JPS62213636A - Defrost control device for air conditioner - Google Patents

Defrost control device for air conditioner

Info

Publication number
JPS62213636A
JPS62213636A JP61054033A JP5403386A JPS62213636A JP S62213636 A JPS62213636 A JP S62213636A JP 61054033 A JP61054033 A JP 61054033A JP 5403386 A JP5403386 A JP 5403386A JP S62213636 A JPS62213636 A JP S62213636A
Authority
JP
Japan
Prior art keywords
temperature
current
cycle
time
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61054033A
Other languages
Japanese (ja)
Other versions
JPH0566497B2 (en
Inventor
Takashi Deguchi
隆 出口
Kenichiro Miura
三浦 賢一郎
Tsutomu Nakamura
勉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61054033A priority Critical patent/JPS62213636A/en
Publication of JPS62213636A publication Critical patent/JPS62213636A/en
Publication of JPH0566497B2 publication Critical patent/JPH0566497B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a simple construction of defrost control device by a method wherein a heating operation is carried out after a starting of the heating operation until a desired time is elapsed, and after the desired time is elapsed, the defrost operation is controlled by either a sensed temperature of a temperature sensing means or a sensed electrical current of an electrical current sensing means. CONSTITUTION:When a heating operation is started and a timer count of a desired period of time T is set by a microcomputer 11, a heating operation is continued until the time T is elapsed. As the time T is elapsed, an inputting of a piping temperature (t) is carried out by a piping temperature sensing element 6 and then a comparator 14 may judge if the piping temperature (t) is lower than a set piping temperature (t1). If the piping temperature (t) is higher than the set temperature (t1), the comparator 18 may judge if an electrical current I is lower than a set electrical current I1. If the condition of t<=t1 or I<=I1 is fulfilled, each of the transistors TR1, TR2, TR3, TR4 is operated, a four-way changing-over valve 2 is changed over and then a frost removing operation is performed in a refrigerating cycle. With this arrangement, it is possible to perform a positive frost removing operation only with a temperature sensing or an electrical current sensing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調和機の除
霜制御装置に関するもので、特に室外側熱交換器の着霜
を室内側で検知し得るようにした空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat pump air conditioner, and particularly to a defrosting control device for detecting frost on an outdoor heat exchanger indoors. Regarding air conditioners.

従来の技術 従来、特公昭59−34255号公報に示されるように
、室内側熱交換器の温度変化と室内温度の変化の両者に
基づいて室外側熱交換器への着霜状態全検知し、暖房運
転と除霜運転を制御する技術が開発されている。
2. Description of the Related Art Conventionally, as shown in Japanese Patent Publication No. 59-34255, all frosting conditions on an outdoor heat exchanger are detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change. Technologies have been developed to control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、温度検出素子が複
数必要となり、自と回路が複雑化する問題がある。さら
に、空気調和機においては、室内側の送風量が任意に可
変設定されることが常であ 。
Problems to be Solved by the Invention However, such a conventional configuration requires a plurality of temperature detection elements, complicating the circuit itself. Furthermore, in air conditioners, the amount of air blown indoors is often set arbitrarily and variably.

シ、そのためにも従来の技術に風量補正手段を加味させ
ることは、一層回路を複雑化にしてしまう。
For this reason, adding an air volume correction means to the conventional technology will further complicate the circuit.

しかも、かかる構成は熱交換器を流れている途中の気液
混合冷媒温度を検出しているため、着霜時と未着霜時の
温度変化が小さく、微小な範囲で着霜判定を行わなけれ
ばならず、検出精変が安定しない問題がある。
Moreover, since this configuration detects the temperature of the gas-liquid mixed refrigerant flowing through the heat exchanger, the temperature change between frost and non-frost is small, and frost formation must be determined within a minute range. However, there is a problem that the detection precision is not stable.

まり近年、マイクロコンピュータてて複雑な信号処理を
行わせ、制御装置を構成することが多いが、従来技術の
ように入力信号源(温度検出素子)が多いことは、その
プログラム作成に当ってモ弊害のもとであり、プログラ
ムの簡素化にも限界がある。
In recent years, control devices are often constructed by using microcomputers to perform complex signal processing, but the fact that there are many input signal sources (temperature detection elements) as in the conventional technology makes it difficult to create programs. This is a source of negative effects, and there are limits to the simplification of programs.

以とのように、従来の技術には問題点が多々あり、改善
が要求されるものである。
As described above, the conventional technology has many problems and improvements are required.

本発明は、上記従来の問題点に鑑み、従来技術の利点を
損うことなく、構成の簡素化がはかれる除霜制御製型を
提供するものである。
In view of the above-mentioned conventional problems, the present invention provides a defrost-controlled mold making whose structure can be simplified without impairing the advantages of the conventional technology.

問題点を解決するだめの手段 上記問題点を解決するために本発明は、第1図に示すよ
うに冷凍サイク)vを暖房サイクルから除霜サイクルに
制御する制御装置を、暖房運転開始からの時間を計測す
る時間計測手段と、あらかじめ設定された時間を記憶し
ている設定時間記憶手段と、前記時間計測手段により検
出した時間とnM記膜設定時間記憶手段設定された時間
の一致を検出し出力する第1の比較手段と、前記室内側
熱交換器の冷媒入口側に連結された配管の温度を検出す
る温度検出手段と、暖房サイク)Vf除霜サイクルに切
換える境界値温度を記憶した設定温度記憶手段と、前記
温度検出手段により検出した温度が前記設定温度記憶手
段に記憶された境界値温度より低下したことを検出し出
力する第2の比較手段と、電源電流を検出する電流検出
手段と、暖房サイクルを除霜サイクルに切換える境界値
電流を記憶した設定電流記憶手段と、前記電流検出手段
により検出した電流が、前記設定電流記憶手段に記憶さ
れた境界値電流より低下したことを検出し、出力する第
3の比較手段と、前記第1の比較手段による設定時間経
過信号と前記第2の比較手段による境界値低下信号或い
は前記第1の比較手段による設定時間経過信号と前記第
3の比較手段による境界値低下信号により、暖房サイク
ルから除霜サイクルへの切換えを判定する判定手段と、
前記判定手段の出力に応じて前記冷凍サイク)vを暖房
運転から除霜運転へ制御する選択出力手段より構成した
ものである。
Means for Solving the Problems In order to solve the above problems, the present invention, as shown in FIG. a time measurement means for measuring time; a set time storage means for storing a preset time; and a time measurement means for detecting coincidence between the time detected by the time measurement means and the set time. a first comparison means for outputting an output, a temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger, and a setting storing a boundary value temperature for switching to a heating cycle (Vf defrosting cycle). temperature storage means; second comparison means for detecting and outputting that the temperature detected by the temperature detection means has fallen below a boundary value temperature stored in the set temperature storage means; and current detection means for detecting a power supply current. and a set current storage means that stores a boundary value current for switching the heating cycle to a defrosting cycle, and detects that the current detected by the current detection means has become lower than the boundary value current stored in the set current storage means. and a third comparing means to output, a set time elapsed signal from the first comparing means, a boundary value decrease signal from the second comparing means, or a set time elapsed signal from the first comparing means and the third determining means for determining switching from the heating cycle to the defrosting cycle based on the boundary value drop signal from the comparing means;
The apparatus includes a selection output means for controlling the refrigeration cycle (v) from heating operation to defrosting operation in accordance with the output of the determination means.

作  用 この構成により、暖房運転開始から所定時間が経過する
までは暖房運転が確保され、その所定時間経過後におい
て温度検出手段の検出温度或いは電流検出手段の検出電
流により、除霜運転が制御される。
Effect: With this configuration, the heating operation is ensured until a predetermined time has elapsed from the start of the heating operation, and after the elapse of the predetermined time, the defrosting operation is controlled by the temperature detected by the temperature detection means or the current detected by the current detection means. Ru.

実施例 以下、本発明の一実施例を第2図〜第6図を参照にして
説明する。第2図は、本発明の一実施例を示す冷凍サイ
クル図である。同図において、冷凍サイクルは圧縮機1
、四方切換弁2、室内側熱交換器3、減圧器4、室外側
熱交換器5を順次連結することにより構成されている。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 2 to 6. FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention. In the same figure, the refrigeration cycle includes compressor 1
, a four-way switching valve 2, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5 are connected in sequence.

6は配管温度検出素子であり、暖房時において室内側熱
交換器3(凝縮器)の冷媒入口側となる配管に取り付け
られている。この場合、冷房運転時は同図の実線矢印の
方向に冷媒が流れ、暖房運転時には四方切換弁2が切換
わることにより同図の破線矢印の方向に冷媒が流れるよ
うになっている。
Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. In this case, during cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 is switched so that the refrigerant flows in the direction of the broken line arrow in the figure.

さらに、と配圧縮機1、四方切換弁2、減圧器4、室外
側熱交換器5および室外送風機8によって室外ユニット
Aが構成されている。またと記室内側熱交換器3および
室内送風機7、さらに配管温度検出素子6、電源電流を
検出する電流検出素子9、タイマ機能および温度調節機
能などがプログラムされたマイクロコンピュータ(以下
、マイコンと略称する)を有する運転制御部(図示せず
)は室内ユニッ)Hに設けられている。ここで、配管温
度検出素子6は、室内送風機7の送風の影響を受けない
風回路からはずれた箇所に取付けられている。また、室
内ユニッl−Hの近辺でもよい。
Furthermore, an outdoor unit A is constituted by a distribution compressor 1, a four-way switching valve 2, a pressure reducer 4, an outdoor heat exchanger 5, and an outdoor blower 8. Additionally, a microcomputer (hereinafter abbreviated as microcomputer) is programmed with the indoor heat exchanger 3, indoor blower 7, piping temperature detection element 6, current detection element 9 for detecting power supply current, timer function, temperature control function, etc. An operation control section (not shown) having a function (control) is provided in the indoor unit (H). Here, the pipe temperature detection element 6 is attached at a location away from the wind circuit where it is not affected by the air blowing from the indoor blower 7. Alternatively, it may be located near indoor unit 1-H.

第3図は運転制御部における主要回路図である。FIG. 3 is a main circuit diagram of the operation control section.

同図において、マイコン11内には運転時間を判定する
タイムカウント値を記憶する記憶部12、この記憶部1
2に記憶されたタイムカウント値と入力値どの比較によ
り適宜出力信号を発生する駆動信号発生手段13を有し
ている。このマイコン11の入力側にはコンパレータ1
4を介して温度検出手段である配管温度検出素子6(例
えば配管サーミヌタあるいは熱電対素子等)と必要に応
じて抵抗値が変えられる温度設定用抵抗15.16.1
7と、コンパレータ18を介して電流検出手段である電
流検出素子9(例えば電流変成器)と電流値を電圧値に
変換する電流−電圧変換回路21と必要に応じて抵抗値
が変えられる電流設定用抵抗19.2oが接続されてい
る。また出力側には、ヌイソチ用トランシスクTR1〜
TR4に介して駆動手段である四方切換弁コイルを駆動
するリレーR1、室内送風機7を駆動するリレーR2、
室外送風機8を駆動するリレーR3、圧縮機1を駆動す
るリレーR4が接続されている。
In the figure, a microcomputer 11 includes a storage section 12 for storing a time count value for determining operating time;
The drive signal generating means 13 generates an appropriate output signal by comparing the time count value stored in the drive circuit 2 with the input value. A comparator 1 is connected to the input side of this microcomputer 11.
4 is connected to a pipe temperature detection element 6 (for example, a pipe therminutor or thermocouple element, etc.) which is a temperature detection means, and a temperature setting resistor 15.16.1 whose resistance value can be changed as necessary.
7, a current detection element 9 (for example, a current transformer) that is a current detection means via a comparator 18, a current-voltage conversion circuit 21 that converts a current value into a voltage value, and a current setting whose resistance value can be changed as necessary. A resistor 19.2o is connected. In addition, on the output side, there is a transistor transisk TR1~
A relay R1 that drives a four-way switching valve coil that is a driving means via TR4, a relay R2 that drives an indoor blower 7,
A relay R3 that drives the outdoor blower 8 and a relay R4 that drives the compressor 1 are connected.

ここで、第3図の構成と第1図の構成を対比すると、配
管温度検出素子6および抵抗15は第1図の温度検出手
段に相当し、コンパレータ14は第1図の第2の比較手
段に相当し、抵抗16.17と配管温度検出素子6によ
って作られる電圧は第1図の設定温度記憶手段の信号に
相当し、電流検出素子9及び電流電圧変換回路21は第
1図の電流検出手段に相当し、コンパレータ18は第1
図の第3の比較手段に相当し、抵抗19.20によって
作られる電圧は第1図の設定電流記憶手段の信号に相当
し、記憶部12を含むマイコン11は第1図の設定時間
記憶手段、時間計測手段、第1の比較手段、判定手段、
選択出力手段に相当し、中でも駆動信号発生手段13は
判定手段、選択出力手段に相当する。
Here, when comparing the configuration in FIG. 3 with the configuration in FIG. 1, the pipe temperature detection element 6 and the resistor 15 correspond to the temperature detection means in FIG. 1, and the comparator 14 corresponds to the second comparison means in FIG. The voltage generated by the resistors 16 and 17 and the pipe temperature detection element 6 corresponds to the signal of the set temperature storage means shown in FIG. The comparator 18 corresponds to the first
The voltage generated by the resistors 19 and 20 corresponds to the signal of the set current storage means shown in FIG. 1, and the microcomputer 11 including the storage section 12 corresponds to the set time storage means shown in FIG. , time measurement means, first comparison means, determination means,
This corresponds to a selection output means, and in particular, the drive signal generation means 13 corresponds to a determination means and a selection output means.

次に、暖房運転の開始から除霜運転に至るまでの動作に
ついて説明する。
Next, the operation from the start of heating operation to defrosting operation will be explained.

圧縮機1の吐出冷媒温度をTd、圧縮機1の吸入冷媒温
度をTs、圧縮機1の吐出圧力をPd、圧縮機1の吸入
圧力をPsとし、ポIJ )ロープ指数をn(ただし1
 (n (Kの関係で、Kは断熱圧縮指数)とすると、
吐出冷媒温度Tdは次式で表わされる。(ただし配管に
よる熱損) したがって、室外側熱交換器5が未着霜時は吸入冷媒温
度Tsが高く、又吐出冷媒温度Tdも高い。そして外気
が下がり、着霜が成長するにつれて、吸入冷媒温度Ts
は低下し、吐出冷媒温度Td も下がる。本発明におけ
る配管温度検出素子6は、室内側熱交換器3の入口配管
に設けられ、圧縮機1から吐出された高温高圧の過熱域
冷媒ガスが流れる部分の温度を検出するが、実際その温
度は吐出ガスに比べて内外接続配管等での熱損失により
所定温度低下した温度である。したがって第4図に示す
ように、室外側熱交換器5が未着霜時は圧縮機1の吸入
冷媒温度Ts、室内側熱交換器aの入口配管温度tはと
もに高く、着霜が進むにつれて徐々に低下し、そして暖
房能力を大幅に低下させる着霜に至ると、室内側熱交換
器aの入口配管温度tは極端に低下する。また、空気調
和機の電源電流は、概ね、吐出冷媒温度Tdに比例追随
する値となシ、第4図に示すように、配管温度検出素子
6の検出温度に概ね追随した値となる。
The discharge refrigerant temperature of the compressor 1 is Td, the suction refrigerant temperature of the compressor 1 is Ts, the discharge pressure of the compressor 1 is Pd, the suction pressure of the compressor 1 is Ps, and the rope index is n (where 1
(n (in the relationship of K, K is the adiabatic compression index), then
The discharge refrigerant temperature Td is expressed by the following equation. (However, heat loss due to piping) Therefore, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts is high, and the discharge refrigerant temperature Td is also high. Then, as the outside air drops and frost grows, the suction refrigerant temperature Ts
decreases, and the discharge refrigerant temperature Td also decreases. The pipe temperature detection element 6 in the present invention is installed in the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the high-temperature, high-pressure superheated refrigerant gas discharged from the compressor 1 flows. is a temperature lower than that of the discharged gas by a predetermined temperature due to heat loss in internal and external connecting pipes, etc. Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, both the suction refrigerant temperature Ts of the compressor 1 and the inlet pipe temperature t of the indoor heat exchanger a are high, and as the frost progresses, As the temperature gradually decreases and frost formation occurs which significantly reduces the heating capacity, the temperature t of the inlet pipe of the indoor heat exchanger a becomes extremely low. Further, the power supply current of the air conditioner generally has a value that proportionally follows the discharge refrigerant temperature Td, and, as shown in FIG. 4, has a value that approximately follows the detected temperature of the pipe temperature detection element 6.

しかし、空気調和機の冷凍サイクルに於ける冷媒量が減
少した場合には相対的に低い電流値となる傾向がある。
However, when the amount of refrigerant in the refrigeration cycle of an air conditioner decreases, the current value tends to be relatively low.

すなわち、入口配管温度tが設定配管温度t1以下にな
るか、或いは電流値工が設定電流!1以下になれば暖房
能力は低下し、着霜が進んでいるので除霜する必要があ
る。このように、室内側熱交換器3の入口配管温度tは
、過熱域冷媒ガスの温度であるため、室内送風機7の風
量の影響を受けにくく、室内側熱交換器3の入口配管温
度、又は電流値にて適確な除霜運転の判断を行うことが
できる。
That is, either the inlet pipe temperature t becomes lower than the set pipe temperature t1, or the current value is equal to the set current! If the temperature falls below 1, the heating capacity decreases and frost formation has progressed, so it is necessary to defrost. In this way, since the inlet pipe temperature t of the indoor heat exchanger 3 is the temperature of the refrigerant gas in the superheated region, it is less affected by the air volume of the indoor blower 7, and the inlet pipe temperature t of the indoor heat exchanger 3 or Defrosting operation can be accurately determined based on the current value.

次に冷凍サイクル内の冷媒量が、不足した場合及び、長
期間使用により徐々に洩れた場合の挙動につき、第6図
を用いて説明する。
Next, the behavior when the amount of refrigerant in the refrigeration cycle is insufficient or when it gradually leaks due to long-term use will be explained using FIG. 6.

以上の説明に基づき、第3図に示す制御回路は第5図に
示すフローチャートの内容の制御を行う。
Based on the above explanation, the control circuit shown in FIG. 3 controls the contents of the flowchart shown in FIG. 5.

定常の冷媒量に対して、冷媒量が不足すると、公知のご
とく冷凍サイクル内での冷媒循環量が減少することとな
り、圧縮機から吐出される冷媒の温度は上昇し、又同様
に吸入冷媒温度が上昇する。
If the amount of refrigerant is insufficient compared to the steady amount of refrigerant, the amount of refrigerant circulated within the refrigeration cycle will decrease as is well known, the temperature of the refrigerant discharged from the compressor will increase, and the temperature of the suction refrigerant will also increase. rises.

一方、当然冷凍サイクルでは圧力が低下することとなシ
、蒸発器での冷媒温度も圧力低下に伴って下降すること
となり、外気との熱交換により暖房運転時は定常の冷媒
量運転時より着霜が進むこととなる。一方運転電流は冷
媒循環量が減少することにより、高圧が下がりかつ高圧
と低圧の圧力差が小さくなり圧縮機の仕事量が減少する
こととなり、定常運転に比較し減少する。
On the other hand, in the refrigeration cycle, the pressure naturally decreases, and the refrigerant temperature in the evaporator also decreases as the pressure decreases, and due to heat exchange with the outside air, during heating operation, the temperature of the refrigerant is lower than when operating with a steady amount of refrigerant. The frost will advance. On the other hand, the operating current decreases compared to steady operation because the amount of refrigerant circulation decreases, the high pressure decreases, the pressure difference between the high pressure and the low pressure becomes smaller, and the amount of work of the compressor decreases.

従って圧縮機1の吸入冷媒温度TI!、室内側熱交換器
の入ロ配管温度t、電源電流値工は、第4図の状態と比
「咬してそれぞれ、上昇、上昇、低下傾向となる。
Therefore, the suction refrigerant temperature TI of compressor 1! , the input pipe temperature t of the indoor heat exchanger, and the power supply current value tend to rise, rise, and fall, respectively, compared to the state shown in FIG.

従って除霜開始判定条件が、室内側熱交換器の入口配管
温度tの値のみであると、冷媒全不足の場合は、着霜が
進行しても除霜動作に入らないこととなる。
Therefore, if the defrosting start determination condition is only the value of the inlet pipe temperature t of the indoor heat exchanger, if there is a total shortage of refrigerant, the defrosting operation will not start even if frosting progresses.

ここで電源電流値工の判定点11を適切に設定すること
により、このような場合にも適切な除霜動作を行うこと
ができる。
By appropriately setting the determination point 11 of the power supply current value, an appropriate defrosting operation can be performed even in such a case.

すなわち、第5図のステップ1で示すように暖房運転が
開始されると、マイコン11で所定時間Tのタイマーカ
ウントがセットされる(ステップ2)。このタイマーカ
ウントセットは、暖房運転開始から1時間(例えば1時
間)暖房運転を確保するだめのもので、例えば強制的に
7時間暖房を連続することも一つの手段である。
That is, when the heating operation is started as shown in step 1 of FIG. 5, a timer count for a predetermined time T is set by the microcomputer 11 (step 2). This timer count set is to ensure heating operation for one hour (for example, one hour) from the start of heating operation, and one means is to forcibly continue heating for seven hours, for example.

そしてタイマーカウントがセットされると、ステップ3
で7時間経過が判定される。7時間経過するまでは暖房
運転が継続される。
And once the timer count is set, step 3
It is determined that 7 hours have passed. Heating operation continues until 7 hours have passed.

そして1時間が経過するとステップ4へ移シ、配管温度
検出素子6による配管温度tの読み込みが行われ、ステ
ップ5に移って配管温11tが設定配管温度t1  よ
りも低いかどうかが判定される。
When one hour has elapsed, the process moves to step 4, where the pipe temperature t is read by the pipe temperature detection element 6, and the process moves to step 5, where it is determined whether the pipe temperature 11t is lower than the set pipe temperature t1.

具体的には第3図のコンパレータ14が判定する。Specifically, the comparator 14 in FIG. 3 makes the determination.

ステップ5において配管温&1が設定温度t1よりも高
い場合にはステップ6に移って電流値Iが設定電流値1
1よりも低いかどうかが判定される。具体的には第3図
のコンパレータ18が判定する。
If the pipe temperature &1 is higher than the set temperature t1 in step 5, the process moves to step 6 and the current value I is set to 1.
It is determined whether the value is lower than 1. Specifically, the comparator 18 shown in FIG. 3 makes the determination.

そしてステップ5又はステップ7の条件が満足されると
ステップ8へ移り、除霜運転が開始される。すなわち、
第3図のトランジ7りTR1・TR,2・T R3・T
R4がそれぞれ動作し、四方切換弁2を切換え、必要に
応じてその前に圧縮機1?一定時間停止し、室内送風機
7および室外送風機8fc停止する。そして冷房サイク
ルにて除霜を行う。この除霜運転の内容は従来周知のた
め、詳細な説明を省略する。また暖房運転の復帰につい
ても従来より周知の如く、適宜手段にて実施できる。
When the conditions of step 5 or step 7 are satisfied, the process moves to step 8 and defrosting operation is started. That is,
Transition 7 in Figure 3 TR1・TR,2・T R3・T
R4 operates respectively, switches the four-way switching valve 2, and if necessary, compressor 1? After stopping for a certain period of time, the indoor blower 7 and the outdoor blower 8fc are stopped. Defrost is then performed in the cooling cycle. Since the content of this defrosting operation is conventionally well known, detailed explanation will be omitted. Further, the restoration of the heating operation can be carried out by any suitable means as is well known in the art.

なお、本実施例においては、除霜運転を暖房サイクルか
ら冷房サイクルへの切換えによって行うようにしたが、
例えば暖房サイク)Vを維持したままとして室外側熱交
換器へ別途蓄熱していた冷媒を流す構成あるいは、別熱
源にて霜を溶かす構成としてもよいことは言うまでもな
い。また圧縮機1は除霜運転へ切換え時には連続運転と
し、暖房運転復帰前に一時停止させるようにしてもよい
In this embodiment, the defrosting operation is performed by switching from the heating cycle to the cooling cycle.
For example, it goes without saying that a configuration may be adopted in which the heating cycle (V) is maintained and separately stored refrigerant is flowed to the outdoor heat exchanger, or a configuration in which frost is melted using a separate heat source. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped before returning to heating operation.

発明の効果 以上述べたように本発明によれば、上記した構成により
、過熱域冷媒ガスの温度を室内側熱交換器入口配管にて
検出し、また電源電流を検出し、室内風量の影響をあま
り受けずに、適確な除霜運転を温度検出1点又は電流検
出1点で行うことができ、構成が非常に簡単であシ、ま
た冷媒が暖房を行う熱量を十分に有しているか否かの判
定が室内側熱交換器の入口側で行えるため、実際の暖房
能力の有無を確実に判断して除霜を行うことができる。
Effects of the Invention As described above, according to the present invention, with the above-described configuration, the temperature of the refrigerant gas in the superheated region is detected at the indoor heat exchanger inlet piping, and the power supply current is detected, so that the influence of the indoor air volume can be ignored. It is possible to perform accurate defrosting operation with one point of temperature detection or one point of current detection without receiving too much energy, the configuration is very simple, and the refrigerant has sufficient heat for heating. Since this determination can be made on the inlet side of the indoor heat exchanger, defrosting can be performed by reliably determining the presence or absence of actual heating capacity.

また冷凍サイクルの冷媒が不足している場合は電流によ
り適確な除霜を行うことができる。
In addition, if the refrigerant cycle is short of refrigerant, the current can be used to perform appropriate defrosting.

すなわち、本発明は完全に着霜が発生している冷媒の温
度が熱交換器の入口部、中間部に差がなく、未着霜時に
入口冷媒温度の方が中間部の冷媒温度に比べて著しく高
い点と入口冷媒温度と電源電流との比例関係に着眼し、
入口側の冷媒温度及び電源電流を検出することによって
、未着霜から着霜に至るまでの温度変化及び電流変化が
大きくとれ、各1点の温度検出及び電源電流検出で限界
に近い暖房能力を引き出すことができる。また本発明は
暖房開始から一定時間経過するまで着霜を検出しないた
め、その一定時間は暖房能力が確保され、快適さが損わ
れることもない。
In other words, in the present invention, there is no difference in the temperature of the refrigerant at the inlet part and the middle part of the heat exchanger when frost has completely formed, and when no frost has formed, the inlet refrigerant temperature is higher than the refrigerant temperature in the middle part. Focusing on the extremely high point and the proportional relationship between the inlet refrigerant temperature and the power supply current,
By detecting the refrigerant temperature and power supply current on the inlet side, temperature changes and current changes from unfrosted to frosted can be largely controlled, and heating capacity close to the limit can be achieved by detecting temperature and power supply current at one point each. It can be pulled out. Furthermore, since the present invention does not detect frost formation until a certain period of time has elapsed from the start of heating, heating capacity is ensured during that certain period of time, and comfort is not impaired.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の除霜制御装置を機能実現手段°  で
表現したブロック図、第2図は本発明の一実施例を示す
空気調和機の冷凍サイクル図、第3図は同空気調和機に
おける除霜制御装置の回路図、第4図は同除霜制御装置
における室内側熱交換器へ流入する冷媒温度と圧縮機吸
入冷媒温度と空気調和機の電源電流の関係を示す特性図
、第5図は同除霜制御装置の動作内容を示すフローチャ
ート、第6図は上記除霜制御装置における冷媒量不足の
場合の室内側熱交換器へ流入する冷媒温度と圧縮機吸入
冷媒温度と、空気調和機の電源電流の関係を示す特性図
である。 1・・・・・・圧縮機、2・・・・・・四方切換弁、3
・・・・・・室内側熱交換器、4・・・・・・減圧器、
5・・・・・・室外側熱交換器、6・・・・・・配管温
度検出素子、7・・・・・・室内送風機、8・・・・・
・室外送風機、9・・・・・・電流検出素子、11・・
・・・・マイクロコンピュータ、12・・・・・・記憶
部、13・・・・・・駆動信号発生手段、14.18・
・・・・・コンパレータ、15.16.17・・・・・
・温度設定用抵抗、19.20・・・・・・電流設定用
抵抗、21・・・・・・電流電圧変換回路、A・・・・
・・室外ユニット、B・・・・・・室内ユニット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
 圧鴻機 2−・−四方切横央 3−一一室内脣」聚交截器 4−−一減圧4( A −・−宣りYに−/) B−iカユニヲト 6−一一配管温崖検出素子 q −−一雪滉検と氷乎 II−−−マイクロロンピユータ 12〜−一記ノ魔部 15.16.17.−一括抗 1q、2D 21−−一電流一電圧麦梗回路 1−一一室内便1熱欠横器の入口配管温寝第 4  図
        TS−一−EMI機のり皮人々媒温崖
I −一一電源電瀧伎 T       □ 時間 第5図
Fig. 1 is a block diagram expressing the defrosting control device of the present invention as a function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a block diagram of the same air conditioner. FIG. 4 is a circuit diagram of the defrosting control device in the same defrosting control device, and FIG. Figure 5 is a flowchart showing the operation details of the defrosting control device, and Figure 6 shows the temperature of the refrigerant flowing into the indoor heat exchanger, the temperature of the refrigerant sucked into the compressor, and the temperature of the air FIG. 3 is a characteristic diagram showing a relationship between power supply currents of a harmonic machine. 1... Compressor, 2... Four-way switching valve, 3
...Indoor heat exchanger, 4...Pressure reducer,
5...Outdoor heat exchanger, 6...Piping temperature detection element, 7...Indoor blower, 8...
・Outdoor blower, 9...Current detection element, 11...
. . . Microcomputer, 12 . . . Storage section, 13 . . . Drive signal generation means, 14.18.
...Comparator, 15.16.17...
・Temperature setting resistor, 19.20... Current setting resistor, 21... Current voltage conversion circuit, A...
...Outdoor unit, B...Indoor unit. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
Pressure machine 2---4-way cut, horizontal center 3-11, interior of the room, jugifier 4--1, reduced pressure 4 (A---Declaration Y-/) B-i Kauniwoto 6-11, piping hot cliff Detection element q --Ichiyuki Koken and Hyoui II---Microron Piuter 12~-Ichiki no Mabu 15.16.17. - Bulk resistor 1q, 2D 21 - - One current, one voltage, malt circuit 1 - 1 - Indoor stool 1 Heat cutter inlet piping Warming No. 4 Figure TS - 1 - EMI machine glue skin human medium heat cliff I - 1 One power supply electric Taki T □ Time figure 5

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧装置、室外側熱交換器を
具備した冷凍サイクルに、暖房サイクルと除霜サイクル
を切換えるサイクル切換手段を設け、さらに前記サイク
ル切換手段を暖房サイクルから除霜サイクルに切換える
制御装置を、暖房運転開始からの時間を計測する時間計
測手段と、あらかじめ設定された時間を記憶している設
定時間記憶手段と、前記時間計測手段により検出した時
間と前記設定時間記憶手段に設定された時間の一致を検
出し出力する第1の比較手段と、前記室内側熱交換器の
冷媒入口側に連結された配管の温度を検出する温度検出
手段と、暖房サイクルを除霜サイクルに切換える境界値
温度を記憶した設定温度記憶手段と、前記温度検出手段
により検出した温度が前記設定温度記憶手段に記憶され
た境界値温度より低下したことを検出し出力する第2の
比較手段と、電源電流を検出する電流検出手段と、暖房
サイクルを除霜サイクルに切換える境界値電流を記憶し
た設定電流記憶手段と、前記電流検出手段により検出し
た電流が、前記設定電流記憶手段に記憶された境界値電
流より低下したことを検出し、出力する第3の比較手段
と、前記第1の比較手段による設定時間経過信号と前記
第2の比較手段による境界値低下信号或いは前記第1の
比較手段による設定時間経過信号と前記第3の比較手段
による境界値低下信号により、暖房サイクルから除霜サ
イクルへの切換えを判定する判定手段と、前記判定手段
の出力に応じて前記冷凍サイクルを暖房運転から除霜運
転へ制御する選択出力手段より構成した空気調和機の除
霜制御装置。
A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means is further configured to switch from a heating cycle to a defrosting cycle. A control device that switches to a control device includes a time measuring means for measuring time from the start of heating operation, a set time storage means for storing a preset time, and a time detected by the time measuring means and the set time storage means. a first comparing means for detecting and outputting the coincidence of the set times; a temperature detecting means for detecting the temperature of the pipe connected to the refrigerant inlet side of the indoor heat exchanger; a set temperature storage means that stores a boundary value temperature to be switched to, and a second comparison means that detects and outputs that the temperature detected by the temperature detection means has fallen below the boundary value temperature stored in the set temperature storage means. , a current detection means for detecting a power supply current, a set current storage means for storing a boundary value current for switching a heating cycle to a defrosting cycle, and a current detected by the current detection means is stored in the set current storage means. a third comparing means for detecting and outputting a drop below the boundary value current, a set time elapsed signal from the first comparing means and a boundary value drop signal from the second comparing means, or the first comparing means; determining means for determining whether to switch from the heating cycle to the defrosting cycle based on the set time elapsed signal and the boundary value drop signal from the third comparison means; A defrosting control device for an air conditioner comprising selection output means for controlling defrosting operation.
JP61054033A 1986-03-12 1986-03-12 Defrost control device for air conditioner Granted JPS62213636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61054033A JPS62213636A (en) 1986-03-12 1986-03-12 Defrost control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054033A JPS62213636A (en) 1986-03-12 1986-03-12 Defrost control device for air conditioner

Publications (2)

Publication Number Publication Date
JPS62213636A true JPS62213636A (en) 1987-09-19
JPH0566497B2 JPH0566497B2 (en) 1993-09-21

Family

ID=12959275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054033A Granted JPS62213636A (en) 1986-03-12 1986-03-12 Defrost control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS62213636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104180571A (en) * 2014-08-25 2014-12-03 广东美的集团芜湖制冷设备有限公司 Air conditioner defrosting control method and device and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104180571A (en) * 2014-08-25 2014-12-03 广东美的集团芜湖制冷设备有限公司 Air conditioner defrosting control method and device and air conditioner

Also Published As

Publication number Publication date
JPH0566497B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62218748A (en) Defrosting controller for air-conditioning machine
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPS62213636A (en) Defrost control device for air conditioner
JPS62213638A (en) Defrost control device for air conditioner
JPH0566498B2 (en)
JPS62210336A (en) Control device for defrosting of air-conditioning machine
JPS62233634A (en) Control device for defrosting of air conditioner
JPS62213637A (en) Defrost control device for air conditioner
JPH067020B2 (en) Defrost control device for air conditioner
JPH0566496B2 (en)
JPS62223548A (en) Defrosting control unit of air conditioner
JPS62186155A (en) Defrosting control unit of air conditioner
JPH07117270B2 (en) Defrost control device for air conditioner
JPS62218752A (en) Defrosting controller for air-conditioning machine
JPS62223551A (en) Defrosting control unit of air conditioner
JPH0566489B2 (en)
JPS62213635A (en) Defrost control device for air conditioner
JPH0566491B2 (en)
JPS62210338A (en) Control device for defrosting of air-conditioning machine
JPS6338848A (en) Defrosting control device for air conditioner
JPS62210337A (en) Control device for defrosting of air-conditioning machine
JPS62210339A (en) Control device for defrosting of air-conditioning machine
JPS62119347A (en) Defrosting device of air conditioner
JPS63189731A (en) Defrosting controller of air conditioner