JPS61117258A - Manufacture of aluminum wire for bonding - Google Patents

Manufacture of aluminum wire for bonding

Info

Publication number
JPS61117258A
JPS61117258A JP59239068A JP23906884A JPS61117258A JP S61117258 A JPS61117258 A JP S61117258A JP 59239068 A JP59239068 A JP 59239068A JP 23906884 A JP23906884 A JP 23906884A JP S61117258 A JPS61117258 A JP S61117258A
Authority
JP
Japan
Prior art keywords
wire
bonding
ingot
aluminum
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59239068A
Other languages
Japanese (ja)
Other versions
JPS623227B2 (en
Inventor
Masakazu Hirano
正和 平野
Shoshi Koga
詔司 古賀
Kazuo Tanaka
一雄 田中
Atsushi Numata
淳 沼田
Masanori Moribe
森部 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59239068A priority Critical patent/JPS61117258A/en
Publication of JPS61117258A publication Critical patent/JPS61117258A/en
Publication of JPS623227B2 publication Critical patent/JPS623227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal Extraction Processes (AREA)
  • Wire Bonding (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To obtain a hyperfine Al wire for bonding by irradiating a beam having high energy density on an Al alloy ingot contg. a very small amount of one or more among Si, Ni, Cu, Cr, MN, Zr, Ti, V, Mg and Zn and by carrying out wire drawing. CONSTITUTION:An Al alloy ingot contg. <=0.5wt% one or more among Si, Ni, Cu, Cr, Mn, Zr, Ti, V, Mg and Zn is manufactured. A beam having high energy density such as an electron beam is irradiated on the ingot or an intermediate material formed by drawing the ingot. Local remelting and solidification are continuously carried out by the irradiation to make crystallized matter fine and uniform. Wire drawing is then carried out.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はボンディング用アルミニウムワイヤーの製造法
に関し、さらに詳しくは、品出物が均一微細化し或いは
合金成分が強制固溶化されたアルミニウム合金の鋳塊か
らボンディング用アルミニウムワイヤーを製造する方法
に関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a method for manufacturing aluminum wire for bonding, and more specifically, to a method for manufacturing an aluminum wire for bonding, and more specifically, a method for manufacturing an aluminum wire in which the product is uniformly refined or alloy components are forced into a solid solution. The present invention relates to a method of manufacturing aluminum wire for bonding from a lump.

[従来技術J 従来の工業的な鋳造法によって得られるアルミニウムま
たはアルミニウム合金の鋳塊は、鋳造時の凝固速度が遅
いため、一般に、鋳塊の結晶粒度が大きく、含有元素を
多くすると巨大な金属間化合物が晶出し、キャビティー
等の欠陥を発生することが多く、そして、このような組
織は、圧延、押出し、鍛造等、特に線材の伸線の製造工
程における熱間加工性或いは冷間加工性を低下させ、最
終的に得られた製品についても、靭性、疲労強度、耐蝕
性、成形加工性、応力腐蝕割れ性等の性能を劣化させる
主原因となる。
[Prior Art J] Ingots of aluminum or aluminum alloys obtained by conventional industrial casting methods have a slow solidification rate during casting. Intermediate compounds often crystallize and cause defects such as cavities, and such structures are difficult to improve hot workability or cold workability in manufacturing processes such as rolling, extrusion, forging, etc., especially wire drawing. This is the main cause of deterioration of properties such as toughness, fatigue strength, corrosion resistance, moldability, stress corrosion cracking resistance, etc. of the final product.

このことは、良く知られていることであり、アルミニウ
ムまたはアルミニウム合金の緒特性を向上させるために
、鋳塊の結晶粒微細化および晶出物の微細化等について
、改良が続けられており近年では晶出物の微細化のため
、高純度地金を使用し不純物元素の量を規制した材料の
開発が行なわれている。
This is well known, and in recent years, improvements have been made in order to improve the properties of aluminum or aluminum alloys, including the refinement of grains in ingots and the refinement of crystallized substances. In order to miniaturize crystallized materials, materials are being developed that use high-purity metals and control the amount of impurity elements.

また、半導体素子等のボンディング用アルミニツムワイ
ヤーには、強度を高くしたAlSi系合金または耐蝕性
を向上させたAI  Mn系合金が使用されているが、
ボールの安定性および酸化膜生成防止のために、Ni、
 Cu、 Cr、Ti、 Zr、■、Mg、 Zn″6
を含有させることが検討されている。
In addition, AlSi alloys with increased strength or AI Mn alloys with improved corrosion resistance are used for bonding aluminum wires for semiconductor devices, etc.
For ball stability and prevention of oxide film formation, Ni,
Cu, Cr, Ti, Zr, ■, Mg, Zn″6
It is being considered to include

しかし、これらの含有元素は、その含有訊が増加すると
従来のDC鋳造法では晶出物の生成を避けることができ
ず、この晶出物の存在は線材、特に、ボンディング用ワ
イヤーのように直径が30μmと極細線に伸線加工され
る場合に、晶出物を起点とした断線が起り、加工性のl
著しく低下する。
However, when the content of these elements increases, the formation of crystallized substances cannot be avoided in the conventional DC casting method, and the presence of these crystallized substances is caused by wire rods, especially wires with diameters such as bonding wires. When wire is drawn into an ultra-fine wire of 30 μm, wire breakage occurs starting from crystallized substances, resulting in poor workability.
Significantly decreased.

従って、このことが、さらに細いワイヤーの加工および
合金化による高性能ワイヤーを製造することができない
原因となっていた。
Therefore, this has been the cause of the inability to manufacture high-performance wires by processing and alloying thinner wires.

[発明が解決しようとする問題点1 本発明はこのような従来の技術的な事情に鑑みなされた
ものであり、工業的なアルミニウムまたはアルミニウム
合金の鋳塊における問題点を解消し、アルミニウム合金
禁札の晶出物を均一微細として、ボンディング用のワイ
ヤとして極めて細い線に線引することができるボンディ
ング用アルミニウムワイヤーの製造法を開発したのであ
る。
[Problem to be Solved by the Invention 1] The present invention has been made in view of the above-mentioned conventional technical circumstances, and aims to solve the problems in industrial aluminum or aluminum alloy ingots, and to eliminate the prohibition of aluminum alloys. They developed a method for manufacturing aluminum wire for bonding, which makes the crystallized matter of bills uniform and fine, and allows the wire to be drawn into extremely thin wires for bonding.

[問題点を解決するための手段J 本発明に係るボンディング用アルミニウムワイヤーの製
造法の特徴とするところは、Si、Ni、CuSCr、
Mn、Zr5Ti、V、Mg、Znのうちから選んだ1
種または2種以上を合計で0.5wt%以上を含有する
アルミニウム合金の鋳塊或いは鋳塊を展伸加工した中間
工程材に、高エネルギー密度の線束を照射することによ
り、局部的な再溶解および凝固を連続的に行なわせて晶
出物を微細均一とした後、伸線加工を行なうことにある
6なお、ボンディング用アルミニウムワイヤーの強度や
耐蝕性を向上させるためには、上記の含有元素を合計で
0.5wt%未満ではこれらの効果が小さいのである。
[Means for Solving the Problems J The feature of the manufacturing method of the bonding aluminum wire according to the present invention is that Si, Ni, CuSCr,
1 selected from Mn, Zr5Ti, V, Mg, Zn
Localized remelting by irradiating an aluminum alloy ingot containing a total of 0.5 wt% or more of a species or two or more species, or an intermediate process material obtained by drawing an ingot, with a beam of high energy density. After continuous coagulation to make the crystallized particles fine and uniform, wire drawing is performed. If the total content is less than 0.5 wt%, these effects are small.

本発明に係るボンディング用アルミニウムワイヤーの製
造法について以下詳細に説明する。
A method for producing an aluminum wire for bonding according to the present invention will be described in detail below.

即ち、アルミニウム合金の工業的方法により製造された
鋳塊或いは鋳塊を展伸加工した中間工程材(以下単に鋳
塊ということがある。)に、表面よりエレクトロンビー
ム、プラズマ7−り、電弧アーク等の高エネルギー密度
の線束を照射して局部的な再溶解および凝固を連続的に
行なうことにより、鋳塊の表面層等の一部分或いは鋳塊
の全体を再溶解し、このため、通常の工業的に製造され
た金型鋳塊或いは連続鋳造より逼かに大きい冷却速度で
急速冷却凝固させた鋳塊とすることができ、従来の鋳塊
では得られなかった合金成分の強iII固溶による固溶
量の増加を可能にし、さらに、晶出物を微細均一にし、
がっ、結晶粒度が微細である等の品質を向上させた鋳塊
を製造した後、伸線加工または線引加工を行なうことに
より極めて細いボンデ、Cング用アルミニウムワイヤー
を製造することができる方法である。
In other words, an ingot manufactured by an industrial method for aluminum alloy or an intermediate process material obtained by drawing an ingot (hereinafter simply referred to as an ingot) is exposed to an electron beam, plasma, or electric arc from the surface. By continuously performing local remelting and solidification by irradiating a beam with high energy density such as The ingot can be rapidly cooled and solidified at a much higher cooling rate than the mold ingot produced by conventional ingots or continuous casting. It makes it possible to increase the amount of solid solution, and also to make the crystallized substances fine and uniform.
After manufacturing an ingot with improved quality such as fine grain size, it is possible to manufacture extremely thin aluminum wire for bonding and C-ring by performing wire drawing or wire drawing. It is.

本発明に係るボンディング用アルミニウムワイヤーの製
造法において、高エネルギー密度の線束を照射する方法
として、例えば、エレクトロンビームの照射は、一般に
10す〜10 ””nnHHの高真空中において、加熱
されたタングステンフィラメントから発生したエレクト
ロンに高電圧をかけ、加速されたエレクトロンビームを
被溶解部材に照射することにより、エレクトロンの運動
エネルギーを熱エネルギーに変えて溶解するものである
が、エネルギー密度が極めて高いため小人熱で深い溶込
みが得られ、そのため、溶融部近傍の温度上昇が少ない
。そして、溶解後の冷却凝固は鋳塊の非加熱部との熱伝
導により甲なわれるが、上記に説明したように、溶融部
は極めて少ない熱入力で幅が狭く、かつ、溶込みが深<
(例えば、100 mm程度)形成されるので凝固時の
冷却効果が著しく大きく、従来のDC鋳造の凝固速度の
10−1℃/secに比較してエレクトロンビームによ
ると103℃/sea以上と極めて速い凝固速度が得ら
れ含有元素の固溶限が大きくなる。
In the method for producing an aluminum wire for bonding according to the present invention, as a method of irradiating a beam with a high energy density, for example, irradiation with an electron beam is generally carried out on heated tungsten in a high vacuum of 10 mm to 10 mm HH. By applying a high voltage to electrons generated from a filament and irradiating the accelerated electron beam to the material to be melted, the kinetic energy of the electrons is converted into thermal energy and melted, but because the energy density is extremely high, it is Deep penetration is achieved using human heat, so there is little temperature rise near the molten part. Cooling and solidification after melting is facilitated by heat conduction with the unheated part of the ingot, but as explained above, the molten part requires very little heat input, is narrow, and has deep penetration.
(for example, about 100 mm), the cooling effect during solidification is extremely large, and compared to the solidification rate of 10-1°C/sec in conventional DC casting, the solidification rate is extremely fast at 103°C/sea or more when using an electron beam. The solidification rate is increased and the solid solubility limit of the contained elements is increased.

なお、連続的に再溶解する場合、被溶解材の温度管理を
充分に行なっておく必要がある。即ち、連続的に再溶解
を繰返し被溶解材の温度が高くなると、冷却速度が比較
的に遅くなり、結果として合金元素の固溶量の減少や晶
出物の粗大化、結晶粒の粗大化を起し易くなる傾向にあ
るためである。
In addition, when remelting continuously, it is necessary to sufficiently control the temperature of the material to be melted. In other words, when the temperature of the material to be melted increases due to continuous remelting, the cooling rate becomes relatively slow, resulting in a decrease in the amount of solid solution of alloying elements, coarsening of crystallized substances, and coarsening of crystal grains. This is because there is a tendency for this to occur more easily.

本発明に係るボンディング用アルミニウムワイヤーの製
造法におけるアルミニウム鋳塊は、晶出物が微細均一で
、かつ、結晶粒度も微細であり、さらに、強制固溶によ
り固溶限の小さい含有元素についても通常の金型鋳造、
連続鋳造等の工業的方法で製造した鋳塊より逼かに大き
い固溶度であるので、線引によりボンディング用ワイヤ
ーとして使用される30μ論にも伸線することが可能と
なる。
The aluminum ingot used in the method for manufacturing an aluminum wire for bonding according to the present invention has fine and uniform crystallized substances and fine grain size, and furthermore, due to forced solid solution, contained elements with small solid solubility limits are normally contained. mold casting,
Since it has a much higher solid solubility than an ingot produced by an industrial method such as continuous casting, it is possible to draw wire to a wire of 30 μm, which is used as a bonding wire.

このため、本発明に係るボンディング用アルミニウムワ
イヤーの製造法においては、強度向上、耐蝕性向上およ
びボンディング強度向上等に効果の大きい、Si、 N
i、 Cu、 Cr、 Mn、 Zr、TilV%Ml
(%Zn等の含有元素を1種または2種以上を合計0.
5wt%以上を含有するアルミニウム合金f)塊にエレ
クトロンビームを照射することによって、従来のDC鋳
塊に比較して含有元素の固溶量が大きくなることを主な
原因として、晶出物が微細均一で、かつ、晶出量も少な
い組織の材料が得られ、そのため30μ鴎の極細線に線
引き加工することができ、断線することがない加工性の
優れたボンディング用ワイヤーを製造することができる
。なお、アルミニウム合金鋳塊の他に、鋳塊を    
′展伸加工した線材等の中間加工材にも適用できる。
Therefore, in the method for producing an aluminum wire for bonding according to the present invention, Si, N, which is highly effective in improving strength, corrosion resistance, bonding strength, etc.
i, Cu, Cr, Mn, Zr, TilV%Ml
(The total content of one or more elements such as %Zn is 0.
Aluminum alloy containing 5wt% or moref) By irradiating the ingot with an electron beam, the crystallized matter becomes fine, mainly due to the larger solid solution amount of the contained elements compared to the conventional DC ingot. A material with a uniform structure and a small amount of crystallization can be obtained, and therefore it can be drawn into an ultra-fine wire of 30 μm, and a bonding wire with excellent workability that will not break can be manufactured. . In addition to aluminum alloy ingots, ingots
'It can also be applied to intermediate processed materials such as stretched wire rods.

さらに、同様な理由によりDC鋳塊では固溶されない量
の元素をエレクトロンビーム照射により固溶させること
ができるため、緒特性の優れたボンディング用アルミニ
ウム線材が得られる。
Furthermore, for the same reason, an amount of elements that cannot be dissolved in a DC ingot can be dissolved in solid solution by electron beam irradiation, so that an aluminum wire rod for bonding with excellent properties can be obtained.

[実 施例1 次に、本発明に係るボンディング用アルミニウムワイヤ
ーの製造法について実施例を説明する。
[Example 1] Next, an example will be described regarding a method for manufacturing an aluminum wire for bonding according to the present invention.

実施例 第1表に示す含有成分および成分割合のアルミニウム合
金を、従来のDC鋳造法により120mmの鋳塊を製造
し、この鋳塊にエレクトロンビームを照射して再溶解凝
固させた後、90IIIIIφの押出ビレットを作製し
た。
EXAMPLE A 120 mm ingot was produced using the conventional DC casting method using an aluminum alloy having the components and proportions shown in Table 1. After remelting and solidifying the ingot by irradiating it with an electron beam, a 90IIIφ ingot was produced. An extruded billet was produced.

なお、エレクトロンビーム処理は、 加速電圧(KV)   120 ビーム電流(…A)   130 鋳塊移動速度(關/5ea)  6.0の条件で、第1
図に示すように、縦横共に120mm長さ、アルミニウ
ム合金鋳塊1にビーム2を照射した。照射方向は図示の
矢印のように行なった。
In addition, the electron beam treatment is performed under the following conditions: acceleration voltage (KV) 120 beam current (...A) 130 ingot moving speed (關/5ea) 6.0
As shown in the figure, a beam 2 was irradiated onto an aluminum alloy ingot 1 having a length of 120 mm in both length and width. The irradiation direction was as shown by the arrow in the figure.

その後、直径9■の線材に押出し、続いて加熱、外皮切
削および線引きを繰り返し行なって直径30μmのボン
ディング用ワイヤーを製造した。
Thereafter, it was extruded into a wire rod with a diameter of 9 square centimeters, followed by heating, cutting the outer shell, and drawing the wire repeatedly to produce a bonding wire with a diameter of 30 μm.

エレクトロンビーム処理を行なった場合は、第2図(a
)の顕微鏡写真に示すエレクトロンビーム処理鋳塊を押
出したアルミニウム合金の金属Mn織のように、第2図
(b)単にDC鋳塊を押出した場合のアルミニウム合金
の金属組織に比して、晶出物が著しく小さいことがわか
る。No、1合金を使用した。
In the case of electron beam processing, Fig. 2 (a)
As shown in the micrograph in Figure 2(b), the metal structure of the aluminum alloy produced by extruding the electron beam treated ingot is different from that of the aluminum alloy produced by simply extruding the DC ingot. It can be seen that the output is extremely small. No. 1 alloy was used.

また、tp、2表に示す通り、本発明に係るボンディン
グ用アルミニウムワイヤーの製造法によるワイヤーは、
線引加工を行なっても断線が起らず、従来のD(JIt
ilLよりのワイヤーに比較して極めて優れた線引加工
性を有しており、さらに、本発明に係るボンディング用
アルミニウムワイヤーの製造法によるワイヤーのボンデ
ィング強度は、従来のDC1l塊よりのワイヤーのボン
ディング強度に比して著しく優れていることがわかる。
In addition, as shown in Table 2, the wire produced by the method for manufacturing aluminum wire for bonding according to the present invention is
Even when wire drawing is performed, wire breakage does not occur, and conventional D (JIt)
It has extremely superior wire drawability compared to wire made from ilL, and furthermore, the bonding strength of the wire produced by the method of manufacturing aluminum wire for bonding according to the present invention is higher than that of wire made from conventional DC1L block. It can be seen that the strength is significantly superior.

第1表 第2表 ×l :熱圧着法によりボンディングを行ない、ワイヤ
のプルテストを行なった。
Table 1 Table 2 xl: Bonding was performed by thermocompression bonding, and a wire pull test was performed.

(ワイヤー破断/ボンディング部破断+ワイヤー破断)
X I +l !1 基板:111)0板  351) ’C荷重二80g 接合時開: 、3 S ll1sec ×2:製品寸法に加工する工程で破断が発生した割合 (断線発生回数/全加工数10回)X 100[発明の
効果1 以上説明したように、本発明に係るボンディング用アル
ミニウムワイヤーの製造法は上記の構成を有しているも
のであるから、ボンディング用ワイヤーとして30μ伯
という極細線まで線引を行なっても断線することがなく
、強度が高く、耐蝕性も良好で、さらに、ボンディング
強度も高いという優れた効果を有するものである。
(Wire breakage/bonding part breakage + wire breakage)
X I +l! 1 Substrate: 111) 0 board 351) 'C load 2 80g Opening during joining: , 3 S ll1sec × 2: Rate of occurrence of breakage in the process of processing to product dimensions (number of occurrences of wire breakage / total number of processing 10 times) x 100 [Effects of the Invention 1] As explained above, since the method for manufacturing an aluminum wire for bonding according to the present invention has the above-mentioned configuration, wires as thin as 30 μm can be drawn as bonding wires. It has excellent effects in that it does not break even when exposed to wires, has high strength, good corrosion resistance, and also has high bonding strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るボンディング用ワイヤーの製造法
におけるエレクトロンビーム照射を示す概略図、第2図
はエレクトロンビームを照射した押出材と照射しない押
出材との金属Mmを示す顕微鏡写真である。 1・・鋳塊、2・・ビーム。 ■ t1図 図面の浄書(内容に変更なし) :W−211W ((L )                   /
、6)5、補正命令の日付 (自発) 手続補正潟(自発) 昭和55)年12月()6日 特許庁長官 志 賀  学 殿  ・。 1゜事件の表示 昭和59年特許願第239068号 2゜発明の名称 ボンディング用アルミニウムワイヤーの製造法3、補正
をする者 事件との関係  特許出願人 住所 神戸市中央区脇浜町1丁目3番18号名称 (1
19)  株式会社 神戸製鋼所、       代表
者   牧  冬 彦、40代理人 住所 東京都江東区南砂2丁目2番15号藤和東陽町コ
ープ901号 6、補正の対象 (1)願書の発明の名称の欄 (2)第2図(a)(b) 7、補正の内容 別紙の通1)
FIG. 1 is a schematic diagram showing electron beam irradiation in the bonding wire manufacturing method according to the present invention, and FIG. 2 is a micrograph showing metal Mm of an extruded material irradiated with an electron beam and an extruded material not irradiated. 1. Ingot, 2. Beam. ■ Engraving of t1 drawing (no changes in content): W-211W ((L) /
, 6) 5. Date of amendment order (voluntary) Procedural amendment (voluntary) December 6, 1982 Manabu Shiga, Commissioner of the Patent Office. 1゜Indication of the case Patent Application No. 239068, filed in 19822゜Name of the invention Method for manufacturing aluminum wire for bonding 3, person making the amendment Relationship to the case Patent applicant address 1-3-18 Wakihama-cho, Chuo-ku, Kobe City Issue name (1
19) Kobe Steel, Ltd., Representative: Fuyuhiko Maki, 40, Agent address: No. 6, Fujiwa Toyocho Co-op 901, 2-2-15 Minamisuna, Koto-ku, Tokyo, Subject of amendment (1) Name of the invention in the application form (2) Figure 2 (a) (b) 7. Attached sheet 1)

Claims (1)

【特許請求の範囲】[Claims]  Si、Ni、Cu、Cr、Mn、Zr、Ti、V、M
g、Znのうちから選んだ1種または2種以上を合計で
0.5wt%以上を含有するアルミニウム合金の鋳塊或
いは鋳塊を展伸加工した中間工程材に、高エネルギー密
度の線束を照射することにより、局部的な再溶解および
凝固を連続的に行なわせて晶出物を微細均一とした後、
伸線加工を行なうことを特徴とするボンディング用アル
ミニウムワイヤーの製造法。
Si, Ni, Cu, Cr, Mn, Zr, Ti, V, M
A high-energy-density beam beam is irradiated to an aluminum alloy ingot or an intermediate process material obtained by drawing an ingot, containing a total of 0.5 wt% or more of one or more selected from g, Zn. By doing this, local re-dissolution and solidification are performed continuously to make the crystallized material fine and uniform, and then
A method for manufacturing aluminum wire for bonding, which is characterized by wire drawing.
JP59239068A 1984-11-13 1984-11-13 Manufacture of aluminum wire for bonding Granted JPS61117258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59239068A JPS61117258A (en) 1984-11-13 1984-11-13 Manufacture of aluminum wire for bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59239068A JPS61117258A (en) 1984-11-13 1984-11-13 Manufacture of aluminum wire for bonding

Publications (2)

Publication Number Publication Date
JPS61117258A true JPS61117258A (en) 1986-06-04
JPS623227B2 JPS623227B2 (en) 1987-01-23

Family

ID=17039376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59239068A Granted JPS61117258A (en) 1984-11-13 1984-11-13 Manufacture of aluminum wire for bonding

Country Status (1)

Country Link
JP (1) JPS61117258A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136654A (en) * 1984-12-08 1986-06-24 Nippon Light Metal Co Ltd Hyperfine aluminum wire
JPS61136653A (en) * 1984-12-08 1986-06-24 Nippon Light Metal Co Ltd Hyperfine aluminum wire
JPS6396236A (en) * 1986-10-09 1988-04-27 Sky Alum Co Ltd Material for electrically conductive parts of electronic and electrical appliance
KR100407779B1 (en) * 1995-10-18 2004-03-18 엘지전선 주식회사 Aluminum alloy used as enamel wire and method for manufacturing aluminum alloy wire from the same
WO2013180300A1 (en) * 2012-05-29 2013-12-05 国立大学法人茨城大学 Aluminum wire for power semiconductor, semiconductor device using said aluminum wire, and searching method for said aluminum wire
CN113584355A (en) * 2021-08-03 2021-11-02 上杭县紫金佳博电子新材料科技有限公司 Aluminum-based alloy bus for bonding and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136654A (en) * 1984-12-08 1986-06-24 Nippon Light Metal Co Ltd Hyperfine aluminum wire
JPS61136653A (en) * 1984-12-08 1986-06-24 Nippon Light Metal Co Ltd Hyperfine aluminum wire
JPH0418026B2 (en) * 1984-12-08 1992-03-26 Nippon Light Metal Co
JPH0418025B2 (en) * 1984-12-08 1992-03-26 Nippon Light Metal Co
JPS6396236A (en) * 1986-10-09 1988-04-27 Sky Alum Co Ltd Material for electrically conductive parts of electronic and electrical appliance
KR100407779B1 (en) * 1995-10-18 2004-03-18 엘지전선 주식회사 Aluminum alloy used as enamel wire and method for manufacturing aluminum alloy wire from the same
WO2013180300A1 (en) * 2012-05-29 2013-12-05 国立大学法人茨城大学 Aluminum wire for power semiconductor, semiconductor device using said aluminum wire, and searching method for said aluminum wire
JPWO2013180300A1 (en) * 2012-05-29 2016-01-21 国立大学法人茨城大学 Aluminum wire for power semiconductor, semiconductor device using the aluminum wire, and method for searching for aluminum wire
CN113584355A (en) * 2021-08-03 2021-11-02 上杭县紫金佳博电子新材料科技有限公司 Aluminum-based alloy bus for bonding and preparation method thereof

Also Published As

Publication number Publication date
JPS623227B2 (en) 1987-01-23

Similar Documents

Publication Publication Date Title
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
RU2729569C2 (en) Materials with a body-centered cubic arrangement based on titanium, aluminum, vanadium and iron and articles made therefrom
JPS59193233A (en) Copper alloy
JP2003500546A (en) Copper sputter target assembly and method of manufacturing the same
JPH07145441A (en) Superplastic aluminum alloy and its production
EP3481971A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JPS61117258A (en) Manufacture of aluminum wire for bonding
JPS6358907B2 (en)
CN115198133B (en) High-strength heat-resistant conductive copper alloy pipe and preparation method thereof
JP4208156B2 (en) Manufacturing method of high strength aluminum alloy extruded material
US3019102A (en) Copper-zirconium-hafnium alloys
FR2661922A1 (en) SPINODAL DECOMPOSITION COPPER ALLOYS AND PROCESS FOR OBTAINING THE SAME.
JPH0366387B2 (en)
JPS6283453A (en) Manufacture of aluminum alloy ingot for extrusion
JPS6173849A (en) Superconductive cu alloy
Rogachev et al. Structure and mechanical properties of Al-Ca-(Fe, La) eutectic alloys after equal-channel angular pressing
JP4097180B2 (en) Method for producing aluminum-based alloy target material and aluminum-based alloy target material obtained by the method
JPS5827948A (en) Electrically conductive heat-resistant aluminum alloy wire
US1752474A (en) Method of treating metals
JPS6335760A (en) Manufacture of aluminum material excellent in resistance to heat and wear
JPH01143791A (en) Aluminum alloy filler metal
JP2010229461A (en) High-strength and high-electric conduction copper alloy and method of manufacturing the same
JPH06506268A (en) Improvement of toughness of Al-Li-Cu-Mg-Zr alloy manufactured using thermal spray forming method
JPS60110826A (en) Production of billet