JPS62261845A - Defrosting controller for air-conditioning machine - Google Patents

Defrosting controller for air-conditioning machine

Info

Publication number
JPS62261845A
JPS62261845A JP61107053A JP10705386A JPS62261845A JP S62261845 A JPS62261845 A JP S62261845A JP 61107053 A JP61107053 A JP 61107053A JP 10705386 A JP10705386 A JP 10705386A JP S62261845 A JPS62261845 A JP S62261845A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
cycle
defrosting
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61107053A
Other languages
Japanese (ja)
Inventor
Akira Yokouchi
横内 朗
Ryozo Jabami
蛇場見 良三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61107053A priority Critical patent/JPS62261845A/en
Publication of JPS62261845A publication Critical patent/JPS62261845A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a defrosting controller capable of ensuring the operation thereof by a method wherein defrosting operation is controlled by a set temperature memorizing means, which stores a set temperature switched in accordance with the frequency of an electric source, and the difference of temperatures detected by two sets of temperature detecting means. CONSTITUTION:The capacity of a compressor 1 is different with frequency of an electric source 50Hz or 60Hz while the pressure and the delivery temperature of an outdoor heat exchanger 5 upon frosting are different in case the frequency of the electric source is different. The inlet pipeline temperature (t) of an indoor heat exchanger 3 is also different generally under 50Hz or 60Hz, therefore, the judgement of defrosting is effected by switching the set pipeline temperature (t1) under 50Hz or 60Hz. The inlet pipeline temperature (t1) of the indoor heat exchanger 3 is the temperature of refrigerant gas in an overheating area, therefore, it is hardly affected by the flow amount of a fan 7 while the central part pipeline temperature (t2) of the heat exchanger 3 detects a condensing temperature, therefore, it is stable accordingly, the judgement of defrosting operation may be effected properly under 50Hz or 60Hz by measuring a temperature difference (t1-t2).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調和機の除
霜制御装置に関するもので、特に室外側熱交換器の着霜
を室内側で検知し得るようにした空気調和機に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat pump air conditioner, and particularly to a defrosting control device for detecting frost on an outdoor heat exchanger indoors. This relates to an air conditioner.

従来の技術 従来、特公昭59−34255号公報に示されるように
、室内側熱交換器の温度変化と室内温度の変化の両者に
基づいて室外側熱交換器への着霜状態を検知し、暖房運
転と除霜運転を制御する技術が開発されている。
BACKGROUND ART Conventionally, as shown in Japanese Patent Publication No. 59-34255, the state of frost on an outdoor heat exchanger is detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change. Technologies have been developed to control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、室内熱交換器の補
正温度Tcと室内温度Taとの差(Tc−Ta  )が
、その最大値(Tc−Ta )maxよシも一定値低下
したとき、除霜信号が得られるようになっているが、前
記室内熱交換器の補正温度Tcは、最小の設定風量まで
の補正値であシ、空気調和機を部屋の中で使用した場合
、室内熱交換器の前に設置しているフィルターにはこシ
等がっまり、空気調和機の最小設定風量より低下するこ
とが常であり、前記補正温度Tcと室内温度Taとの差
(Tc−Ta)が、その最大値(Tc Ta ) ma
xjJ)ら一定値低下することがない場合があり、室外
熱交換器が着霜しているにもかかわらず除霜運転を行な
わないという実用上の問題がある。
Problems to be Solved by the Invention However, in such a conventional configuration, the difference between the corrected temperature Tc of the indoor heat exchanger and the indoor temperature Ta (Tc-Ta) is larger than its maximum value (Tc-Ta)max. A defrosting signal is obtained when the temperature drops by a certain value, but the corrected temperature Tc of the indoor heat exchanger is a corrected value up to the minimum set air volume, and the air conditioner is not used indoors. When used, the filter installed in front of the indoor heat exchanger is full of dust, etc., and the air volume is usually lower than the minimum setting of the air conditioner. The difference (Tc - Ta) is its maximum value (Tc Ta ) ma
xjJ) may not decrease to a certain value, and there is a practical problem that defrosting operation is not performed even though the outdoor heat exchanger is frosted.

また、電源周波数により、50Hzと60比において圧
縮機能力が異なり、一般的に60庵の方が高圧が上が9
、同じ室内側熱交換器温度においても、501と601
−lZでは、室外側熱交換器の着霜状態が異な9、適確
な除霜判定はできなかった。
Also, depending on the power frequency, the compression function differs between 50Hz and 60 ratio, and generally speaking, 60an has higher pressure than 90Hz.
, even at the same indoor heat exchanger temperature, 501 and 601
In -1Z, the frosting state of the outdoor heat exchanger was different9, and accurate defrosting judgment could not be made.

以上のように、従来の技術には問題点があり、改善が要
求されるものである。
As described above, the conventional technology has problems, and improvements are required.

本発明は、上記従来の問題点に鑑み、従来技術の利点を
損うことなく、動作の確実化がはかれる除霜制御装置を
提供するものである。
In view of the above-mentioned conventional problems, the present invention provides a defrosting control device that can ensure reliable operation without sacrificing the advantages of the conventional technology.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図に示すよ
うに冷凍サイクルを暖房サイクルから除霜サイクルに制
御する制御装置を、前記圧縮機の暖房運転開始からの時
間を計測する時間計測手段と、あらかじめ設定された時
間を記憶している設定時間記憶手段と、前記時間計測手
段によυ検出した時間と前記設定時間記憶手段に設定さ
れた時間の一致を検出し出力する第1の比較手段と、前
記室内熱交換器の冷媒入口側(暖房運転時)に連結され
た配管の温度を検出する第1の温度検出手段と、前記室
内側熱交換器の中央部に連結された配管の温度を検出す
る第2の温度検出手段と、暖房サイクルを除霜サイクル
に切換えるある設定温度値を記憶した設定温度記憶手段
と、電源周波数を入力する5 0/60f−[zクロッ
ク入力手段と、50田・60田を判別する50/80)
1z判別手段と、その判別手段からの出力信号により前
記設定温度記憶手段のある設定温度値を切換える設定温
度切換手段と、前記第1の温度検出手段により検出した
温度と第2の温度検出手段により検出した温度との差が
前記設定温度記憶手段に記憶されたある設定温度より低
下したことを検出し出力する第2の比較手段と、前記第
1の比較手段による設定時間経過信号と前記第2の比較
手段による差温値低下信号により、暖房サイクルから除
霜サイクルへの切換えを判定する判定手段と、前記判定
手段の出力に応じて前記冷凍サイクルを暖房運転から除
霜運転へ制御する選択出力手段より構成したものである
Means for Solving the Problems In order to solve the above problems, the present invention provides a control device that controls the refrigeration cycle from the heating cycle to the defrosting cycle as shown in FIG. a time measurement means for measuring the time since 1999, a set time storage means for storing a preset time, and a match between the time detected by the time measurement means and the time set in the set time storage means. a first temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side (during heating operation) of the indoor heat exchanger, and a first temperature detection means for detecting and outputting the temperature of the indoor heat exchanger. a second temperature detection means for detecting the temperature of the piping connected to the central part of the system; a set temperature storage means for storing a certain set temperature value for switching the heating cycle to the defrosting cycle; and a set temperature storage means for inputting the power frequency. 60f-[z clock input means and 50/80 for determining 50 and 60)
1z discriminating means, a set temperature switching means for switching a set temperature value of the set temperature storage means according to an output signal from the discriminating means, and a temperature detected by the first temperature detecting means and a second temperature detecting means. a second comparing means for detecting and outputting a difference between the detected temperature and the set temperature that is lower than a certain set temperature stored in the set temperature storage means; a set time elapsed signal from the first comparing means; determining means for determining switching from the heating cycle to the defrosting cycle based on a differential temperature value decrease signal from the comparing means; and a selection output for controlling the refrigeration cycle from heating operation to defrosting operation in accordance with the output of the determining means. It is composed of means.

作   用 この構成により、暖房運転開始から所定時間が経過する
までは暖房運転が確保され、その所定時間経過後におい
て、N源周波数に応じて切換わる設定温度値を記憶した
設定温度記憶手段と、2つの温度検出手段の検出温度差
により、除霜運転が制御される。
Effect: With this configuration, heating operation is ensured until a predetermined time has elapsed from the start of heating operation, and after the elapse of the predetermined time, a set temperature storage means that stores a set temperature value that changes according to the N source frequency; The defrosting operation is controlled based on the difference in temperature detected by the two temperature detection means.

実施例 以下1本発明の一実施例を第2図〜第5図を参照にして
説明する。第2図は1本発明の一実施例を示す冷凍サイ
クル図である。同図において、冷凍サイクルは圧縮機1
.四方切換弁2、室内側熱交換器3、減圧器4.室外側
熱交換器5を順次連結することにより構成されている。
Embodiment One embodiment of the present invention will be described below with reference to FIGS. 2 to 5. FIG. 2 is a refrigeration cycle diagram showing an embodiment of the present invention. In the same figure, the refrigeration cycle includes compressor 1
.. Four-way switching valve 2, indoor heat exchanger 3, pressure reducer 4. It is constructed by sequentially connecting outdoor heat exchangers 5.

6は配管温度検出素子であり、暖房時において室内側熱
交換器3(凝縮機)の冷媒入口側となる配管に取り付け
られている。同様に6′も配管温度検出素子であυ。
Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. Similarly, 6' is also a pipe temperature detection element υ.

室内側熱交換器の中央部の配管に取り付けられて熱交換
器中央部の冷媒温度を検出するものである。
It is attached to the piping in the center of the indoor heat exchanger to detect the refrigerant temperature in the center of the heat exchanger.

この場合、冷房運転時は同図の実線矢印の方向に冷媒が
流れ、暖房運転時には四方切換弁2が切換わることによ
り同図の破線矢印の方向に冷媒が流れるようになってい
る。さらに、前記圧縮機1、四方切換弁2.減圧器4.
室外側熱交換器6および室外送風機8によって室外ユニ
ットAが構成されている。また上記室内側熱交換器3お
よび室内送風機7.さらに配管温度検出素子6と6′、
タイマ機能および温度調節機能などがプログラムされた
マイクロコンピュータ(以下、マイコンと略称する。)
を有する運転制御部(図示せず)は室内ユニットBに設
けられている。ここで配管温度検出素子6は、室内送風
機7の送風の影響を受けない通風回路からはずれた箇所
に取付けられている。
In this case, during cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 is switched so that the refrigerant flows in the direction of the broken line arrow in the figure. Further, the compressor 1, the four-way switching valve 2. Pressure reducer4.
The outdoor heat exchanger 6 and the outdoor blower 8 constitute an outdoor unit A. In addition, the indoor heat exchanger 3 and the indoor blower 7. Furthermore, pipe temperature detection elements 6 and 6',
A microcomputer (hereinafter abbreviated as microcomputer) that is programmed with timer functions, temperature control functions, etc.
An operation control section (not shown) having an operation control section (not shown) is provided in the indoor unit B. Here, the pipe temperature detection element 6 is attached at a location away from the ventilation circuit where it is not affected by the air blowing from the indoor blower 7.

また、室内ユニッ)Bの近辺でも良い。Alternatively, it may be near indoor unit)B.

第3図は運転制御部における主要回路図である。FIG. 3 is a main circuit diagram of the operation control section.

同図において、交流電源18より供給された電圧をトラ
ンス19で降圧し、ダイオードブリッジ20で全波整流
に変換し全波整流の波形を、インバータIC21でクロ
ック信号に変え、マイコン9に入力する。この信号によ
りマイコン9は。
In the figure, a voltage supplied from an AC power supply 18 is stepped down by a transformer 19, converted into full-wave rectification by a diode bridge 20, and the waveform of the full-wave rectification is converted into a clock signal by an inverter IC 21, which is input to the microcomputer 9. This signal causes the microcomputer 9 to

50760Hz判別手段により50ルか60比かを判別
する。ここで60庵であればマイコン9のPl ポート
からHi を出力し抵抗14.15の分圧によりできる
基準電圧を引き上げ、設定温度値を上げる。
A 50760Hz discrimination means discriminates whether it is 50 Hz or 60 Hz. Here, if it is 60, Hi is output from the Pl port of the microcomputer 9, the reference voltage generated by the voltage division of the resistor 14.15 is raised, and the set temperature value is increased.

また、マイコン9内には運転時間を判定するタイムセー
フ回路を記憶する記憶部10とこの記憶部10に記憶さ
れたタイムセーフ回路と入力値とのアンド回路から適宜
出力信号を発生する駆動信号発生手段11がある。前記
マイコン9の入力側にはコンパレータ12を介して温度
検出手段である配管温度検出素子6(例えば配管サーミ
スタあるいは熱電対素子等)と必要に応じて抵抗値が変
えられる抵抗13で構成される第1の温度検出手段と、
熱交換器温度検出素子6′(例えば配管サーミスタある
いは熱電対素子等)と必要に応じて抵抗値が変えられる
抵抗13′の信号を処理する演算処理部16.並びに必
要に応じて抵抗値が変えられる抵抗14,15,17が
接続されている。また出力側には、スイッチ用トランジ
スタTR1〜T R4を介して駆動手段である四方切換
弁コイルを駆動するリレーRj 、室内送風機7を駆動
するリレーR2,室外送風機8を駆動するリレーR3゜
圧縮機1を駆動するリレーR4が接続されている。
The microcomputer 9 also includes a storage unit 10 that stores a time-safe circuit for determining operating time, and a drive signal generator that generates an appropriate output signal from an AND circuit between the time-safe circuit stored in the storage unit 10 and an input value. There is a means 11. On the input side of the microcomputer 9, a comparator 12 is connected to a pipe temperature detection element 6 (for example, a pipe thermistor or a thermocouple element) as a temperature detection means, and a resistor 13 whose resistance value can be changed as necessary. 1 temperature detection means;
An arithmetic processing unit 16 that processes signals from a heat exchanger temperature detection element 6' (for example, a piping thermistor or a thermocouple element) and a resistor 13' whose resistance value can be changed as necessary. Also connected are resistors 14, 15, and 17 whose resistance values can be changed as necessary. Furthermore, on the output side, there are a relay Rj that drives a four-way switching valve coil, which is a driving means, through switching transistors TR1 to TR4, a relay R2 that drives an indoor blower 7, and a relay R3 that drives an outdoor blower 8. Relay R4 that drives 1 is connected.

ここで、第3図の構成と第1の構成を対比すると、配管
温度検出素子6および抵抗13は第1図の第1の温度検
出手段に、熱交換器温度検出素子6′および抵抗13′
は第2の温度検出手段に、コンパレータ12および演算
処理部16は第1図の第2の比較手段に、抵抗14・1
5・17によって作られる信号は第1図の設定温度記憶
手段の信号に、また、抵抗17およびマイコン9のPl
 ポートからの出力信号は設定温度切換手段に、507
60田クロック信号発生回路22は第1図の50760
庵クロック入力手段に、記憶部10を含むマイコン9は
第1図の50/60Hz判別手段、設定時間記憶手段1
時間計測手段1判定手段1選択出力手段に相当し、中で
も駆動信号発生手段11は判定手段1選択出力手段に相
当する。
Here, comparing the configuration of FIG. 3 with the first configuration, the pipe temperature detection element 6 and the resistor 13 are replaced by the heat exchanger temperature detection element 6' and the resistor 13' in the first temperature detection means of FIG.
is the second temperature detection means, the comparator 12 and the arithmetic processing section 16 are the second comparison means in FIG.
The signals generated by the resistors 17 and 17 are the signals of the set temperature storage means shown in FIG.
The output signal from the port is sent to the set temperature switching means 507.
The clock signal generation circuit 22 is 50760 in FIG.
The microcomputer 9, which includes a storage section 10 as a clock input means, has a 50/60Hz discrimination means and a set time storage means 1 shown in FIG.
The time measurement means 1 corresponds to the judgment means 1 selection output means, and in particular, the drive signal generation means 11 corresponds to the judgment means 1 selection output means.

次に、暖房運転の開始から除霜運転に至るまでの動作に
ついて説明する。
Next, the operation from the start of heating operation to defrosting operation will be explained.

圧縮機1の吐出冷媒温度をTd 、圧縮機1の吸入冷媒
温度をTs 、圧縮機1の吐出圧力をPd、圧縮機1の
吸入圧力をPsとし、ポリトロープ指数をn(ただし1
 < n < Kの関係で、には断熱圧縮指数)とする
と、吐出冷媒温度Tdは次式で表わされる。
The discharge refrigerant temperature of the compressor 1 is Td, the suction refrigerant temperature of the compressor 1 is Ts, the discharge pressure of the compressor 1 is Pd, the suction pressure of the compressor 1 is Ps, and the polytropic index is n (where 1
Given the relationship <n<K, where is the adiabatic compression index), the discharge refrigerant temperature Td is expressed by the following equation.

と」 Td=Ts・(上止)n g したがって、室外熱交換器5が未着霜時は吸入冷媒温度
T8が高く、又吐出冷媒温度Tdも高い。
Td=Ts・(upper limit) n g Therefore, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature T8 is high, and the discharge refrigerant temperature Td is also high.

そして外気が下がり、着霜が成長するにつれて、吸入冷
媒温度Tsは低下し、吐出冷媒温度Tdも下がる。本発
明における配管温度検出素子6は、室内側熱交換器3の
入口配管に設けられ、圧縮機1から吐出され念高温高圧
の過熱域冷媒ガスが流れる部分の温度を検出するが、実
際その温度は吐出ガスに比べて内外接続配管等での熱損
失により所定温度低下した温度である。また、熱交換器
温度検出素子6′は室内側熱交換器3のほぼ中央部に設
けられ、圧縮機1から吐出された高温高圧の冷媒ガスが
流れる部分であシ、気相の吐出冷媒ガスから、気液2相
状態、液相へと変化する部分であるが、その温度はほぼ
一定と見なされ、一般的に凝縮温度と称されるものであ
る。又、前記熱交換器30入口配管の温度と前記凝縮温
度の関係は。
As the outside air drops and frost grows, the suction refrigerant temperature Ts decreases, and the discharge refrigerant temperature Td also decreases. The pipe temperature detection element 6 in the present invention is installed at the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the superheated refrigerant gas discharged from the compressor 1 and having a very high temperature and high pressure flows. is a temperature lower than that of the discharged gas by a predetermined temperature due to heat loss in internal and external connecting pipes, etc. Further, the heat exchanger temperature detection element 6' is provided almost at the center of the indoor heat exchanger 3, and is a part where the high temperature and high pressure refrigerant gas discharged from the compressor 1 flows. This is the part where the temperature changes from a gas-liquid two-phase state to a liquid phase, but the temperature is considered to be approximately constant and is generally referred to as the condensation temperature. Also, what is the relationship between the temperature of the heat exchanger 30 inlet pipe and the condensation temperature?

圧縮機1から吐出され九冷媒ガスが、過熱域の少ないガ
ス状態で熱交換器3に流入すると、その温度差は少なく
なってくる。したがって、第4図に示すように、室外熱
交換器5が未着霜時は圧縮機1の吸入冷媒温度Ts 、
室内側熱交換器3の入口配管温度t1 、熱交換器3の
中央部の配管温度t2はともに高く1着霜が進むにつれ
て徐々に低下し、そして暖房能力を大幅に低下させる着
霜状態に至ると、室内側熱交換器3の入口配管温度t1
は極端に低下し、同時に、熱交換器3の中央部配管温度
t2も低下し、その差がなくなり、はとんど等しい状態
に進行する。すなわち、入口配管温度t1 と中央部配
管温度t2との差温度tが設定配管温度t3以下になれ
ば暖房能力は低下し着霜が進んでいるので除霜する必要
がある。また。
When the refrigerant gas discharged from the compressor 1 flows into the heat exchanger 3 in a gas state with less superheated region, the temperature difference therebetween becomes smaller. Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts of the compressor 1,
The inlet pipe temperature t1 of the indoor heat exchanger 3 and the pipe temperature t2 at the center of the heat exchanger 3 are both high and gradually decrease as frosting progresses, reaching a frosting state that significantly reduces the heating capacity. and the inlet pipe temperature t1 of the indoor heat exchanger 3
At the same time, the central piping temperature t2 of the heat exchanger 3 also decreases, and the difference disappears, and the two become almost equal. That is, if the difference temperature t between the inlet pipe temperature t1 and the center pipe temperature t2 becomes less than the set pipe temperature t3, the heating capacity decreases and frost formation has progressed, so it is necessary to defrost. Also.

電源周波数により、50ルと60Hzにおいては。Depending on the power supply frequency, at 50 Hz and 60 Hz.

圧縮機1の能力が異なり、室外側熱交換器5の着霜時に
おける。高圧、吐出温度が異なる。すなわち、50−と
60庵では一般的に室内側熱交換器3の入口配管温度t
も異なり、設定配管温度t1をsohと60Hzでは切
換えて除霜判定を行っている。このように室内側熱交換
器30入口配管温度t1は、過熱域冷媒ガスの温度であ
るため、送風機7の風量の影響を受けにくく、また、熱
交換器3の中央部配管温度t2は凝縮温度を検知してい
るので安定しており、その温度差t1−t2を測定する
ことによ、950Hz、60Hz共に適確な除霜運転の
判断を行なうことができる。
When the capacity of the compressor 1 is different and the outdoor heat exchanger 5 is frosted. High pressure and discharge temperature are different. That is, in 50- and 60-an, the inlet pipe temperature t of the indoor heat exchanger 3 is generally
The setting pipe temperature t1 is also switched between soh and 60 Hz to make a defrosting determination. In this way, the indoor heat exchanger 30 inlet pipe temperature t1 is the temperature of the refrigerant gas in the superheated region, so it is not easily affected by the air volume of the blower 7, and the central pipe temperature t2 of the heat exchanger 3 is the condensing temperature. is detected, so it is stable, and by measuring the temperature difference t1-t2, it is possible to accurately determine defrosting operation at both 950 Hz and 60 Hz.

以上の説明に基づき、第3図に示す制御回路は、第5図
に示すフローチャートの内容の制御を行なう。
Based on the above explanation, the control circuit shown in FIG. 3 controls the contents of the flowchart shown in FIG.

すなわち、第5図のステップ1にて、電源周波数が60
庵かどうかを判定し、ステップ2にて、60Hzであれ
ばP1ポートをHiにし、50Hzであれば、Pl ポ
ートをオープンにする。具体的には第3図の50/60
8Zクロック発生回路からの信号によりマイコン9内の
50760Hz判別手段により判別され、マイコン9の
出力側のPl ポートをeO出であればHiにし、抵抗
14.15の分圧によりできる基準電圧を引き上げ、設
定配管温度t3を50/60Hzによって変えている。
That is, in step 1 of Fig. 5, the power supply frequency is 60
It is determined whether it is a hermitage or not, and in step 2, if the frequency is 60Hz, the P1 port is set to Hi, and if the frequency is 50Hz, the Pl port is opened. Specifically, 50/60 in Figure 3
The signal from the 8Z clock generation circuit is discriminated by the 50760Hz discriminating means in the microcomputer 9, and if the Pl port on the output side of the microcomputer 9 is eO output, it is set to Hi, and the reference voltage created by the voltage division of the resistor 14.15 is raised. The set pipe temperature t3 is changed by 50/60Hz.

その後、ステップ3にて暖房運転が開始され。After that, heating operation is started in step 3.

マイコン9で所定時間Tのタイマーカウントがカウント
される(ステップ4)。このタイマーカウントセットは
、暖房運転開始から7時間(例えば1時間)暖房運転を
確保するためのもので1例えば7時間暖房を連続するこ
とも一つの手段である。
The microcomputer 9 counts a timer count for a predetermined time T (step 4). This timer count set is for ensuring heating operation for 7 hours (for example, 1 hour) from the start of heating operation, and one means is to continue heating for 1, for example, 7 hours.

そしてタイマーカウントがセットされると、ステップ5
で7時間経過が判定される。7時間経過するまでは暖房
運転が継続される。
And once the timer count is set, step 5
It is determined that 7 hours have passed. Heating operation continues until 7 hours have passed.

そして7時間が経過するとステップ6へ移り。After 7 hours have elapsed, the process moves to step 6.

配管温度検出素子6による配管温度t1の読み込みが行
なわれる。次にステップ7へ移り、熱交換器温度検出素
子6′による熱交換器温度t2の読み込みが行なわれ、
ステップ8に移って配管温度t1 と熱交換器温度t2
の差温か、設定温度t3よりも低いかが判定される。具
体的には第3図のコンパレータ12が判定する。
The pipe temperature t1 is read by the pipe temperature detection element 6. Next, the process moves to step 7, where the heat exchanger temperature t2 is read by the heat exchanger temperature detection element 6'.
Moving on to step 8, the pipe temperature t1 and the heat exchanger temperature t2
It is determined whether the difference in temperature is lower than the set temperature t3. Specifically, the comparator 12 in FIG. 3 makes the determination.

そしてステップ8の条件が満足されるとステップ9へ移
り、除霜運転が開始される。すなわち、第3図のトラン
ジスタTR1・TR2・TR3・TR4がそれぞれ動作
し、四方切換弁2を切換え。
When the conditions of step 8 are satisfied, the process moves to step 9 and defrosting operation is started. That is, the transistors TR1, TR2, TR3, and TR4 shown in FIG. 3 each operate to switch the four-way switching valve 2.

必要に応じてその前に一定時間停止し、室内送風機7お
よび室外送風機8を停止する。そして冷房サイクルにて
除霜を行なう。この除霜運転の内容は従来周知のため、
詳細な説明を省略する。また暖房運転の復帰についても
従来より周知の如く、適宜手段にて実施できる。
If necessary, the indoor blower 7 and the outdoor blower 8 are stopped for a certain period of time before that. Then, defrost is performed in the cooling cycle. The content of this defrosting operation is well known, so
Detailed explanation will be omitted. Further, the restoration of the heating operation can be carried out by any suitable means as is well known in the art.

なお1本実施例に3いては、除霜運転を暖房サイクルか
ら冷房サイクルの切換えによって行なうようにしたが1
例えば暖房サイクルを維持し九ままとして室外側熱交換
器へ別途蓄熱していた冷媒を流す構成あるいは、別熱源
にて霜を溶かす構成としてもよいことは言うまでもない
。また圧縮機1は除霜運転へ切換え時には連続運転とし
、暖房運転復帰前に一時停止させるようにしてもよ、い
Note that in Embodiment 3, the defrosting operation was performed by switching from the heating cycle to the cooling cycle.
For example, it goes without saying that a configuration may be adopted in which the heating cycle is maintained and the refrigerant that has been stored separately is allowed to flow into the outdoor heat exchanger, or a configuration in which frost is melted using a separate heat source. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped before returning to heating operation.

発明の効果 以上述べたように本発明によれば、上記構成により、過
熟域冷媒ガス温度を室内側熱交換器入口配管にて検出し
、さらに気液2相域−の冷媒凝縮温度を室内側熱交換器
の中央部にて検出して、その差温を知り、適確な除霜運
転を温度検出2点で行なうことができ、構成が非常に簡
単で、また冷媒が暖房運転を行なう熱量を十分に有して
いるか否かの判定が、室内側熱交換器の入口側と中央部
の温度差で行なえ、50Hz、80ルにて設定温度を切
換えるため、電源周波数が異っても実際の暖房能力の有
無を確実に判断して除霜を行なうことができる。
Effects of the Invention As described above, according to the present invention, with the above configuration, the refrigerant gas temperature in the overmature region is detected at the indoor heat exchanger inlet piping, and the refrigerant condensation temperature in the gas-liquid two-phase region is detected indoors. Detects the temperature at the center of the inner heat exchanger, determines the temperature difference, and enables accurate defrosting operation with two temperature detection points.The configuration is very simple, and the refrigerant performs heating operation. Whether or not there is sufficient heat can be determined based on the temperature difference between the inlet side and the center of the indoor heat exchanger, and the set temperature can be changed at 50Hz and 80L, so even if the power supply frequency is different. Defrosting can be performed by reliably determining the presence or absence of actual heating capacity.

すなわち1本発明は完全に着霜が発生している冷媒の温
度が熱交換器の入口部と中央部に差がな(、未着霜時に
入口冷媒温度の方が中央部の冷媒温度に比べて著しく高
い点に着眼し、入口側の冷媒温度と中央部の冷媒温度を
検出することによって、未着霜から着霜に至るまでの温
度差変化が大きくとれ、2点の温度検出で限界に近い暖
房能力を引き出すことができる。また、本発明は、暖房
開始から一定時間経過するまで着霜を検出しないため、
その一定時間は暖房能力が確保され、快適さが損なわれ
ることもない。
In other words, the present invention has the advantage that there is no difference in the temperature of the refrigerant between the inlet part and the center part of the heat exchanger when frost has completely formed (the inlet refrigerant temperature is higher than the refrigerant temperature in the center part when no frost has formed). By focusing on the point where the temperature is extremely high and detecting the refrigerant temperature on the inlet side and the refrigerant temperature in the center, it is possible to obtain a large temperature difference change from non-frost to frost, and it is possible to reach the limit by detecting the temperature at two points. In addition, since the present invention does not detect frost formation until a certain period of time has passed from the start of heating,
During this period, heating capacity is ensured and comfort is not compromised.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の除霜制御装置を機能実現手段で表現し
たブロック図、第2図は本発明の一実施例を示す空気調
和機の冷凍サイク)v図、第3図は同空気調和機におけ
る除霜制御装置の回路図、第4図は同除霜制御装置にお
ける室内側熱交換器へ流入する冷媒温度と室内側熱交換
器の中央部の冷媒温度と圧縮機吸入冷媒温度の関係を示
す特性図。 第5図は同除霜制御装置の動作内容を示すフローチャー
トである。 1・・・・・・圧縮機、2・・・・・・四方切換弁、3
・・・・・・室外側熱交換器、S・・・・・・室外側熱
交換器、6・・・・・・配管温度検出素子、6′・・・
・・・熱交換器の中央部配管温度。 9・・・・・・マイクロコンピュータ、10・・・・・
・記憶部。 11・・・・・・駆動信号発生手段、12・・・・・・
コンパレータ、13・13′・14・15・17・・・
・・・抵抗。 22・・・・・・5 o/s OHzクロック信号発生
回路、A・・・・・・室外ユニット、B・・・・・・室
内ユニット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 1−一一圧11微 2・・−四方都央弁 3−・皇丙気軸洟器 4− 裁圧混 A−・−室外ユニット B−m−室内ユニット 6−−−淀管温力1吏出素子 6′−・熱交挾器叡検出量子 9−・マイクロゴレピーータ 第 3 図             tt−−−N動
信号発庄手役73、73’ 7475.17−−−抵抗
#) −−°ス算処理部 jI間  □ 第5図
Fig. 1 is a block diagram expressing the defrosting control device of the present invention as a function realizing means, Fig. 2 is a refrigeration cycle of an air conditioner showing an embodiment of the present invention), and Fig. 3 is a block diagram of the defrosting control device of the present invention. Figure 4 shows the relationship between the temperature of the refrigerant flowing into the indoor heat exchanger, the temperature of the refrigerant in the center of the indoor heat exchanger, and the temperature of the refrigerant sucked into the compressor in the defrost control device. Characteristic diagram showing. FIG. 5 is a flowchart showing the operation details of the defrosting control device. 1... Compressor, 2... Four-way switching valve, 3
...Outdoor heat exchanger, S...Outdoor heat exchanger, 6...Piping temperature detection element, 6'...
...Temperature of the central piping of the heat exchanger. 9...Microcomputer, 10...
・Memory section. 11... Drive signal generating means, 12...
Comparator, 13, 13', 14, 15, 17...
···resistance. 22...5 o/s OHZ clock signal generation circuit, A...outdoor unit, B...indoor unit. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 1 - 11 pressure 11 micro 2...-Shoto central valve 3--Kohei air axis 4- Judgment pressure mixture A...-Outdoor unit B-m-Indoor unit 6--Yodo tube temperature Force 1 output element 6'--Heat exchanger Detection quantum 9--Micro repeater Fig. 3 tt--N dynamic signal generator 73, 73' 7475.17--Resistance #) −−°Scaling processing unit jI □ Figure 5

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧装置、室外側熱交換器を
具備した冷凍サイクルに、暖房サイクルと除霜サイクル
を切換えるサイクル切換手段を設け、さらに前記サイク
ル切換手段を、暖房サイクルから除霜サイクルに切換え
る制御装置を、前記圧縮機の暖房運転開始からの時間を
計測する時間計測手段と、あらかじめ設定された時間を
記憶している設定時間記憶手段と、前記時間計測手段に
より検出した時間と前記設定時間記憶手段に設定された
時間の一致を検出し出力する第1の比較手段と、暖房運
転時に前記室内側熱交換器の冷媒入口側に連結された配
管の温度を検出する第1の温度検出手段と、前記室内側
熱交換器の中央部に連結された配管の温度を検出する第
2の温度検出手段と、暖房サイクルを除霜サイクルに切
換えるある設定温度値を記憶した設定温度記憶手段と、
電源周波数を入力する50/60Hzクロック入力手段
と、50Hz・60Hzを判別する50/60Hz判別
手段と、その判別手段からの出力信号により前記設定温
度記憶手段の設定温度値を切換える設定温度切換手段と
、前記第1の温度検出手段により検出した温度と第2の
温度検出手段により検出した温度との差が前記設定温度
記憶手段に記憶されたある設定温度より低下したことを
検出し出力する第2の比較手段と、前記第1の比較手段
による設定時間経過信号と前記第2の比較手段による差
温値低下信号により、暖房サイクルから除霜サイクルへ
の切換えを判定する判定手段と、前記判定手段の出力に
応じて前記冷凍サイクルを暖房運転から除霜運転へ制御
する選択出力手段より構成した空気調和機の除霜制御装
置。
A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means is configured to switch between a heating cycle and a defrosting cycle. A control device for switching to a cycle is controlled by a time measuring means for measuring the time from the start of heating operation of the compressor, a set time storage means for storing a preset time, and a time detected by the time measuring means. a first comparing means for detecting and outputting a coincidence of times set in the set time storage means; and a first comparing means for detecting a temperature of a pipe connected to a refrigerant inlet side of the indoor heat exchanger during heating operation. a temperature detection means, a second temperature detection means for detecting the temperature of the piping connected to the central portion of the indoor heat exchanger, and a set temperature memory storing a certain set temperature value for switching the heating cycle to the defrosting cycle. means and
50/60Hz clock input means for inputting the power supply frequency; 50/60Hz discrimination means for discriminating between 50Hz and 60Hz; and set temperature switching means for switching the set temperature value of the set temperature storage means based on an output signal from the discrimination means. , a second temperature detection means for detecting and outputting that the difference between the temperature detected by the first temperature detection means and the temperature detected by the second temperature detection means is lower than a certain set temperature stored in the set temperature storage means; a comparison means, a determination means for determining switching from a heating cycle to a defrosting cycle based on a set time elapsed signal from the first comparison means and a temperature difference value decrease signal from the second comparison means, and the determination means A defrosting control device for an air conditioner, comprising a selection output means for controlling the refrigeration cycle from heating operation to defrosting operation according to the output of the air conditioner.
JP61107053A 1986-05-09 1986-05-09 Defrosting controller for air-conditioning machine Pending JPS62261845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107053A JPS62261845A (en) 1986-05-09 1986-05-09 Defrosting controller for air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107053A JPS62261845A (en) 1986-05-09 1986-05-09 Defrosting controller for air-conditioning machine

Publications (1)

Publication Number Publication Date
JPS62261845A true JPS62261845A (en) 1987-11-14

Family

ID=14449311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107053A Pending JPS62261845A (en) 1986-05-09 1986-05-09 Defrosting controller for air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS62261845A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187746A (en) * 1992-01-16 1993-07-27 Mitsubishi Electric Corp Air conditioner
US7419192B2 (en) 2005-07-13 2008-09-02 Carrier Corporation Braze-free connector utilizing a sealant coated ferrule
US7472557B2 (en) 2004-12-27 2009-01-06 Carrier Corporation Automatic refrigerant charging apparatus
US7552596B2 (en) 2004-12-27 2009-06-30 Carrier Corporation Dual thermochromic liquid crystal temperature sensing for refrigerant charge indication
US7610765B2 (en) 2004-12-27 2009-11-03 Carrier Corporation Refrigerant charge status indication method and device
US7712319B2 (en) 2004-12-27 2010-05-11 Carrier Corporation Refrigerant charge adequacy gauge
US9568226B2 (en) 2006-12-20 2017-02-14 Carrier Corporation Refrigerant charge indication
US9759465B2 (en) 2011-12-27 2017-09-12 Carrier Corporation Air conditioner self-charging and charge monitoring system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187746A (en) * 1992-01-16 1993-07-27 Mitsubishi Electric Corp Air conditioner
US7472557B2 (en) 2004-12-27 2009-01-06 Carrier Corporation Automatic refrigerant charging apparatus
US7552596B2 (en) 2004-12-27 2009-06-30 Carrier Corporation Dual thermochromic liquid crystal temperature sensing for refrigerant charge indication
US7610765B2 (en) 2004-12-27 2009-11-03 Carrier Corporation Refrigerant charge status indication method and device
US7712319B2 (en) 2004-12-27 2010-05-11 Carrier Corporation Refrigerant charge adequacy gauge
US7419192B2 (en) 2005-07-13 2008-09-02 Carrier Corporation Braze-free connector utilizing a sealant coated ferrule
US9568226B2 (en) 2006-12-20 2017-02-14 Carrier Corporation Refrigerant charge indication
US9759465B2 (en) 2011-12-27 2017-09-12 Carrier Corporation Air conditioner self-charging and charge monitoring system

Similar Documents

Publication Publication Date Title
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPS62218748A (en) Defrosting controller for air-conditioning machine
JPS62210336A (en) Control device for defrosting of air-conditioning machine
JPS62186155A (en) Defrosting control unit of air conditioner
JPS62223551A (en) Defrosting control unit of air conditioner
JPS62261847A (en) Defrosting controller for air-conditioning machine
JPS62218750A (en) Defrosting controller for air-conditioning machine
JPH0566498B2 (en)
JPS62210338A (en) Control device for defrosting of air-conditioning machine
JPS62119345A (en) Defrosting device of air conditioner
JPS62218749A (en) Defrosting controller for air-conditioning machine
JPS62261846A (en) Defrosting controller for air-conditioning machine
JPS62213637A (en) Defrost control device for air conditioner
JPS62223553A (en) Defrosting control unit of air conditioner
JPH0566491B2 (en)
JPH0195242A (en) Defrosting control device in air conditioner
JPS62233632A (en) Control device for defrosting of air conditioner
JPH067020B2 (en) Defrost control device for air conditioner
JPS62223549A (en) Defrosting control unit of air conditioner
JPS62213638A (en) Defrost control device for air conditioner
JPH0566493B2 (en)
JPS62218751A (en) Defrosting controller for air-conditioning machine
JPH0566497B2 (en)
JPS63189731A (en) Defrosting controller of air conditioner