heat exchanger 3, and the compressor 1
This is the part through which the refrigerant gas discharged from the refrigerant gas at high temperature and island pressure flows, and the discharged refrigerant gas changes from the gas phase to the gas-liquid two-phase state and then to the liquid phase, but its temperature is considered to be almost constant.
This is generally called the condensation temperature. The relationship between the temperature of the inlet pipe of the heat exchanger 3 and the condensation temperature is such that when the refrigerant gas discharged from the compressor 1 flows into the heat exchanger 3 in a gas state with a small superheated region, the temperature difference is It's getting less. Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not struck by lightning, the suction refrigerant temperature Ts of the compressor 1, the inlet pipe temperature t1 of the indoor heat exchanger 3, and the The pipe temperatures t2 are both high, and gradually decrease as frosting progresses, and when a frosting state that significantly reduces the heating capacity is reached, the inlet pipe temperature t1 of the indoor heat exchanger 3 drops extremely, and at the same time, The central piping temperature t2 of the heat exchanger 3 also decreases, the difference disappears, and the temperatures progress to almost the same state. That is, if the difference temperature t between the inlet pipe temperature t1 and the center pipe temperature t2 becomes less than the set pipe temperature, the heating capacity decreases and frost formation has progressed, so it is necessary to defrost. In this way, the inlet pipe temperature t1 of the indoor heat exchanger 3 is the temperature of the refrigerant gas in the superheated region, so it is not affected by the air volume of the blower 7, and the temperature t2 of the central pipe of the heat exchanger 3 is is stable because it detects the condensation temperature, and the temperature difference t
By measuring 1-t2, it is possible to accurately determine defrosting operation.

以上の説明に基づき、第3図に示す制御回路は、第5図
のフローチャートの内容の制御を行なう。
Based on the above explanation, the control circuit shown in FIG. 3 controls the contents of the flowchart in FIG. 5.

マイコン9で所定時間Tのタイマーカウントがカウント
される(ステップ2)。このタイマーカウントセットは
、暖房運転開始からT1時間(例えば1時間)暖房運転
を確保するためのもので、例えばT1時間暖房を連続す
ることも一つの手段である。
The microcomputer 9 counts a predetermined time T (step 2). This timer count set is for ensuring heating operation for T1 hours (for example, 1 hour) from the start of heating operation, and one means is to continue heating for T1 hours, for example.

そして第1タイマーカウントがセットされると、ステッ
プ3でT1時間経過が判定される。T1時間経過するま
では暖房運転が継続される。
When the first timer count is set, it is determined in step 3 whether time T1 has elapsed. The heating operation is continued until the time T1 has elapsed.

そしてT1時間が経過するとステップ4へ移り、第2タ
イマーカウンタがセットされ、ステップ5に移って圧縮
機1が運転しているか否かがマイコン9内にて判定され
る。仮に運転が行なわれていなかったら(ステップ5を
満足していなければ)ステップ4へ房り第2タイマーカ
ウンタはリセットされる。
Then, when the time T1 has elapsed, the process moves to step 4, where a second timer counter is set, and the process moves to step 5, where it is determined in the microcomputer 9 whether or not the compressor 1 is operating. If no operation is being performed (if step 5 is not satisfied), the process goes to step 4 and the second timer counter is reset.

次にステップ5の条件が満足されるとステップ6にて7
2時間(例えば4分)経過が判定される。
Next, when the conditions of step 5 are satisfied, step 6 and 7
It is determined that two hours (for example, four minutes) have passed.

そして、圧縮機1が連続して12時間運転が行なわれる
とステップ7へ移り、配管温度検出素子6による配管温
度t1の読み込みが行なわれる。次にステップ8へ移り
、熱交換器温度検出素子6による熱交換器温度t2の読
み込みが行なわれ、ステップ9にて圧縮機1が運転して
いるか否かがマイコン9内にて判定される。仮に運転が
行なわれていなかったら、ステップ4へ戻り第2タイマ
ーカウンタはリセットされる。さらに、ステップ1゜に
移って配管温度t1と熱交換器温度t2の差温か、設定
温度tよりも低いかが判定される。具体的には第3図の
コンパレータ12が判定する。
After the compressor 1 has been continuously operated for 12 hours, the process moves to step 7, where the pipe temperature detection element 6 reads the pipe temperature t1. Next, in step 8, the heat exchanger temperature t2 is read by the heat exchanger temperature detection element 6, and in step 9, it is determined in the microcomputer 9 whether or not the compressor 1 is operating. If no operation is being performed, the process returns to step 4 and the second timer counter is reset. Further, in step 1°, it is determined whether the temperature difference between the pipe temperature t1 and the heat exchanger temperature t2 is lower than the set temperature t. Specifically, the comparator 12 in FIG. 3 makes the determination.

そして、ステップ11の条件が満足されると、ステップ
11でて3時間経過が判定される。13時間経過するま
では暖房運転が継続される。また、13時間経過する以
前に配管温度tが設定配管温度t1より高くなるとステ
ップ7に戻り、第3タイマーカウントがリセットされる
Then, when the condition of step 11 is satisfied, it is determined in step 11 that three hours have elapsed. Heating operation continues until 13 hours have passed. Furthermore, if the pipe temperature t becomes higher than the set pipe temperature t1 before 13 hours have elapsed, the process returns to step 7 and the third timer count is reset.

そしてステップ11の条件が満足されるとステップ12
へ移り、除霜運転が開始される。すなわち、第3図のト
ランジスタTR1・TR2・TR3・TR4がそれぞれ
動作し、四方切換弁2を切換え、必要に応じてその前に
一定時間停止し、室内送風機7および室外送風機8を停
止する。そして冷房サイクルにて除霜を行なう。この除
霜運転の内容は従来周知のため、詳細な説明を省略する
Then, when the conditions of step 11 are satisfied, step 12
The defrosting operation starts. That is, the transistors TR1, TR2, TR3, and TR4 shown in FIG. 3 operate, respectively, to switch the four-way switching valve 2, and if necessary, stop the operation for a certain period of time beforehand, thereby stopping the indoor blower 7 and the outdoor blower 8. Then, defrost is performed in the cooling cycle. Since the content of this defrosting operation is conventionally well known, detailed explanation will be omitted.

また暖房運転の復帰についても従来より周知の如く、適
宜手段にて実施できる。
Further, the restoration of the heating operation can be carried out by any suitable means as is well known in the art.

なお、本実施例においては、除霜運転を暖房サイクルか
ら冷房サイクルの切換えによって行なう\うに1.たf
rL Mlヲlイ瞑戻廿X々ル尤f& x + −z−
−i−まとして室外側熱交換器へ別途蓄熱していた冷媒
を流す構成あるいは、別熱源にて雷を溶かす構成として
もよいことは言うまでもない。また圧縮機1は除霜運転
へ切換え時には連続運転とし、暖房運転復帰前に一時停
止させるようにしてもよい。
In this embodiment, the defrosting operation is performed by switching from the heating cycle to the cooling cycle. ta f
rL
-i- It goes without saying that it is also possible to use a configuration in which a refrigerant that has been separately stored in heat is passed into the outdoor heat exchanger, or a configuration in which a separate heat source is used to melt the lightning. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped before returning to heating operation.

発明の効果 以上述べたように本発明によれば、上記構成により、過
熱域冷媒ガス温度を室内側熱交換器入口配管にて検出し
、さらに気液2相域の冷媒凝縮温度を室内側熱交換器の
中央部にて検出して、その差温を知り、適確な除霜運転
を温度検出2点で行なうことができ、構成が非常に簡単
で、また冷媒が暖房運転を行なう熱量を十分に有してい
るか否かの判定が、室内側熱交換器の入口側と中央部の
温度差で行なえるため、実際の暖房能力の有無を確実に
判断して除霜を行なうことができる。
Effects of the Invention As described above, according to the present invention, with the above configuration, the refrigerant gas temperature in the superheated region is detected at the indoor heat exchanger inlet piping, and the refrigerant condensation temperature in the gas-liquid two-phase region is detected in the indoor heat exchanger. By detecting the temperature difference in the center of the exchanger, it is possible to perform accurate defrosting operation with two temperature detection points. Since it is possible to determine whether there is sufficient heating capacity based on the temperature difference between the inlet side and the center of the indoor heat exchanger, defrosting can be performed by reliably determining the presence or absence of actual heating capacity. .

すなわ−リ、本発明は完全に着雪が発生している冷媒の
温度が熱交換器の入口部と中央部に差がなく、未着雪時
に入口冷媒温度の方が中央部の冷媒パ温度に比べて著し
く高い点に着眼し、入口側の冷媒温度と中央部の冷媒温
度を検出することによって、未着霜から72mに至るま
での温度差変化が大きくとれ、2点の温度検出で限界に
近い暖房能力を引き出すことができる。また、本発明は
、暖房開始から一定時間経過するまでN霜を検出しない
ため、また、暖房運転中、圧縮機が一時停止後、再運転
開始から一定時間経過するまで着雪を検出しないため、
例えばサー七〇FF時などの圧縮機再運転直後において
、上昇途中の室内熱交換器配管温度を検知し、誤って未
着霜にもかかわらず、除霜運転を開始することもなく、
さらに室内熱交換器の配管温度が連続して設定温度を下
回らないと除霜運転を開始しない制御としている為、ノ
イズなどにより配管温度を実際の温度より低く検知し、
除霜運転が誤って開始されることもない。
In other words, in the present invention, there is no difference in the temperature of the refrigerant between the inlet part and the center part of the heat exchanger when snow is completely covered, and the inlet refrigerant temperature is higher than the refrigerant temperature in the center part when there is no snow. By focusing on the point that is significantly higher than the temperature at the inlet side and detecting the refrigerant temperature at the center, it is possible to obtain a large temperature difference change from unfrosted to 72m, and the temperature detection at two points is the limit. It is possible to draw out heating capacity close to . In addition, the present invention does not detect N frost until a certain period of time has elapsed from the start of heating, and does not detect snow accumulation until a certain period of time has elapsed from the start of restart of operation after the compressor is temporarily stopped during heating operation.
For example, immediately after the compressor is restarted at 70FF, the temperature of the indoor heat exchanger piping is detected while it is rising, and the defrosting operation is not accidentally started even though there is no frost.
Furthermore, since the defrosting operation is not started unless the pipe temperature of the indoor heat exchanger continuously falls below the set temperature, the pipe temperature may be detected to be lower than the actual temperature due to noise etc.
Defrosting operation will not be started by mistake.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の除霜制御装置を機能実現手段で表現し
たブロック図、第2図は本発明の一実施例を示す空気調
和機の冷凍サイクル図、第3図は簡2空1気調和機にお
ける除霜制御装置の回路図、第4図は同除霜制御装置に
おける室内側熱交換器へ流入する冷媒温度と室内側熱交
換器の中央部の冷媒温度と圧縮機吸入冷媒温度の関係を
示す特性図、第5図は同除霜制御装置の動作内容を示す
フローチャートである。 1・・・・・・圧縮機、2・・・・・・四方切換弁、3
・・・・・・室内側熱交換器、5・・・・・・室外側熱
交換器、6・・・・・・配管温度検出素子、6・・・・
・・熱交換器の中央部配管温度、9・・・・・・マイク
ロコンピユータ、10・・・・・・記憶部、11・・・
・・・駆動信号発生手段、12・・・・・・コンパレー
タ、13・13・14・15・・・・・・抵抗、A・・
・・・・室外ユニット、B・・・・・・室内ユニット。 代理人の氏名 弁理士 中 尾 敏 男 はか1名5−
 室外側#&交換器 E−室内ユニヅト第2図 り − マイクロコンピュータ H−一一駈動社号発生手段 ts、 13t /4. ts −抵抗16−  演算
処理部 第3図 第4図 時間  −→
Fig. 1 is a block diagram expressing the defrosting control device of the present invention using function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a simple 2-air 1-air diagram. Figure 4 is a circuit diagram of the defrost control device in the harmonizer, and shows the temperature of the refrigerant flowing into the indoor heat exchanger, the refrigerant temperature in the center of the indoor heat exchanger, and the compressor suction refrigerant temperature in the defrost control device. A characteristic diagram showing the relationship, and FIG. 5 is a flowchart showing the operation details of the defrosting control device. 1... Compressor, 2... Four-way switching valve, 3
...Indoor heat exchanger, 5...Outdoor heat exchanger, 6...Piping temperature detection element, 6...
...Central pipe temperature of heat exchanger, 9...Microcomputer, 10...Storage section, 11...
...Drive signal generating means, 12...Comparator, 13, 13, 14, 15...Resistor, A...
...Outdoor unit, B...Indoor unit. Name of agent: Patent attorney Toshi Nakao, 1 person, 5-
Outdoor side number & exchanger E-Indoor unit 2nd diagram - Microcomputer H-11 cantering number generating means ts, 13t/4. ts -Resistor 16- Arithmetic processing section Fig. 3 Fig. 4 Time -→

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧装置、室外側熱交換器を
具備した冷凍サイクルに、暖房サイクルと除霜サイクル
を切換えるサイクル切換手段を設け、さらに前記サイク
ル切換手段を、暖房サイクルから除霜サイクルに切換え
る制御装置を、前記圧縮機の暖房運転開始からの時間を
計測する第1の時間計測手段と、あらかじめ設定された
時間を記憶している第1の設定時間記憶手段と、前記第
1の時間計測手段により検出した時間と前記第1の設定
時間記憶手段に設定された時間の一致を検出し出力する
第1の比較手段と、温度検出手段により検出した温度が
、設定温度記憶手段に記憶された境界値温度より低下し
た時間を計測する第2の時間計測手段とあらかじめ設定
された時間を記憶している第2の設定時間記憶手段と、
前記第2の時間計測手段により検出した時間と前記第2
の設定時間記憶手段に設定された時間の一致を検出し出
力する第2の比較手段と、前記圧縮機の一時運転停止後
、再運転開始からの時間を計測する第3の時間計測手段
と、あらかじめ設定された時間を記憶している第3の設
定時間記憶手段と、前記第3の時間計測手段により検出
した時間と前記第3の設定時間記憶手段に設定された時
間の一致を検出し出力する第3の比較手段と、室内側熱
交換器の冷媒入口側の配管温度を検出する第1の温度検
出手段と、前記室内側熱交換器の中央部に連結された配
管の温度を検出する第2の温度検出手段と、暖房サイク
ルを除霜サイクルに切換えるある設定温度値を記憶した
設定温度記憶手段と、前記第1の温度検出手段により検
出した温度と第2の温度検出手段により検出した温度と
の差が前記設定温度記憶手段に記憶されたある設定温度
より低下したことを検出し出力する第4の比較手段と、
前記第1・2・3の比較手段による設定時間経過信号と
前記第3の比較手段による差温値低下信号により、暖房
サイクルから除霜サイクルへの切換えを判定する判定手
段と、前記判定手段の出力に応じて前記冷凍サイクルを
暖房運転から除霜運転へ制御する選択出力手段より構成
した空気調和機の除霜制御装置。
A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means is configured to switch between a heating cycle and a defrosting cycle. A control device for switching to a cycle is controlled by a first time measuring means for measuring time from the start of heating operation of the compressor, a first set time storage means for storing a preset time, and a first set time storage means for storing a preset time; a first comparing means for detecting and outputting a match between the time detected by the time measuring means and the time set in the first set time storage means; a second time measurement means for measuring the time when the temperature has decreased below the stored boundary value temperature; and a second set time storage means for storing the preset time;
The time detected by the second time measuring means and the second
a second comparison means for detecting and outputting the coincidence of the times set in the set time storage means of the compressor; and a third time measurement means for measuring the time from the restart of operation of the compressor after the temporary operation stop of the compressor. A third set time storage means that stores a preset time, and a match between the time detected by the third time measurement means and the time set in the third set time storage means is detected and output. a third comparison means for detecting the temperature of the piping on the refrigerant inlet side of the indoor heat exchanger; and a first temperature detection means for detecting the temperature of the piping connected to the central portion of the indoor heat exchanger. a second temperature detection means, a set temperature storage means that stores a certain set temperature value for switching the heating cycle to a defrosting cycle, and a temperature detected by the first temperature detection means and a temperature detected by the second temperature detection means. fourth comparison means for detecting and outputting that the difference with the temperature has fallen below a certain set temperature stored in the set temperature storage means;
a determining means for determining switching from a heating cycle to a defrosting cycle based on a set time elapsed signal from the first, second and third comparing means and a differential temperature value decrease signal from the third comparing means; A defrosting control device for an air conditioner comprising a selection output means for controlling the refrigeration cycle from heating operation to defrosting operation according to the output.
JP61054014A 1986-03-12 1986-03-12 Control device for defrosting of air-conditioning machine Pending JPS62210336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61054014A JPS62210336A (en) 1986-03-12 1986-03-12 Control device for defrosting of air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054014A JPS62210336A (en) 1986-03-12 1986-03-12 Control device for defrosting of air-conditioning machine

Publications (1)

Publication Number Publication Date
JPS62210336A true JPS62210336A (en) 1987-09-16

Family

ID=12958729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054014A Pending JPS62210336A (en) 1986-03-12 1986-03-12 Control device for defrosting of air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS62210336A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964960A (en) * 1989-02-28 1990-10-23 E. I. Du Pont De Nemours And Company Cation exchange reinforced membrane and process for using
US4988364A (en) * 1989-02-28 1991-01-29 E. I. Du Pont De Nemours And Company Coated cation exchange yarn and process
US4990228A (en) * 1989-02-28 1991-02-05 E. I. Du Pont De Nemours And Company Cation exchange membrane and use
US4996098A (en) * 1989-02-28 1991-02-26 E. I. Du Pont De Nemours And Company Coated cation exchange fabric and process
DE4133112A1 (en) * 1991-10-01 1993-04-08 Gold Star Co De-icing control circuit for air-conditioning unit with heat pump - has automatic cut=out of circulation fan motor for duration of de-icing cycle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964960A (en) * 1989-02-28 1990-10-23 E. I. Du Pont De Nemours And Company Cation exchange reinforced membrane and process for using
US4988364A (en) * 1989-02-28 1991-01-29 E. I. Du Pont De Nemours And Company Coated cation exchange yarn and process
US4990228A (en) * 1989-02-28 1991-02-05 E. I. Du Pont De Nemours And Company Cation exchange membrane and use
US4996098A (en) * 1989-02-28 1991-02-26 E. I. Du Pont De Nemours And Company Coated cation exchange fabric and process
DE4133112A1 (en) * 1991-10-01 1993-04-08 Gold Star Co De-icing control circuit for air-conditioning unit with heat pump - has automatic cut=out of circulation fan motor for duration of de-icing cycle

Similar Documents

Publication Publication Date Title
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62218748A (en) Defrosting controller for air-conditioning machine
JPS62210336A (en) Control device for defrosting of air-conditioning machine
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPS62186155A (en) Defrosting control unit of air conditioner
JPS62218750A (en) Defrosting controller for air-conditioning machine
JPH0566489B2 (en)
JPS62210341A (en) Control device for defrosting of air-conditioning machine
JPS62218749A (en) Defrosting controller for air-conditioning machine
JPS62218751A (en) Defrosting controller for air-conditioning machine
JPH0566498B2 (en)
JPS62233632A (en) Control device for defrosting of air conditioner
JPH0566488B2 (en)
JPS62223551A (en) Defrosting control unit of air conditioner
JPS62213638A (en) Defrost control device for air conditioner
JPH0566490B2 (en)
JPS62210340A (en) Control device for defrosting of air-conditioning machine
JPS6341756A (en) Defrosting control device for air conditioner
JPH0454858B2 (en)
JPS62213637A (en) Defrost control device for air conditioner
JPH0566497B2 (en)
JPS63189731A (en) Defrosting controller of air conditioner
JPH0583819B2 (en)
JPH0566491B2 (en)
JPH0566494B2 (en)