JPS61136654A - Hyperfine aluminum wire - Google Patents
Hyperfine aluminum wireInfo
- Publication number
- JPS61136654A JPS61136654A JP59259675A JP25967584A JPS61136654A JP S61136654 A JPS61136654 A JP S61136654A JP 59259675 A JP59259675 A JP 59259675A JP 25967584 A JP25967584 A JP 25967584A JP S61136654 A JPS61136654 A JP S61136654A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- elongation
- weight
- tensile strength
- bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
茨五光互
本発明は各種ワイヤ、音響装置や半導体装置等の電気的
装置のリード線やボンディングワイヤ等に使用するため
の41合金製の極細線(以下アルミニウム極細線と総称
する)に係わり、特にボンディングワイヤとして使用し
た場合に引張強度、伸び特性に加え、特にボンディング
後のテール部でのカッティング性を向上したアルミニウ
ム極細線に関する。Detailed Description of the Invention The present invention relates to ultra-fine wires made of 41 alloy (hereinafter referred to as aluminum ultra-fine wires) for use in various wires, lead wires and bonding wires of electrical devices such as audio equipment and semiconductor devices. The present invention relates to ultrafine aluminum wires that have improved tensile strength and elongation properties, as well as improved cutting properties, particularly at the tail portion after bonding, when used as bonding wires.
l米及土
例えば半導体装置に使用されるボンディングワイヤは、
通常は直径が10〜60μm程度の非常に細い極細線で
ある。導電性および耐蝕性の点からボンディングワイヤ
として金線が使用されてきたが、近年は前述の性質に加
えて低価格なことからアルミニウム線を使用するように
なってきた。For example, bonding wires used in semiconductor devices are
Usually, it is a very thin ultra-fine wire with a diameter of about 10 to 60 μm. Gold wire has been used as a bonding wire due to its conductivity and corrosion resistance, but in recent years aluminum wire has been used because of its low cost in addition to the above-mentioned properties.
また一方で半導体装置は信頼性の向上、装置の小型化、
配線の高密度化に加えて、配線作業の高速度化による生
産性の向上がもとめられている。On the other hand, semiconductor devices are improving reliability, making devices smaller,
In addition to increasing the density of wiring, there is a demand for improved productivity by increasing the speed of wiring work.
ところで、アルミニウム極細線を例えばボンディングワ
イヤとして使用する場合、その引張強度並びに伸び特性
の他に極細線のカッティング性が半導体装置の信頼性お
よび生産性に大きな影響を与える。ここでカッティング
性とは、テール部における極細線の切断面の平滑性をい
い、この切断面に凹凸部が発生すると電気的ショートの
原因となる他、次の接続作業において安定した接続面積
を得られない等の不具合が生じる。また上記した引張強
度が小さ過ぎると配線作業において、或いは使用中の応
力によって断線し易くなり、また半導体の使用時に発生
するジュール熱により軟化し変形してタブショートを生
じる危険性が高くなる。By the way, when an ultrafine aluminum wire is used, for example, as a bonding wire, the cuttability of the ultrafine wire, in addition to its tensile strength and elongation characteristics, has a great influence on the reliability and productivity of semiconductor devices. Cutting performance here refers to the smoothness of the cut surface of the ultra-fine wire at the tail section. Any unevenness on this cut surface may cause electrical shorts, and it also ensures a stable connection area for the next connection operation. This may cause problems such as not being able to Furthermore, if the above-mentioned tensile strength is too low, the wire will easily break due to stress during wiring work or during use, and there will be a high risk of softening and deformation due to Joule heat generated during use of the semiconductor, resulting in a tab short.
伸び特性が小さ過ぎると接続作業における接合力が小さ
くなり、また使用時において応力を受けた時に断線し易
くなる。またボンディング後の好ましいループ形状を得
難くなって高速度高密度配線を困難にする。従って引張
強度、伸び特性が充分に大きく、更にカッティング性の
良好なことが要求される。If the elongation property is too small, the bonding force during connection work will be low, and the wire will be likely to break when subjected to stress during use. Furthermore, it becomes difficult to obtain a preferable loop shape after bonding, making high-speed, high-density wiring difficult. Therefore, it is required to have sufficiently high tensile strength and elongation properties, and also to have good cutting properties.
従来提案されている^1−Cu合金からなる極細線はS
i、、 Fe、 Mn等の不純物が各々0.005〜0
゜01%程度含有したAl−0,5〜5χCu合金であ
るが、このような組成の極細線は引張強度が25kg/
mm”、伸びが1%程度である。ここで、伸びが小さい
のは、従来極細線が金型で鋳造した等軸孔組織の鋳塊を
伸線加工して製造されるが、伸線加工によって加工硬化
し、以後の伸線加工を困難とするために加工の中間段階
で焼鈍し、軟化させるので、それ故に、引張強度との兼
ね合いからこの程度しか得られなかったのであって、望
ましくはもっと伸びの大きなことが好ましいのである。The ultrafine wire made of ^1-Cu alloy that has been proposed so far is S
Impurities such as i, Fe, Mn, etc. are each 0.005 to 0
It is an Al-0.5~5χCu alloy containing about 0.01%, but the ultrafine wire with this composition has a tensile strength of 25 kg/
mm”, and the elongation is about 1%.The reason why the elongation is small is that conventional ultrafine wires are manufactured by wire drawing an ingot with an equiaxed hole structure cast in a mold, but wire drawing In order to make the subsequent wire drawing process difficult, it is annealed and softened in the intermediate stage of processing.Therefore, due to the balance with the tensile strength, only this level of strength can be obtained, and it is desirable that It is preferable that the elongation be greater.
そこで、本出願人は先に新規なアルミニウム極細線の製
造方法(特願昭59−92994号参照)を出願した。Therefore, the present applicant previously filed an application for a new method for manufacturing ultrafine aluminum wire (see Japanese Patent Application No. 1982-92994).
この製造方法は、AIまたはAt合金溶湯を一方向性凝
固鋳造して柱状晶組織からなる鋳造体を鋳造し、該鋳造
体を溶体化処理した後、中間段階で焼鈍処理を施すこと
なく最終線径の線材にまで塑性加工することを特徴とし
たものである。即ち、一方向に指向した柱状晶組織のA
I系材料を使用することで最終線径の線材まで焼鈍処理
を施すことなく塑性加工を可能にし、これによる中間段
階での焼鈍処理の省略により伸び特性に対する引張強度
の全体的な低下を回避して、強度に優れたアルミニウム
極細線を製造可能としたのである。This manufacturing method involves unidirectionally solidifying and casting a molten AI or At alloy to form a cast body having a columnar crystal structure, and after solution treatment of the cast body, the final line is formed without annealing at an intermediate stage. This is characterized by the fact that it can be plastically worked into wire rods of the same diameter. That is, A of the columnar crystal structure oriented in one direction
By using I-series materials, it is possible to perform plastic working without annealing up to the final wire diameter, and by omitting the annealing treatment at an intermediate stage, an overall decrease in tensile strength relative to elongation properties can be avoided. This made it possible to manufacture ultrafine aluminum wires with excellent strength.
本出願人はこの製造方法の研究を進めた結果、一方向に
指向せる柱状晶組織からなる成る種のA1合金材を伸線
加工の中間段階で焼鈍することなく、最終線径の極細線
まで伸線加工すると、焼鈍による引張強度の低下がそれ
程大きくない約400℃以下の成る温度での焼鈍処理に
よって、軟化曲線上にて伸びがピーク状に著しく増大す
る特性を発現することを見出し、これに基づいて、この
ような伸びの特性を有するアルミニウム合金材を使用し
、それに適した温度で最終的な焼鈍を実施すると引張強
度に優れるのみならず、更に伸び特性に著しく優れたア
ルミニウム極細線の製造を実現できることを見出すとと
もに、不可避的不純物の含有量を各々0.001%以下
に制限したAl−Cu合金がこのような特性を充分発現
するものであることを見出した。As a result of research into this manufacturing method, the applicant has found that A1 alloy material consisting of a columnar crystal structure oriented in one direction can be made into ultra-fine wire with the final wire diameter without annealing in the intermediate stage of wire drawing. It has been discovered that when wire drawing is performed, the elongation significantly increases to a peak on the softening curve by annealing at a temperature of about 400°C or lower, where the decrease in tensile strength due to annealing is not so large. Based on this, if an aluminum alloy material with such elongation characteristics is used and the final annealing is performed at an appropriate temperature, it will not only have excellent tensile strength but also an ultra-fine aluminum wire with significantly superior elongation characteristics. It has been discovered that production is possible, and that an Al-Cu alloy in which the content of each unavoidable impurity is limited to 0.001% or less can sufficiently exhibit such characteristics.
しかしながら、伸び特性をただ単に高めたボンディング
ワイヤを使用して通常のボンディングマシンで配線作業
を実施した場合、ボンディング後のループ形状は好まし
い形状を得られるが、次のボンディングのためのワイヤ
切断部分即ちテール部にパリやダレ状の突出部が形成さ
れて切断面の平滑性を失うようになって好ましくないこ
とが見出された。However, when wiring work is carried out using a normal bonding machine using a bonding wire with simply enhanced elongation properties, the loop shape after bonding can be obtained in a desirable shape, but the wire cut portion for the next bonding, i.e. It has been found that this is undesirable because a protrusion in the shape of a bulge or sag is formed on the tail portion and the smoothness of the cut surface is lost.
発明者はこのような欠点を解決するために種々研究した
結果J不可避的不純物の含有量を各々0゜001%以下
に制限したAl−Cu合金にSiまたはくおよび) M
nの適当量を添加した場合に上記欠点が解決され、良好
なカンティング性の得られることを見出した。As a result of various studies to solve these drawbacks, the inventor has developed an Al-Cu alloy in which the content of unavoidable impurities is limited to 0.001% or less.
It has been found that when an appropriate amount of n is added, the above drawbacks can be solved and good canting properties can be obtained.
1里坐貝煎
本発明の目的は上述のカッティング性の問題に鑑み、引
張強度および伸び特性に優れたうえ、テール部でのカッ
ティング性を向上したアルミニウム極細線を提供するこ
とである。In view of the above-mentioned problem of cuttability, an object of the present invention is to provide an ultrafine aluminum wire that has excellent tensile strength and elongation properties, and has improved cuttability at the tail portion.
1里至盪底
本発明は0.5〜5.5重量%のCuを含有し、更に0
.002〜0.2重量%のSiまたは0. 002〜0
.8重量%のMnの何れか一種、または合計して0.9
重量%以下のSiおよびMnを含有し、残部がA1およ
び各々0.001重量%以下の不可避的不純物からなる
アルミニウム極細線である。The present invention contains 0.5 to 5.5% by weight of Cu, and further contains 0.5% to 5.5% by weight of Cu.
.. 0.002 to 0.2 wt.% Si or 0.002 to 0.2 wt. 002~0
.. 8% by weight of any one type of Mn or a total of 0.9
This is an ultrafine aluminum wire containing Si and Mn in a weight percent or less, and the balance being A1 and unavoidable impurities in a weight percent or less each.
作−1−
不可避的不純物の含有量を各々o、ooi%以下に制限
したAl−Cu合金にSiまたは(および) Mnの適
当量を添加したA1合金は、本出願人が提案した製造方
法即ち一方向に指向せる柱状晶組織の素材から中間焼鈍
することなく製造した場合に特に好ましい効果(強度、
伸び特性、カッティング性に優れる)を発揮する。換言
すれば、特に伸び特性を高めることで生じるテールでの
カッティング性の劣化を、本発明の特徴とする組成とす
ることで伸び特性を損なうことなくカッティング性を向
上できたのである。Production-1- The A1 alloy, which is made by adding an appropriate amount of Si or (and) Mn to an Al-Cu alloy in which the content of unavoidable impurities is limited to 0 and 00% or less, respectively, is produced by the manufacturing method proposed by the applicant, namely Particularly favorable effects (strength,
Excellent elongation and cutting properties). In other words, the deterioration of cutting performance at the tail, which occurs especially when the elongation properties are increased, can be improved by using the composition that is a feature of the present invention, without impairing the elongation properties.
ここで、本発明によるアルミニウム極細線を製造するA
1合金組成について更に詳しく説明すれば、AIは高純
度(99,99%以上)のものが好ましい。これは不純
物元素による金属間化合物の晶出は掻く少量の存在でも
本発明の目的とする数10μmのオーダーの線径を有す
るような超極細線における伸線が阻害され、またこのよ
うな晶出物の存在は本発明合金をボンディングワイヤと
して用いた場合のポンディング特性を著しく阻害するか
らである。Here, A for manufacturing ultrafine aluminum wire according to the present invention
1. To explain the alloy composition in more detail, AI preferably has high purity (99.99% or more). This is because even a small amount of impurity elements prevents the crystallization of intermetallic compounds, but the drawing of ultra-fine wires having a wire diameter on the order of tens of micrometers, which is the object of the present invention, is inhibited, and such crystallization This is because the presence of such substances significantly impairs the bonding properties when the alloy of the present invention is used as a bonding wire.
発明者の研究によれば、上記特性を完全に満足させるた
めには本発明合金中に含まれる不可避的不純物の量は各
々0.001%以下としなければならないことが判った
。According to the inventor's research, it has been found that in order to completely satisfy the above characteristics, the amount of each unavoidable impurity contained in the alloy of the present invention must be 0.001% or less.
また、本発明合金中にCoを含有させたのは、この含有
によって引張強度の低下がそれ程大きくない約400℃
以下の成る温度での最終的な焼鈍処理により伸びがピー
ク状に著しく増大する特性を発現できることの知見によ
るのであり%CLIの含有量が0.5重量%以下となる
と充分な伸びを得ることができなくなること、また5、
5重量%を超えると固溶体化が不完全となり、伸線加工
に困難を生じることの知見からCuの含有量の範囲が定
められた。また伸びおよび伸線加工のし易さ、腐食の点
から好ましくは0.8〜3.5重量%である。In addition, the reason why Co is contained in the alloy of the present invention is that the tensile strength is not significantly reduced by the addition of Co at approximately 400°C.
This is based on the knowledge that the final annealing treatment at the following temperatures can exhibit a characteristic in which the elongation increases significantly in a peak shape.When the CLI content is 0.5% by weight or less, sufficient elongation cannot be obtained. What you won't be able to do again 5.
The range of Cu content was determined based on the knowledge that if it exceeds 5% by weight, solid solution formation becomes incomplete and wire drawing becomes difficult. The content is preferably 0.8 to 3.5% by weight from the viewpoint of ease of elongation, wire drawing, and corrosion.
更に、カッティング性に係わるSiおよびMnの含有量
の範囲は、0.002重景重量下では効果を得られず、
Siで0.2重量%以上、Mnで0.8重量%以上、或
いは両者の合計が0.9重量%を超えると伸びの低下を
きたすとともに、固溶温度が高くなって固溶し難くなる
ことの知見から範囲を定めた。Furthermore, the content range of Si and Mn related to cutting properties is not effective under 0.002 gravity,
When Si exceeds 0.2% by weight, Mn exceeds 0.8% by weight, or the total of both exceeds 0.9% by weight, elongation decreases and the solid solution temperature becomes high, making it difficult to form a solid solution. The scope was determined based on knowledge of the matter.
大施拠
第1表に示す合金組成(不可避的不純物は各々0.00
1%以下)からなる溶湯を加熱鋳型(実体温度680℃
)を用いて一方向性凝固させ、これにより20mmのワ
イヤバーを鋳造(鋳造速度20mm/分)した、このワ
イヤバーを溶体化処理(520℃×4時間)した後面剤
し、伸線加工して直径30μmの極細線に迄塑性加工し
た。この塑性加工の段階の中間で焼鈍処理は一切施さな
かった。即ち、30μmの直径の極細線迄、焼鈍処理し
ないで断線等の不具合を発生することなく伸線加工でき
た。The alloy composition shown in Table 1 of the main construction (each unavoidable impurity is 0.00
1% or less) into a heated mold (actual temperature 680°C).
) to cast a 20 mm wire bar (casting speed: 20 mm/min). After solution treatment (520°C x 4 hours), this wire bar was subjected to surface treatment and wire drawing to reduce the diameter. Plastic processing was performed to an ultra-fine wire of 30 μm. No annealing treatment was performed during this plastic working stage. That is, it was possible to draw a wire up to an ultra-fine wire with a diameter of 30 μm without annealing and without causing defects such as wire breakage.
次にこのようにして製造した直径30μmの極細線に2
時間にわたる最終的な焼鈍処理を施した。Next, the ultrafine wire with a diameter of 30 μm produced in this way
A final annealing treatment over a period of time was applied.
この極細線から試験片を10本づつ切出し、引張強度お
よび伸び特性を測定した。測定機は東洋ボールドウィン
社製万能引張試験機」を使用した。Ten test pieces were cut out from this ultra-fine wire and their tensile strength and elongation properties were measured. The measuring machine used was "Universal Tensile Testing Machine" manufactured by Toyo Baldwin Co., Ltd.
また引張試験条件は、標点間距離が50mm、引張速度
が10mm/分であった。この測定結果を第1表に示す
。The tensile test conditions were a gage distance of 50 mm and a tensile speed of 10 mm/min. The measurement results are shown in Table 1.
第1表に示す実施例A−にのうち、A−Jが本発明の実
施例である。Among Examples A- shown in Table 1, A-J are examples of the present invention.
比較例としてKは一方向に指向させた柱状晶組織の素材
ではあるが本発明に含まれない組成のものを使用して、
実施例A−Jと同様に製造したアルミニウム極細線であ
る。As a comparative example, K is a material with a columnar crystal structure oriented in one direction, but a composition not included in the present invention was used.
This is an ultrafine aluminum wire manufactured in the same manner as Examples A-J.
A Al−LχCu−0,003χSi 245℃23
kg/nun” 8χ良B Al−1χCu−0,00
3XSi 300℃20kg/mm” 12χ中CAl
−1χCu−0,LχSi 250℃28kg/mm”
7χ良D ALIχCu−0,1χS+ 200℃2
4kg/mm25χ良E Al−3χCu−0,003
χSi 250℃28kg/mm” 5.5χ良F A
l−3χCu−0,003χSi 300℃25kg/
mm” 9.5χ中G Al−3χCu−0,003X
Si 350℃19kg/mm27.5χ良1(Al−
3χCu−0,2χMn 250℃30kg/ms!5
χ良I Al−3ZCu−0,2χMn 300℃26
kg/mad” 9χ良K Al−1χCu 300
℃20kg/mn+” 12χ悪ここで、カッティング
性の判定は、実際にボンディングマシンを使用して第1
図に示すようにこれらのアルミニウム極細線1で試験ピ
ース2に対するボンディングを実施し、二次側のワイヤ
端部即ちテールIAにおける切断端を顕微鏡により目視
検査して、この端部にパリもしくはダレが殆ど認められ
ない場合を「良」、明らかにパリもしくはダレが認めら
れる場合を「悪」、そしてこれらの中間と認められる場
合を「中」として表示した。A Al-LχCu-0,003χSi 245℃23
kg/nun” 8χ Good B Al-1χCu-0,00
3XSi 300℃20kg/mm” 12χ Medium Cali
-1χCu-0, LχSi 250℃28kg/mm”
7χGoodD ALIχCu-0,1χS+ 200℃2
4kg/mm25χ Good E Al-3χCu-0,003
χSi 250℃28kg/mm” 5.5χ Good F A
l-3χCu-0,003χSi 300℃25kg/
mm” 9.5χ Medium G Al-3χCu-0,003X
Si 350℃19kg/mm27.5χ Good 1 (Al-
3χCu-0,2χMn 250℃30kg/ms! 5
χGood I Al-3ZCu-0,2χMn 300℃26
kg/mad” 9χ Good K Al-1χCu 300
℃20kg/mn
As shown in the figure, these ultra-thin aluminum wires 1 are bonded to the test piece 2, and the end of the wire on the secondary side, that is, the cut end at the tail IA, is visually inspected using a microscope to confirm that there are no cracks or sag in this end. Cases in which almost no difference was observed were indicated as "good," cases in which there was clearly a difference or dullness were indicated as "bad," and cases in between these were indicated as "medium."
この結果、本発明のアルミニウム極細線はその最終焼鈍
温度を適当に選定することで引張強度および伸びが優れ
たうえにカッティング性の良い線材とすることが明白と
なる。これに反し、比較例Kに示したように素材の組成
が異なると、引張強度および伸びを高(する製造方法で
製造した場合、カッティング性が伸びの向上によって阻
害される結果となることが判る。As a result, it is clear that the ultrafine aluminum wire of the present invention can be made into a wire with excellent tensile strength and elongation as well as good cutting properties by appropriately selecting the final annealing temperature. On the other hand, if the composition of the material is different as shown in Comparative Example K, it can be seen that when manufactured using a manufacturing method that provides high tensile strength and elongation, the cuttability is inhibited by the improvement in elongation. .
即ち、本発明によるアルミニウム極細線は、明らかに引
張強度および伸びを向上でき、しかも特に伸びの向上に
伴うカッティング性の悪化が、伸びを犠牲にすることな
く (充分大きな伸びを有して)解決できたことが理解
される。In other words, the ultrafine aluminum wire according to the present invention can clearly improve tensile strength and elongation, and in particular, the problem of deterioration in cuttability that accompanies improved elongation can be solved without sacrificing elongation (by having a sufficiently large elongation). What was achieved is understood.
衾肌立肱呆
■ 従来のアルミニウム極細線よりも著しく太きな伸び
特性を有するカッティング性に優れたアルミニウム極細
線である。This ultra-fine aluminum wire has a significantly thicker elongation property than conventional ultra-fine aluminum wire and has excellent cutting properties.
■ カッティング性が優れているので、ボンディングワ
イヤとして使用する場合、そのテールにおけるダレ、パ
リが解消でき、ショート等の事故を防止できる。■ Since it has excellent cutting properties, when used as a bonding wire, it can eliminate sagging and cracks in the tail and prevent accidents such as short circuits.
■ 伸びが大きいので、ボンディング後のループを好ま
しい形状にできる。■ Since it has high elongation, the loop can be shaped into a desired shape after bonding.
■ 従って、これを使用すると高速度高密度配線が可能
になって生産性が向上し、半導体装置等の信頼性を著し
く向上できる。(2) Therefore, when this is used, high-speed, high-density wiring becomes possible, productivity is improved, and reliability of semiconductor devices and the like can be significantly improved.
第1図はアルミニウム極細線をボンディングワイヤとし
て結線した状態、特にテールでの切断による好ましくな
い形状を示す概略図。
1・・・・ボンディングワイヤ
IA・・・テール
2・・・・ピース
手続補正書く自発)
昭和59年12月28日
1、事件の表示、−、f−2ζ、Qつ′=71=昭和5
9昭和5刃
2、発明の名称
アルミニウム極細線
3、補正をする者
事件との関係 特許出願人
名称(氏名) (474)日本軽金属株式会社4、代
理人 〒164
住 所 東京都中野区弥生町5丁目6番23号明細書の
発明の詳細な説明の欄
6、補正の内容
(1)明細書第3頁17行目「伸びが1%程度である.
」を下記の通り補正する。
(3)同第9頁第11行目「520℃×4時間」を「5
20°C×24時間jに補正する。FIG. 1 is a schematic diagram showing a state in which ultra-fine aluminum wires are connected as bonding wires, particularly showing an unfavorable shape due to cutting at the tail. 1...Bonding wire IA...Tail 2...Spontaneous writing of peace procedure amendment) December 28, 1980 1, Incident display, -, f-2ζ, Q'=71=Showa 5
9 Showa 5 Blade 2, Name of the invention Aluminum ultra-fine wire 3, Relationship to the case of the person making the amendment Name of patent applicant (name) (474) Nippon Light Metal Co., Ltd. 4, Agent 164 Address Yayoi-cho, Nakano-ku, Tokyo Column 6 of Detailed Description of the Invention in Specification No. 5-6-23, Contents of Amendment (1) Page 3, line 17 of the specification: ``The elongation is about 1%.''
' shall be corrected as follows. (3) On page 9, line 11, change “520℃ x 4 hours” to “5
Corrected to 20°C x 24 hours.
Claims (2)
002〜0.2重量%のSiまたは0.002〜0.8
重量%のMnの何れか一種、または合計して0.9重量
%以下のSiおよびMnを含有し、残部がAlおよび各
々0.001重量%以下の不可避的不純物からなるアル
ミニウム極細線。(1) Contains 0.5 to 5.5% by weight of Cu, and further contains 0.5 to 5.5% by weight of Cu.
002-0.2 wt% Si or 0.002-0.8
An ultrafine aluminum wire containing any one type of Mn in the amount of % by weight, or Si and Mn in a total amount of 0.9% by weight or less, with the remainder being Al and unavoidable impurities of 0.001% by weight or less each.
請求の範囲第1項記載のアルミニウム極細線。(2) The ultrafine aluminum wire according to claim 1, wherein the Cu content is 0.8 to 3.5% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59259675A JPS61136654A (en) | 1984-12-08 | 1984-12-08 | Hyperfine aluminum wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59259675A JPS61136654A (en) | 1984-12-08 | 1984-12-08 | Hyperfine aluminum wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61136654A true JPS61136654A (en) | 1986-06-24 |
JPH0418026B2 JPH0418026B2 (en) | 1992-03-26 |
Family
ID=17337338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59259675A Granted JPS61136654A (en) | 1984-12-08 | 1984-12-08 | Hyperfine aluminum wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61136654A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014173097A (en) * | 2013-03-06 | 2014-09-22 | Auto Network Gijutsu Kenkyusho:Kk | Aluminum alloy wire, aluminum alloy stranded wire, insulation wire and wire harness |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS619536A (en) * | 1984-06-21 | 1986-01-17 | Sumitomo Electric Ind Ltd | Manufacture of aluminum alloy thin wire |
JPS61117258A (en) * | 1984-11-13 | 1986-06-04 | Kobe Steel Ltd | Manufacture of aluminum wire for bonding |
-
1984
- 1984-12-08 JP JP59259675A patent/JPS61136654A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS619536A (en) * | 1984-06-21 | 1986-01-17 | Sumitomo Electric Ind Ltd | Manufacture of aluminum alloy thin wire |
JPS61117258A (en) * | 1984-11-13 | 1986-06-04 | Kobe Steel Ltd | Manufacture of aluminum wire for bonding |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014173097A (en) * | 2013-03-06 | 2014-09-22 | Auto Network Gijutsu Kenkyusho:Kk | Aluminum alloy wire, aluminum alloy stranded wire, insulation wire and wire harness |
Also Published As
Publication number | Publication date |
---|---|
JPH0418026B2 (en) | 1992-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7928541B2 (en) | Copper alloy sheet and QFN package | |
JPH0625388B2 (en) | High strength, high conductivity copper base alloy | |
JP3367544B2 (en) | Gold alloy fine wire for bonding and method of manufacturing the same | |
JPS63109130A (en) | Copper alloy for electronic equipment | |
JPH0379416B2 (en) | ||
US5205878A (en) | Copper-based electric and electronic parts having high strength and high electric conductivity | |
JPH06100983A (en) | Metal foil for tab tape having high young's modulus and high yield strength and its production | |
EP0691414A1 (en) | Fine palladium alloy wire for semiconductor element wire bonding | |
JPS62104061A (en) | Bonding wire for semiconductor element and manufacture thereof | |
JPS61136654A (en) | Hyperfine aluminum wire | |
JP3573321B2 (en) | Au bonding wire | |
JPS5841782B2 (en) | IC lead material | |
JPH084100B2 (en) | Bonding wire | |
JPS61136653A (en) | Hyperfine aluminum wire | |
JPS62170448A (en) | Hyperfine aluminum wire | |
JPS60238079A (en) | Production of ultrafine aluminum wire | |
KR100273702B1 (en) | Process for preparing gold alloy wire for bonding | |
JPH11293366A (en) | Material for piezoelectric vibrator case and piezoelectric vibrator case using the material | |
JPS62211337A (en) | Copper, titanium and cobalt alloy as material for electronics parts | |
JP2661247B2 (en) | Gold alloy fine wire for semiconductor element bonding | |
JPH1136028A (en) | Lead frame for semiconductor device | |
JP3117852B2 (en) | Fe-Cu alloy IC lead frame and method of manufacturing the same | |
JPH0480981B2 (en) | ||
JPH02274828A (en) | Nickel silver having excellent hot workability | |
JPS6365034A (en) | Fine copper wire and its production |