JPS62170448A - Hyperfine aluminum wire - Google Patents

Hyperfine aluminum wire

Info

Publication number
JPS62170448A
JPS62170448A JP61012719A JP1271986A JPS62170448A JP S62170448 A JPS62170448 A JP S62170448A JP 61012719 A JP61012719 A JP 61012719A JP 1271986 A JP1271986 A JP 1271986A JP S62170448 A JPS62170448 A JP S62170448A
Authority
JP
Japan
Prior art keywords
wire
elongation
alloy
bonding
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61012719A
Other languages
Japanese (ja)
Inventor
Yutaka Kusano
裕 草野
Kiyomi Kubota
久保田 清美
Mitsuhiro Watanabe
渡辺 三洋
Junichi Hasegawa
淳一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP61012719A priority Critical patent/JPS62170448A/en
Publication of JPS62170448A publication Critical patent/JPS62170448A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Abstract

PURPOSE:To obtain a hyperfine Al wire having superior tensile strength, elongation characteristics and improved cuttability at the tail part by adding specified amounts of Mg and Mn to Al and restricting the amounts of impurities to a specified value or below each. CONSTITUTION:The composition of an Al alloy is composed of 0.5-4wt% Mg, 0.002-0.2wt% Mn and the balance Al with inevitable impurities and the amounts of the inevitable impurities are restricted to <=0.001wt% each. The Al alloy is plastically worked into a hyperfine wire by drawing.

Description

【発明の詳細な説明】 役五分亘 本発明は各種ワイヤ、音響装置や半導体装置等の電気的
装置のリード線やボンディングワイヤ等に使用するため
のへ1合金製の極細線(以下アルミニウム極細線と総称
する)に係わり、特にボンディングワイヤとして使用し
た場合に引張強度、伸び特性に加え、特にボンディング
後のテール部でのカッティング性を向上したアルミニウ
ム極細線に関する。
[Detailed Description of the Invention] The present invention is directed to an ultra-fine wire made of aluminum alloy (hereinafter referred to as aluminum ultra-fine wire) for use in various wires, lead wires and bonding wires of electrical devices such as audio equipment and semiconductor devices. In particular, the present invention relates to ultrafine aluminum wires that have improved tensile strength and elongation properties, as well as cutting properties, particularly at the tail portion after bonding, when used as bonding wires.

従来技術 例えば半導体装置に使用されるボンディングワイヤは、
通常は直径がlO〜60μm程度の非常に細い極細線で
ある。導電性および耐蝕性の点からボンディングワイヤ
として金線が使用されてきたが、近年は前述の性質に加
えて低価格なことからアルミニウム線を使用するように
なってきた。
Conventional technologyFor example, bonding wires used in semiconductor devices are
Usually, it is a very thin ultra-fine wire with a diameter of about 10 to 60 μm. Gold wire has been used as a bonding wire due to its conductivity and corrosion resistance, but in recent years aluminum wire has been used because of its low cost in addition to the above-mentioned properties.

また一方で半導体装置は信頼性の向上、装置の小型化、
配線の高密度化に加えて、配線作業の高速度化による生
産性の向上かもとめられている。
On the other hand, semiconductor devices are improving reliability, making devices smaller,
In addition to increasing the density of wiring, there is also a desire to improve productivity by increasing the speed of wiring work.

ところで、アルミニウム極細線を例えばボンディングワ
イヤとして使用する場合、その引張強度並びに伸び特性
の他に極細線のカッティング性が半導体装置の信頼性お
よび生産性に大きな影響を与える。ここでカッティング
性とは、テール部における極細線の切断面の平滑性をい
い、この切断面に凹凸部が発生すると電気的ショートの
原因となる他、次の接続作業において安定した接続面積
を得られない等の不具合が生じる。また上記した引張強
度が小さ過ぎると配線作業において、或いは使用中の応
力によって断線し易くなり、また半導体の使用時に発生
するジュール熱により軟化し変形してタブショートを生
じる危険性が高くなる。
By the way, when an ultrafine aluminum wire is used, for example, as a bonding wire, the cuttability of the ultrafine wire, in addition to its tensile strength and elongation characteristics, has a great influence on the reliability and productivity of semiconductor devices. Cutting performance here refers to the smoothness of the cut surface of the ultra-fine wire at the tail section. Any unevenness on this cut surface may cause electrical shorts, and it also ensures a stable connection area for the next connection operation. This may cause problems such as not being able to Furthermore, if the above-mentioned tensile strength is too low, the wire will easily break due to stress during wiring work or during use, and there will be a high risk of softening and deformation due to Joule heat generated during use of the semiconductor, resulting in a tab short.

伸び特性が小さ過ぎると接続作業における接合力が小さ
くなり、また使用時において応力を受けた時に断線し易
くなる。またボンディング後の好ましいループ形状を得
難くなって高速度高密度配線を困難にする。従って引張
強度、伸び特性が充分に大きく、更にカンティング性の
良好なことが要求される。
If the elongation property is too small, the bonding force during connection work will be low, and the wire will be likely to break when subjected to stress during use. Furthermore, it becomes difficult to obtain a preferable loop shape after bonding, making high-speed, high-density wiring difficult. Therefore, it is required to have sufficiently high tensile strength and elongation properties, and also to have good canting properties.

従来提案されているAl−Mg合金からなる極細線はS
i、 Fe、 Mn等の不純物が各々0.005〜06
01%程度含有されたAt−0,5〜5χMg合金であ
るが、このような組成の極細線は引張強度が10kgf
/mm2、伸びが2.5%程度から引張強度が10 k
 g f 7mm” 、伸びが1%程度である。ここで
、伸びが小さいのは、従来の極細線が金型で鋳造した等
軸品組織の鋳塊を伸線加工して製造されるが、伸線加工
によって加工硬化し、以後の伸線加工を困難とするため
に、加工の中間段階で焼鈍し、軟化させるので、それ故
に、引張強度との兼ね合いからこの程度しか得られなか
ったのであって、望ましくはもっと伸びの大きなことが
好ましいのである。
The ultrafine wire made of Al-Mg alloy that has been proposed so far is S
Impurities such as i, Fe, Mn, etc. are each 0.005 to 0.06
This is an At-0.5-5χMg alloy containing about 0.1% of
/mm2, elongation is about 2.5% and tensile strength is 10k.
g f 7 mm", and the elongation is about 1%. Here, the elongation is small because conventional ultrafine wires are manufactured by wire drawing an ingot with an equiaxed structure cast in a mold, The wire is work hardened by wire drawing, and in order to make subsequent wire drawing difficult, it is annealed and softened at an intermediate stage of processing. Therefore, it is desirable that the elongation be larger.

そこで、本出願人は先に新規なアルミニウム極細線の製
造方法(特願昭59−92994号参照)を出願した。
Therefore, the present applicant previously filed an application for a new method for manufacturing ultrafine aluminum wire (see Japanese Patent Application No. 1982-92994).

この製造方法は、Alまたは^1合金溶湯を一方向性凝
固鋳造して柱状晶組織からなる鋳造体を鋳造し、該鋳造
体を溶体化処理した後、中間段階で焼鈍処理を施すこと
なく最終線径の線材にまで塑性加工することを特徴とし
たものである。即ち、一方向に指向した柱状晶Mn織の
Al系材料を使用することで最終線径の線材まで焼鈍処
理を施すことな(塑性加工を可能にし、これによる中間
段階での焼鈍処理の省略により伸び特性に対する引張強
度の全体的な低下を回避して、強度に優れたアルミニウ
ム極細線を製造可能としたのである。
This manufacturing method involves unidirectional solidification casting of molten Al or ^1 alloy to form a cast body having a columnar crystal structure, solution treatment of the cast body, and final annealing treatment without annealing at an intermediate stage. It is characterized by plastic working to the wire rod of the wire diameter. In other words, by using an Al-based material with a columnar Mn weave oriented in one direction, it is possible to perform plastic working without annealing the wire up to the final wire diameter, and by omitting annealing at an intermediate stage. This made it possible to produce ultrafine aluminum wires with excellent strength by avoiding an overall decrease in tensile strength with respect to elongation properties.

本出願人はこの製造方法の研究を進めた結果、一方向に
指向せる柱状晶組織からなる成る種の41合金材を伸線
加工の中間段階で焼鈍することなく、最終線径の極細線
まで伸線加工すると、焼鈍による引張強度の低下がそれ
程大きくない約350℃以下の成る温度での焼鈍処理に
よって、軟化曲線上にて伸びがピーク状に著しく増大す
る特性を発現することを見出し、これに基づいて、この
ような伸びの特性を有するアルミニウム合金材を使用し
、それに適した温度で最終的な焼鈍を実施すると引張強
度に優れるのみならず、更に伸び特性に著しく優れたア
ルミニウム極細線の製造を実現できることを見出すとと
もに、不可避的不純物の含有量を各々0.001%以下
に制限したAl−Mg合金がこのような特性を充分発現
するものであることを見出した。
As a result of research into this manufacturing method, the present applicant has developed a type of 41 alloy material consisting of a columnar crystal structure oriented in one direction, which can be produced into ultra-fine wires with a final wire diameter without annealing in the intermediate stage of wire drawing. We have discovered that when wire drawing is performed, annealing at a temperature of about 350°C or lower, where the decrease in tensile strength due to annealing is not so great, results in a characteristic in which the elongation increases significantly to a peak on the softening curve. Based on this, if an aluminum alloy material with such elongation characteristics is used and the final annealing is performed at an appropriate temperature, it will not only have excellent tensile strength but also an ultra-fine aluminum wire with significantly superior elongation characteristics. It has been discovered that production is possible, and that an Al-Mg alloy in which the content of each unavoidable impurity is limited to 0.001% or less can sufficiently exhibit such characteristics.

しかしながら、伸び特性をただ単に高めたボンディング
ワイヤを使用して通常のボンディングマシンで配線作業
を実施した場合、ボンディング後のループ形状は好まし
い形状を得られるが、次のボンディングのためのワイヤ
切断部分部らテール部にパリやダレ状の突出部が形成さ
れて切断面の平滑性を失うようになって好ましくないこ
とが見出された。
However, when wiring work is carried out using a normal bonding machine using a bonding wire with simply enhanced elongation properties, the loop shape after bonding can be obtained in a desirable shape, but the wire cut portion for the next bonding is It has been found that this is undesirable because a protrusion in the shape of a bulge or sag is formed in the tail portion and the smoothness of the cut surface is lost.

発明者はこのような欠点を解決するために種々研究した
結果、不可避的不純物の含有量を各々0゜001%以下
に制限したAl−Mg合金にMnを適当量を添加した場
合に上記欠点が解決され、良好なカッティング性の得ら
れることを見出した。
As a result of various studies to solve these drawbacks, the inventors have found that the above drawbacks can be overcome when an appropriate amount of Mn is added to an Al-Mg alloy in which the content of each unavoidable impurity is limited to 0°001% or less. It has been found that this problem can be solved and good cutting properties can be obtained.

光凱■旦煎 本発明の目的は上述のカッティング性の問題に鑑み、引
張強度および伸び特性に優れたうえ、テール部でのカッ
ティング性を向上したアルミニウム極細線を提供するこ
とである。
In view of the above-mentioned problem of cuttability, an object of the present invention is to provide an ultrafine aluminum wire that has excellent tensile strength and elongation properties, and has improved cuttability at the tail portion.

光凱至盪底 本発明は0.5〜4重量%のMgと、0.002〜0.
2重量%のMnを含有し、残部がAlおよび各々0.0
01重量%以下の不可避的不純物からなるアルミニウム
極細線である。
The present invention contains 0.5 to 4% by weight of Mg and 0.002 to 0.0% by weight.
Contains 2% by weight of Mn, the balance is Al and each 0.0
This is an ultrafine aluminum wire containing 0.1% by weight or less of unavoidable impurities.

作用 不可避的不純物の含有量を各々0.001%以下に制限
したAl−Mg合金にMnの適当量を添加した旧合金は
、本出願人が提案した製造方法即ち一方向に指向せる柱
状晶組織の素材から中間焼鈍することなく製造した場合
に特に好ましい効果(強度、伸び特性、カッティング性
に優れる)を発揮する。
The old alloy, in which an appropriate amount of Mn was added to an Al-Mg alloy in which the content of unavoidable impurities was limited to 0.001% or less, was manufactured using the manufacturing method proposed by the applicant, that is, a columnar crystal structure oriented in one direction. Particularly favorable effects (excellent strength, elongation characteristics, and cuttability) are exhibited when manufactured from materials without intermediate annealing.

換言すれば、特に伸び特性を高めることで生じるテール
でのカッティング性の劣化を、本発明の特徴とする組成
とすることで伸び特性を損なうことなく力・ノティング
性を向上できたのである。
In other words, the deterioration of cutting performance at the tail, which occurs especially when the elongation properties are increased, can be improved by using the composition that is a feature of the present invention, thereby improving the force and knotting properties without impairing the elongation properties.

ここで、本発明によるアルミニウム極細線を製造する^
1重合組成について更に詳しく説明すれば、^1は高純
度(99,99%以上)のものが好ましい。これは不純
物元素による金属間化合物の晶出は極く少量の存在でも
本発明の目的とする数10μmのオーダーの線径を存す
るような超極細線における伸線が阻害されるし、またこ
のような晶出物の存在は本発明合金をボンディングワイ
ヤとして用いた場合のボンディング特性を著しく阻害す
るからである。
Here, the aluminum ultrafine wire according to the present invention is manufactured ^
1 To explain the polymerization composition in more detail, ^1 preferably has high purity (99.99% or more). This is because even a very small amount of crystallization of intermetallic compounds caused by impurity elements inhibits the drawing of ultra-fine wires having a wire diameter on the order of several tens of micrometers, which is the object of the present invention. This is because the presence of such crystallized substances significantly impedes bonding properties when the alloy of the present invention is used as a bonding wire.

発明者の研究によれば、上記特性を完全に満足させるた
めには本発明合金中に含まれる不可避的不純物の量は各
々0.001%以下としなければならないことが判明し
ている。
According to the inventor's research, it has been found that in order to completely satisfy the above characteristics, the amount of each unavoidable impurity contained in the alloy of the present invention must be 0.001% or less.

また、本発明合金中にMgを含有させたのは、この含有
によって引張強度の低下がそれ程大きくない約350℃
以下の成る温度での最終的な焼鈍処理により伸びがピー
ク状に著しく増大する特性を発現できることの知見によ
るのであり、Mgの含有量が0.5重量%以下となると
ワイヤとして求められる十分な強度を得ることができな
くなること、また4重量%以上になると固溶体化が不完
全になり、伸線加工に困難を生ずることの知見からMg
の含有量の範囲が定められた。
Moreover, the reason why Mg is contained in the alloy of the present invention is that the tensile strength is not reduced so much by the addition of Mg at a temperature of about 350°C.
This is based on the knowledge that the final annealing treatment at the following temperatures can exhibit a property that significantly increases the elongation to a peak shape, and that when the Mg content is 0.5% by weight or less, the wire has sufficient strength. Based on the knowledge that Mg
The range of content of

更に、カッティング性に係わるMnの含有量の範囲は、
0.002重量%以下では効果を得られず、0.2重量
%以上になると伸びの低下をきたすとともに、固溶温度
が高くなって固溶し難くなることの知見から範囲を定め
た。
Furthermore, the range of Mn content related to cutting properties is
The range was determined based on the knowledge that if it is less than 0.002% by weight, no effect can be obtained, and if it is more than 0.2% by weight, elongation decreases and the solid solution temperature becomes high, making it difficult to form a solid solution.

大旌炭 第1表に示す合金組成(不可避的不純物は各々o、oo
t%以下)からなる溶湯を加熱鋳型(実体温度680℃
)を用いて一方向性凝固させ、これにより20mmのワ
イヤバーを鋳造(鋳造速度20mm/分)した。このワ
イヤバーを溶体化処理(450°C×24時間)した後
面前し、伸線加工して直径30μmの極細線に迄塑性加
工した。
Alloy composition shown in Table 1 of Da Chung Coal (inevitable impurities are o and oo respectively)
t% or less) into a heated mold (actual temperature 680°C).
) was used for unidirectional solidification, whereby a 20 mm wire bar was cast (casting speed 20 mm/min). This wire bar was subjected to solution treatment (450°C x 24 hours), then wire-drawn and plastic-processed into an ultra-fine wire with a diameter of 30 μm.

この塑性加工の段階の中間で焼鈍処理は一切施さなかっ
た。即ち、30μmの直径の極細線迄、焼鈍処理しない
で断線等の不具合を発生することなく伸線加工できた。
No annealing treatment was performed during this plastic working stage. That is, it was possible to draw a wire up to an ultra-fine wire with a diameter of 30 μm without annealing and without causing defects such as wire breakage.

次にこのようにして製造した直径30μmの極細線に2
時間にわたる最終的な焼鈍処理を施した。
Next, the ultrafine wire with a diameter of 30 μm produced in this way
A final annealing treatment over a period of time was applied.

この極細線から試験片を10本づつ切出し、引張強度お
よび伸び特性を測定した。測定機は東洋ボールドウィン
社製万能引張試験機」を使用した。
Ten test pieces were cut out from this ultra-fine wire and their tensile strength and elongation properties were measured. The measuring machine used was "Universal Tensile Testing Machine" manufactured by Toyo Baldwin Co., Ltd.

また引張試験条件は、標点間距離が50mm、引張速度
が10mm/分であった。この測定結果を第1表に示す
The tensile test conditions were a gage distance of 50 mm and a tensile speed of 10 mm/min. The measurement results are shown in Table 1.

第1表に示す実施例A−Hのうち、A−Eが本発明の実
施例である。
Among Examples A to H shown in Table 1, A to E are examples of the present invention.

比較例としてF −Hは一方向に指向さセた柱状晶組織
の素材ではあるが本発明の特徴とするMnを含有しない
単なるAl−Mg合金を使用して、実施例A−Hと同様
に製造したアルミニウム極細線である。
As a comparative example, F-H is a material with a columnar crystal structure oriented in one direction, but a simple Al-Mg alloy that does not contain Mn, which is a feature of the present invention, was used in the same manner as Examples A-H. This is a manufactured ultra-fine aluminum wire.

実施例 含有成分 焼鈍温度 引張強度 伸び 切断性
A   Al−1χMg−0,003χMn   20
0℃  23kgf/mm”   IIX    良B
 Al−lXMg−0,003?4Mn 175℃26
kgf/mm” 6χ良CAl−1χMg−0,15χ
Mn 200℃25kgf/mm” 11χ良D Al
−1,5χMg−0,OIXMn 200℃24kgf
/mm” 12χ良E Al−3χMg−0,15χM
n 200℃32kgf/mm” IIZ良F At−
IZMg  200°C22kgf/mm212Z悪G
   Al−1,1χMg         200℃
  24kgf/mm”   13χ   悪11^1
−1.5χMg  175°C26kgf/mm” 7
χ悪第1表 ここで、カッティング性の判定は、実際にボンディング
マシンを使用して第1図に示すようにこれらのアルミニ
ウム極細線1で試験ピース2に対するボンディングを実
施し、二次側のワイヤ端部即ちテールIAにおける切断
端を顕微鏡により目視検査して、この端部にハリもしく
はダレが殆ど認められない場合を「良」、明らかにパリ
もしくはダレが認められる場合を「悪」として表示した
Examples Ingredients Annealing temperature Tensile strength Elongation Cuttability A Al-1χMg-0,003χMn 20
0℃ 23kgf/mm” IIX Good B
Al-lXMg-0,003?4Mn 175℃26
kgf/mm” 6χGood CAl-1χMg-0,15χ
Mn 200℃25kgf/mm” 11χ Good D Al
-1,5χMg-0,OIXMn 200℃24kgf
/mm” 12χ Good E Al-3χMg-0,15χM
n 200℃32kgf/mm” IIZ RyouF At-
IZMg 200°C22kgf/mm212Z Evil G
Al-1,1χMg 200℃
24kgf/mm” 13χ Evil 11^1
-1.5χMg 175°C26kgf/mm” 7
χ Table 1 Here, the cutting property is judged by actually bonding the test piece 2 with these ultra-thin aluminum wires 1 using a bonding machine as shown in Figure 1, and then The end portion, that is, the cut end at the tail IA, was visually inspected using a microscope, and the case where almost no firmness or sagging was observed at this end was designated as “good”, and the case where clear crispness or sagging was observed was designated as “bad”. .

この結果、本発明のアルミニウム極細線はその最終焼鈍
温度を適当に選定することで引張強度および伸びが優れ
たうえにカッティング性の良い線材とすることが明白と
なる。これに反し、比較例に、Lに示したように素材の
組成が異なると、引張強度および伸びを高くする製造方
法で製造した場合、カッティング性が伸びの向上によっ
て阻害される結果となることが判る。
As a result, it is clear that the ultrafine aluminum wire of the present invention can be made into a wire with excellent tensile strength and elongation as well as good cutting properties by appropriately selecting the final annealing temperature. On the other hand, in the comparative example, when the composition of the material is different as shown in L, when manufactured using a manufacturing method that increases tensile strength and elongation, cutting performance may be inhibited by the improvement in elongation. I understand.

即ち、本発明によるアルミニウム極細線は、明らかに引
張強度および伸びを向上でき、しかも特に伸びの向上に
伴うカッティング性の悪化が、伸びを犠牲にすることな
く (充分大きな伸びを有して)解決できたことが理解
される。
In other words, the ultrafine aluminum wire according to the present invention can clearly improve tensile strength and elongation, and in particular, the problem of deterioration in cuttability that accompanies improved elongation can be solved without sacrificing elongation (by having a sufficiently large elongation). What was achieved is understood.

発明の効果 ■ 従来のアルミニウム極細線よりも著しく大きな伸び
特性を有するカッティング性に優れたアルミニウム極細
線である。
Effects of the Invention ■ This is an ultra-fine aluminum wire that has significantly greater elongation characteristics than conventional ultra-fine aluminum wires and excellent cutting properties.

■ カッティング性が優れているので、ボンディングワ
イヤとして使用する場合、そのテールにおけるダレ、パ
リが解消でき、ショート等の事故を防止できる。
■ Since it has excellent cutting properties, when used as a bonding wire, it can eliminate sagging and cracks in the tail and prevent accidents such as short circuits.

■ 伸びが大きいので、ボンディング後のループを好ま
しい形状にできる。
■ Since it has high elongation, the loop can be shaped into a desired shape after bonding.

■ 従って、これを使用すると高速度高密度配線が可能
になって生産性が向上し、半導体装置等の信頼性を著し
く向上できる。
(2) Therefore, when this is used, high-speed, high-density wiring becomes possible, productivity is improved, and reliability of semiconductor devices and the like can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアルミニウム極細線をボンディングワイヤとし
て結線した状態、特にテールでの切断による好ましくな
い形状を示す概略図。 1・・・・ボンディングワイヤ lA・・・テール 2・・・・ピース
FIG. 1 is a schematic diagram showing a state in which ultra-fine aluminum wires are connected as bonding wires, particularly showing an unfavorable shape due to cutting at the tail. 1... Bonding wire lA... Tail 2... Piece

Claims (1)

【特許請求の範囲】[Claims] 0.5〜4重量%のMgと、0.002〜0.2重量%
のMnを含有し、残部がAlおよび各々0.001重量
%以下の不可避的不純物からなるアルミニウム極細線。
0.5-4 wt% Mg and 0.002-0.2 wt%
An ultra-fine aluminum wire containing Mn of 100% and the balance consisting of Al and unavoidable impurities of 0.001% by weight or less.
JP61012719A 1986-01-23 1986-01-23 Hyperfine aluminum wire Pending JPS62170448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012719A JPS62170448A (en) 1986-01-23 1986-01-23 Hyperfine aluminum wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012719A JPS62170448A (en) 1986-01-23 1986-01-23 Hyperfine aluminum wire

Publications (1)

Publication Number Publication Date
JPS62170448A true JPS62170448A (en) 1987-07-27

Family

ID=11813234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012719A Pending JPS62170448A (en) 1986-01-23 1986-01-23 Hyperfine aluminum wire

Country Status (1)

Country Link
JP (1) JPS62170448A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127987A (en) * 1987-11-13 1989-05-19 Niles Parts Co Ltd Ultrasonic distance sensor
EP0349731A2 (en) * 1988-05-11 1990-01-10 Canon Kabushiki Kaisha Optical modulation device using polymer liquid crystal
JP2002340191A (en) * 2001-05-14 2002-11-27 Nok Corp Packing
CN105603229A (en) * 2016-02-04 2016-05-25 青岛中科应化技术研究院 Preparation method of corrosion-resistant aluminum alloy
WO2018155531A1 (en) * 2017-02-23 2018-08-30 古河電気工業株式会社 Aluminum alloy material and fastening component, structural component, spring component, conductive member, and battery member using aluminum alloy material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238079A (en) * 1984-05-11 1985-11-26 Nippon Light Metal Co Ltd Production of ultrafine aluminum wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238079A (en) * 1984-05-11 1985-11-26 Nippon Light Metal Co Ltd Production of ultrafine aluminum wire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127987A (en) * 1987-11-13 1989-05-19 Niles Parts Co Ltd Ultrasonic distance sensor
EP0349731A2 (en) * 1988-05-11 1990-01-10 Canon Kabushiki Kaisha Optical modulation device using polymer liquid crystal
JP2002340191A (en) * 2001-05-14 2002-11-27 Nok Corp Packing
CN105603229A (en) * 2016-02-04 2016-05-25 青岛中科应化技术研究院 Preparation method of corrosion-resistant aluminum alloy
WO2018155531A1 (en) * 2017-02-23 2018-08-30 古河電気工業株式会社 Aluminum alloy material and fastening component, structural component, spring component, conductive member, and battery member using aluminum alloy material
JPWO2018155531A1 (en) * 2017-02-23 2019-02-28 古河電気工業株式会社 Aluminum alloy material and fastening parts, structural parts, spring parts, conductive members and battery members using the same
JP2019081959A (en) * 2017-02-23 2019-05-30 古河電気工業株式会社 Aluminum alloy material, and fastening part, structural component, spring component, conductive member and battery component including the same
KR20190121292A (en) * 2017-02-23 2019-10-25 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy material and fastening parts, structural parts, spring parts, conductive members and battery members using the same

Similar Documents

Publication Publication Date Title
JP2599890B2 (en) Lead-free solder material
JPS62127438A (en) Bonding wire for semiconductor device
JP2873770B2 (en) Palladium fine wire for wire bonding of semiconductor devices
JPS62170448A (en) Hyperfine aluminum wire
US5989364A (en) Gold-alloy bonding wire
JPS62104061A (en) Bonding wire for semiconductor element and manufacture thereof
JP5311715B2 (en) Gold wire for semiconductor element connection
JPH084100B2 (en) Bonding wire
JPS63235440A (en) Fine copper wire and its production
JP2003059964A (en) Bonding wire and manufacturing method therefor
JPH10140267A (en) Copper alloy material with high cr content, having high strength and high electric conductivity, and its production
JPS61136653A (en) Hyperfine aluminum wire
JPS6112011B2 (en)
JP4349631B2 (en) Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts
KR100273702B1 (en) Process for preparing gold alloy wire for bonding
JPS61136654A (en) Hyperfine aluminum wire
JP2706539B2 (en) Bonding wire
JPS60238079A (en) Production of ultrafine aluminum wire
JP3729302B2 (en) Gold alloy wire for bonding
JPS62218537A (en) Aluminum fine wire
JPS62127437A (en) Bonding wire for semiconductor device
JPS58147140A (en) Lead wire of semiconductor device
JP2003023030A (en) Bonding wire and manufacturing method therefor
JP3059314B2 (en) Gold alloy fine wire for bonding
JPH0480981B2 (en)