JPS60238079A - Production of ultrafine aluminum wire - Google Patents

Production of ultrafine aluminum wire

Info

Publication number
JPS60238079A
JPS60238079A JP59092994A JP9299484A JPS60238079A JP S60238079 A JPS60238079 A JP S60238079A JP 59092994 A JP59092994 A JP 59092994A JP 9299484 A JP9299484 A JP 9299484A JP S60238079 A JPS60238079 A JP S60238079A
Authority
JP
Japan
Prior art keywords
wire
diameter
tensile strength
alloy
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59092994A
Other languages
Japanese (ja)
Other versions
JPH0330462B2 (en
Inventor
Yutaka Kusano
裕 草野
Shuichiro Watanabe
渡辺 修一郎
Toshio Umeda
利男 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP59092994A priority Critical patent/JPS60238079A/en
Publication of JPS60238079A publication Critical patent/JPS60238079A/en
Publication of JPH0330462B2 publication Critical patent/JPH0330462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal Extraction Processes (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To produce an ultrafine Al alloy wire having excellent tensile strength and ductility by subjecting the melt of an Al alloy to unidirectional solidification casting then to a heat treatment for homogenization and working plastically the casting to a wire rod having the final wire diameter without subjecting the casting to an annealing treatment in an intermediate stage. CONSTITUTION:The melt of Al or Al alloy is cast into an adiabatic casting mold and is cooled from a prescribed position, by which the melt is unidirectionally solidified. The wire bar consisting of the unidirectionally solidified columnar crystal is heated to the specific temp. meeting the compsn. of the Al or Al alloy and is thereby homogenized. Such wire bar is drawn by a wire drawing machine, continuous wire drawing machine and precision wire drawing machine, by which the bar is drawn to an extra-fine wire having 30mum diameter, etc. as a lead wire or bonding wire for electrical devices such as an acoustic device and semiconductor device. Since the wire is not subjected to the annealing treatment in the midway, the ultrafine Al alloy having excellent tensile strength and ductility is obtd.

Description

【発明の詳細な説明】 及止光訃 本発明は主に半導体装置のボンディングワイヤとして使
用するためのアルミニウムまたはアルミニウム合金製の
極細線(以下アルミニウム極細線と総称する)の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an ultra-fine wire made of aluminum or an aluminum alloy (hereinafter collectively referred to as an ultra-fine aluminum wire) for use mainly as a bonding wire for a semiconductor device.

獲米返歪 ボンディングワイヤは半導体と外部端子とを電気的に接
続するのに使用されるものであり、通常は直径が20〜
30μm程度の非常に細い極細線である。導電性および
耐蝕性の点からボンディングワイヤとして金線が使用さ
れてきたが、近年は前述の性質に加えて低価格なことか
らアルミニウム線を使用するようになってきた。これに
使用するアルミニウム極細線は、0.5〜2重量%のS
tを含有せるアルミニウム合金、1〜4重量%のCuを
含有せるアルミニウム合金、0.5〜2重量%のMgを
含有せるアルミニウム合金、またはこれらの合金に0.
4重量%程度のMn、 Crs Co等を添加せる合金
等を材料として作られている。
Strain bonding wire is used to electrically connect semiconductors and external terminals, and usually has a diameter of 20 to 20 mm.
It is a very thin ultra-fine wire of about 30 μm. Gold wire has been used as a bonding wire due to its conductivity and corrosion resistance, but in recent years aluminum wire has been used because of its low cost in addition to the above-mentioned properties. The aluminum ultra-fine wire used for this purpose contains 0.5 to 2% S by weight.
An aluminum alloy containing t, an aluminum alloy containing 1 to 4% by weight of Cu, an aluminum alloy containing 0.5 to 2% by weight of Mg, or an aluminum alloy containing 0.5% to 2% by weight of Mg.
It is made of an alloy to which about 4% by weight of Mn, Crs Co, etc. can be added.

このように直径が20〜30μm程度のアルミニウム極
細線は従来一般的には次のようにして製造されている。
As described above, ultrafine aluminum wires having a diameter of about 20 to 30 μm have conventionally been generally manufactured in the following manner.

即ち、材料のアルミニウム合金から直径5Qmm程度の
ワイヤバーを鋳造し、均質化熱処理する。このワイヤバ
ーをロール加工して荒引線を形成し、これを伸線加工し
て所定線径のアルミニウム極細線を形成するのであるが
、伸線加工により延性が次第に低下するので、この伸線
加工の中間段階で適宜に焼鈍処理を施しつつ伸線加工し
、これにより所定線径のアルミニウム極細線を製造して
いるのである。
That is, a wire bar having a diameter of about 5 Qmm is cast from an aluminum alloy material and subjected to homogenization heat treatment. This wire bar is rolled to form a rough drawn wire, which is then wire drawn to form an ultra-fine aluminum wire of a predetermined wire diameter. At an intermediate stage, the wire is drawn while being appropriately annealed, thereby producing an ultrafine aluminum wire with a predetermined wire diameter.

ところで、アルミニウム極細線をボンディングワイヤと
して使用する場合、その引張強度並びに延性が半導体装
置の信頼性および生産性に大きな影響を与える。例えば
引張強度が小さ過ぎると電気的接続作業において切断し
易くなり、また半導体の使用時に発生するジュール熱に
より軟化してタブショートを生じる危険性が高くなる。
By the way, when ultrafine aluminum wires are used as bonding wires, their tensile strength and ductility greatly affect the reliability and productivity of semiconductor devices. For example, if the tensile strength is too low, it will be easy to break during electrical connection work, and there will be a high risk of softening due to Joule heat generated when semiconductors are used and causing tab shorts.

延性が小さ過ぎると超音波接合技術による電気的接合に
おいて接合力が小さくなり、また高速度配線を困難にす
る。従って引張強度並びに延性は充分に大きいことが要
求される。
If the ductility is too low, the bonding force will be low in electrical bonding using ultrasonic bonding technology, and high-speed wiring will be difficult. Therefore, it is required that the tensile strength and ductility be sufficiently large.

しかしながら、前述した従来方法で製造する場合は、伸
線加工による加工度を大きくして線材の引張強度を高め
ると尚のこと延性の著しい低下をきたすので、延性を高
めるために伸線加工の中間段階で適宜に焼鈍処理を実施
せざるを得ない。一方、この焼鈍処理を実施すれば延性
を高め得ても引張強度の低下は避けられない。即ち焼鈍
処理は、製造するアルミニウム極細線に要求される引張
強度および延性に対して相反する効果を与えるのである
。このために、アルミニウム極細線を製造するのに中間
焼鈍処理が不可欠とされる従来技術では、引張強度に優
れた製品を得難(、最終焼鈍により延性との兼ね合いか
ら成る程度妥協した引張強度で満足せざるを得なかった
。またこのことは、更に細い極細線を製造する上で解決
しなければならない問題を提起していたのである。
However, when manufacturing using the conventional method described above, increasing the degree of processing by wire drawing to increase the tensile strength of the wire leads to a significant decrease in ductility. It is necessary to perform appropriate annealing treatment at each stage. On the other hand, if this annealing treatment is performed, even if ductility can be increased, a decrease in tensile strength is unavoidable. That is, the annealing treatment has contradictory effects on the tensile strength and ductility required for the manufactured ultrafine aluminum wire. For this reason, it is difficult to obtain a product with excellent tensile strength using conventional technology, which requires intermediate annealing treatment to produce ultra-fine aluminum wire (although final annealing produces a product with a compromise in tensile strength due to the compromise with ductility). We had no choice but to be satisfied.This also posed a problem that needed to be solved in the production of even thinner ultra-fine wires.

発明の目的 本発明の目的は上述に鑑み、半導体装置のボンディング
ワイヤとして使用するのに好適で、引張強度が高い優れ
たアルミニウム極細線を製造する方法を提供することで
ある。
OBJECTS OF THE INVENTION In view of the above, an object of the present invention is to provide a method for manufacturing an excellent aluminum ultrafine wire having high tensile strength and suitable for use as a bonding wire of a semiconductor device.

尤凱■穐底 本発明による製造方法は、アルミニウム合金溶湯を一方
向性凝固鋳造して柱状晶組織からなる鋳造体を鋳造し、
該鋳造体を均質化熱処理した後、中間段階で焼鈍処理を
施すことなく最終線径の線材にまで製性加工することを
特徴とする。
The manufacturing method according to the present invention involves unidirectionally solidifying and casting a molten aluminum alloy to form a cast body having a columnar crystal structure;
After the cast body is homogenized and heat treated, it is characterized in that it is processed into a wire rod of the final diameter without annealing at an intermediate stage.

さらに詳しく説明すれば、先ず素材として、常法により
溶製したアルミニウム合金溶湯を加熱鋳型または黒鉛等
の断熱材を用いた鋳型に供給し、所要の位置から該溶湯
を冷却させることにより一方向性凝固を生じさせて鋳造
体を得る。このように一方向性凝固により鋳造した素材
即ち鋳造体は、一方向に結晶が揃って配向された柱状晶
の組織を有することになる。本発明ではこの柱状晶の組
織からなる素材即ち鋳造体を使用することを基本的な特
徴とするのである。
To explain in more detail, first, as a raw material, a molten aluminum alloy produced by a conventional method is supplied to a heating mold or a mold using a heat insulating material such as graphite, and the molten metal is cooled from a desired position to produce a unidirectional Solidification is caused to obtain a cast body. The raw material, that is, the cast body cast by unidirectional solidification in this manner has a columnar crystal structure in which the crystals are aligned and oriented in one direction. The basic feature of the present invention is to use a material, ie, a cast body, made of this columnar crystal structure.

極細線の製造は、この柱状晶の組織からなる素材即ち鋳
造体を均質化熱処理した後、伸線加工して所望の直径の
線材にまで塑性加工して行われるのであるが、この塑性
加工の段階の間に中間焼鈍は一切行わない。発明者は、
柱状晶の組織からなる素材を使用することにより、中間
焼鈍を行わずに極細線までの伸線加工を達成でき、これ
により高強度のアルミニウム極細線が得られること、そ
してこれは用途に応じて適当に最終焼鈍を施すことによ
り引張強度および延性に優れ、しかもカール特性に優れ
たアルミニウム極細線となし得ることを見出したのであ
る。
Ultra-fine wires are manufactured by homogenizing and heat-treating a material made of this columnar crystal structure, that is, a cast body, and then drawing it and plastically working it into a wire of the desired diameter. No intermediate annealing is performed between stages. The inventor is
By using a material consisting of a columnar crystal structure, it is possible to draw wires up to ultra-fine wires without intermediate annealing, and as a result, high-strength ultra-fine aluminum wires can be obtained. They have discovered that by appropriately final annealing, it is possible to obtain ultrafine aluminum wires with excellent tensile strength and ductility, as well as excellent curling properties.

ここで鋳造体の均質化熱処理は、それを作る鋳造に際し
て発生した粒内偏析による不均質を解消することにある
。またこの均質化熱処理により鋳造体のガス含有量が大
幅に減少することが認められた。これらの効果が柱状晶
の組織の素材を使用することと関連して、中間焼鈍を一
切行わずに最終線径までの伸線加工を可能にしたのであ
る。
The purpose of the homogenization heat treatment of the cast body is to eliminate the heterogeneity caused by intragranular segregation that occurs during casting. It was also observed that this homogenization heat treatment significantly reduced the gas content of the cast body. These effects, in conjunction with the use of a material with a columnar crystal structure, made it possible to draw the wire to the final wire diameter without any intermediate annealing.

このようにして製造されたアルミニウム極細線は、例え
ば半導体チップと外部端子とを電気的に接続するボンデ
ィングワイヤとして使用する場合に要求される高い引張
強度および延性を充分に満足させることができる。しか
も更に極細の細線の製造を可能にするとともに、様々な
使用目的に関して強度の高い細線の提供を可能とする。
The ultrafine aluminum wire produced in this manner can sufficiently satisfy the high tensile strength and ductility required when used as a bonding wire for electrically connecting a semiconductor chip and an external terminal, for example. Furthermore, it is possible to manufacture even more extremely fine wires, and it is also possible to provide thin wires with high strength for various purposes.

実施例 純度99.99%のアルミニウムと純度99゜99%の
珪素とを使用し、加熱鋳型を用いて一方向性凝固をさせ
、これにより直径20mmで長さが2000mmのワイ
ヤバーを鋳造した。第1表にこの鋳造体の化学組成を、
また第2表に鋳造条件および結晶粒度をそれぞれ示す。
EXAMPLE Aluminum with a purity of 99.99% and silicon with a purity of 99.99% were unidirectionally solidified using a heated mold, thereby casting a wire bar with a diameter of 20 mm and a length of 2000 mm. Table 1 shows the chemical composition of this cast body.
Further, Table 2 shows the casting conditions and grain size, respectively.

第1表 第 2 表 次ぎに、この鋳造体を均質化のために2種の異なる条件
の下で熱処理した。第3表にその均質化熱処理の条件を
示す。
Table 1 Table 2 The cast bodies were then heat treated under two different conditions for homogenization. Table 3 shows the conditions for the homogenization heat treatment.

また、上述した均質化熱処理までの溶湯段階、鋳造後の
段階、および均質化熱処理後の段階におけるガス含有量
を測定した。この測定結果を第4表に示す。
In addition, the gas content was measured at the molten metal stage up to the above-mentioned homogenization heat treatment, at the stage after casting, and at the stage after the homogenization heat treatment. The measurement results are shown in Table 4.

第4表に示されるように、何れの均質化熱処理によって
も鋳造体は充分に脱ガスされることが確認されたのであ
る。
As shown in Table 4, it was confirmed that the cast bodies were sufficiently degassed by any of the homogenization heat treatments.

このように鋳造し且つ均質化熱処理した実施例(A)お
よび実施例(B)の鋳造体を通常の単頭伸線機により直
径3mmにまで伸線加工し、次にこれを連続伸線機に掛
けて直径0.8mmにまで伸線加工した。更にこれをダ
イスのスリップ率および潤滑油量等を制御した精密伸線
機に掛けて伸線加工し、最終的に直径30μmの極細線
を製造した。この最終加工における伸線速度は80mm
Z分であり、断線することなく極めて順調・良好に伸線
加工を遂行できたのである。
The castings of Example (A) and Example (B), which were cast and homogenized in this way, were drawn to a diameter of 3 mm using a normal single-head wire drawing machine, and then they were drawn to a diameter of 3 mm using a continuous wire drawing machine. The wire was drawn to a diameter of 0.8 mm. Further, this was wire-drawn using a precision wire-drawing machine in which the slip rate of the die, the amount of lubricating oil, etc. were controlled, and finally an ultra-fine wire with a diameter of 30 μm was produced. The wire drawing speed in this final processing is 80mm
The wire drawing process was carried out very smoothly and successfully without any wire breakage.

この伸線加工の各段階における試験片を切り出し、同一
直径につきそれぞれ10本づつの試験片につき引張強度
および伸びを測定した。測定機は「東洋ボールドウィン
社製万能引張試験機」を使用した。また引張試験条件は
、標点間距離が50mm、引張速度カ月Qmm/分であ
った。この測定結果を第5表に示す。
Test pieces were cut out at each stage of the wire drawing process, and tensile strength and elongation were measured for each of 10 test pieces of the same diameter. A "universal tensile tester manufactured by Toyo Baldwin Co., Ltd." was used as the measuring device. The tensile test conditions were as follows: gauge distance was 50 mm, and tensile speed was Q mm/min. The measurement results are shown in Table 5.

第5表 ここで、減面加工率とは極細線径をd、鋳造体径をDと
して次式から算出される値である。
Table 5 Here, the area reduction processing rate is a value calculated from the following formula, where d is the ultrafine wire diameter and D is the cast body diameter.

(1−(d/Dr)x 100 以上の結果から、本発明の方法によれば少なくとも30
μm程度の線径までは伸線加工の途中で焼鈍処理を一切
施さずに伸線加工を遂行できること、この伸線加工は断
線を生じることなく順調・良好に行なえること、そして
製造されたアルミニウム極細線はその引張強度および伸
びがともに大きく、従来法により製造されたもの(引張
強さが大体30kg/mm2程度)に比較して優れてい
ることが確認されたのである。
(1-(d/Dr)x 100 From the above results, according to the method of the present invention, at least 30
The wire drawing process can be carried out without any annealing process during the wire drawing process up to a wire diameter of approximately μm, the wire drawing process can be performed smoothly and well without wire breakage, and the manufactured aluminum It was confirmed that the ultrafine wire has high tensile strength and elongation, and is superior to that produced by conventional methods (tensile strength of about 30 kg/mm2).

尚、線径が0.07mmから0.03mmへの伸線加工
においては引張強さの低下(伸びも低下)が認められる
が、これは加工軟化現象によるものと推察される。
In addition, in the wire drawing process from 0.07 mm to 0.03 mm, a decrease in tensile strength (also a decrease in elongation) was observed, but this is presumed to be due to a softening phenomenon during processing.

また、上述では最終線径までの伸線加工につき説明した
が、勿論ながらその後に適当に最終焼鈍処理を実施する
ことができる。このような焼鈍処理によって所望される
優れた特性の極細線を得ることが可能となる。更にまた
上述では材料の組成について深く言及しなかったが、本
発明による方法は適正な柱状晶組織の得られる材料に対
して同様に適用できるのである。
Moreover, although the above description has been made regarding the wire drawing process up to the final wire diameter, it goes without saying that the final annealing process can be performed appropriately thereafter. Such an annealing treatment makes it possible to obtain ultrafine wires with desired excellent properties. Furthermore, although the composition of the material was not mentioned in detail above, the method according to the present invention can be similarly applied to materials from which a proper columnar crystal structure can be obtained.

産里■四来 ■ 中間焼鈍することなく最終線径までの伸線加工が達
成されるので、生産性が向上する。
Production ■ Shirai ■ Wire drawing to the final wire diameter is achieved without intermediate annealing, improving productivity.

■ 最終線径まで伸線加工して得た極細線は強度が非常
に高い。
■ The ultra-fine wire obtained by drawing to the final wire diameter has extremely high strength.

■ 従ってこれを適宜に最終焼鈍処理することにより、
引張強さ、伸び、カール特性等に非常に優れた極細線と
なすことができる。
■ Therefore, by appropriately final annealing,
It can be made into ultra-fine wire with excellent tensile strength, elongation, curling properties, etc.

■ 今後予想される更に極細の細線の製造を可能にする
技術である。
■ This is a technology that will enable the production of even finer wires expected in the future.

1 手続補正書(自発) 2、発明の名称 アルミニウム極細線の製造方法 3、補正をする者 事件との関係 特許出願人 名称 (474)日本軽金属株式会社 4、代理人 〒164 5、補正の対象 明細書全文 6、補正の内容 別紙の通り 2 明細書 1、発明の名称 アルミニウム極細線の製造方法 2、特許請求の範囲 アルミニウムまたはアルミニウム台金溶湯を一方向性凝
固鋳造して柱状晶組織からなる鋳造体を鋳造し、該鋳造
体を均質化熱処理した後、中間段階で焼鈍処理を施すこ
となく最終線径の線材にまで苧性加工することを特徴と
する引張強度に優れたアルミニウム極細線の製造方法。
1 Procedural amendment (voluntary) 2. Name of the invention Method for producing ultra-fine aluminum wire 3. Person making the amendment Relationship to the case Name of patent applicant (474) Nippon Light Metal Co., Ltd. 4. Agent Address: 164 5. Subject of amendment Full text of the specification 6, contents of amendments as per attached sheet 2 Specification 1, Title of the invention Method for manufacturing ultra-fine aluminum wire 2, Claims Aluminum or molten aluminum base metal is unidirectionally solidified and cast to have a columnar crystal structure. An ultra-fine aluminum wire with excellent tensile strength characterized by casting a cast body, subjecting the cast body to homogenization heat treatment, and then subjecting it to mulch processing to the final wire diameter without annealing at an intermediate stage. Production method.

3、発明の詳細な説明 技術分野 各種ワイヤ、音響装置や半導体装置等の電気的装置のリ
ード線やボンディングワイヤ等に使用するためのアルミ
ニウムまたはアルミニウム合金製の極細線(以下アルミ
ニウム極細線と総称する)の製造方法に関する。
3. Detailed description of the invention Technical field Various wires, ultra-fine wires made of aluminum or aluminum alloys (hereinafter collectively referred to as aluminum ultra-fine wires) for use as lead wires and bonding wires for electrical devices such as audio equipment and semiconductor devices. ).

従来技術 例えば半導体装置に使用されるボンディングワイヤは半
導体と外部端子とを電気的に接続するのに使用されるも
のであり、通常は直径が20〜30ttm程度の非常に
細い極細線である。導電性および耐蝕性の点からボンデ
ィングワイヤとして金線が使用されてきたが、近年は前
述の性質に加えて低価格なことからアルミニウム線を使
用するようになってきた。これに使用するアルミニウム
極細線は、0.5〜2重景%のSiを含有ゼるアルミニ
ウム合金、1〜4重量%のCuを含有せるアルミニウム
合金、0.5〜2重匍%のMgを含有せるアルミニウム
合金、またはこれらの合金にo、4重量%程度のMn、
 Cr、Co等を添加ゼる合金等を材料として作られて
いる。
BACKGROUND OF THE INVENTION Bonding wires used in semiconductor devices, for example, are used to electrically connect semiconductors and external terminals, and are usually very thin wires with a diameter of about 20 to 30 ttm. Gold wire has been used as a bonding wire due to its conductivity and corrosion resistance, but in recent years aluminum wire has been used because of its low cost in addition to the above-mentioned properties. The ultra-fine aluminum wire used for this purpose is an aluminum alloy containing 0.5 to 2% Si, an aluminum alloy containing 1 to 4% Cu, and 0.5 to 2% Mg. Aluminum alloys containing o, about 4% by weight of Mn,
It is made from an alloy containing added Cr, Co, etc.

このように直径が20〜30pm程度のアルミニウム極
細線は従来一般的には次のようにして製造されている。
As described above, ultrafine aluminum wires having a diameter of about 20 to 30 pm have been generally manufactured in the following manner.

即ち、材料のアルミニウム合金から直径50mm程度の
ワイヤパーを鋳造し、均質化熱処理する。このワイヤバ
ーをロール加工して荒引線を形成し、これを伸線加工し
て所定線径のアルミニウム極細線を形成するのであるが
、伸線加−Lにより延性が次第に低下するので、この伸
線加工の中間段階で適宜に焼鈍処理を施しつつ伸線加工
し、これにより所定線径のアルミニウム極細線を製造し
ているのである。
That is, a wire par with a diameter of about 50 mm is cast from an aluminum alloy material and subjected to homogenization heat treatment. This wire bar is rolled to form a rough drawn wire, which is then wire drawn to form an ultra-fine aluminum wire of a predetermined wire diameter. At an intermediate stage of processing, the wire is drawn while being appropriately annealed, thereby producing ultra-fine aluminum wire with a predetermined wire diameter.

ところで、アルミニウム極細線を例えばボンディングワ
イヤとして使用する場合、その引張強度並びに延性が半
導体装置の信頼性および生産性に大きな影響を与える。
By the way, when ultrafine aluminum wires are used, for example, as bonding wires, their tensile strength and ductility greatly affect the reliability and productivity of semiconductor devices.

即ち、引張強度が小さ過ぎると電気的接続作業において
切断し易くなり、また半導体の使用時に発生するジュー
ル熱により軟化してタブショートを生じる危険性が高く
なる。
That is, if the tensile strength is too low, it will be easy to break during electrical connection work, and there will be a high risk of softening due to Joule heat generated when semiconductors are used and causing tab shorts.

延性が小さ過ぎると超音波接合技術による電気的接合に
おいて接合力が小さくなり、また高速度配線を困難にす
る。従って引張強度並びに延性は充分に大きいことが要
求される。
If the ductility is too low, the bonding force will be low in electrical bonding using ultrasonic bonding technology, and high-speed wiring will be difficult. Therefore, it is required that the tensile strength and ductility be sufficiently large.

しかしながら、前述した従来方法で製造する場合は、伸
線加工による加工度を大きくして線材の引張強度を高め
ると尚のこと延性の著しい低下をきたすので、延性を高
めるために伸線加工の中間段階で適宜に焼鈍処理を実施
せざるを得ない。一方、この焼鈍処理を実施すれば延性
を高め得ても引張強度の低下は避けられない。即ち焼鈍
処理は、製造するアルミニウム極細線に要求される引張
強度および延性に対して相反する効果を与えるのである
。このために、アルミニウム極細線を製造するのに中間
焼鈍処理が不可欠とされる従来技術では、引張強度に優
れた製品を得難(、最終焼鈍により延性との兼ね合いか
ら成る程度妥協した引張強度で満足せざるを得なかった
。このことは、引張強度の高い極細線を製造する上で解
決しなければならない問題を提起していたのである。
However, when manufacturing using the conventional method described above, increasing the degree of processing by wire drawing to increase the tensile strength of the wire leads to a significant decrease in ductility. It is necessary to perform appropriate annealing treatment at each stage. On the other hand, if this annealing treatment is performed, even if ductility can be increased, a decrease in tensile strength is unavoidable. That is, the annealing treatment has contradictory effects on the tensile strength and ductility required for the manufactured ultrafine aluminum wire. For this reason, it is difficult to obtain a product with excellent tensile strength using conventional technology, which requires intermediate annealing treatment to produce ultra-fine aluminum wire (although final annealing produces a product with a compromise in tensile strength due to the compromise with ductility). This posed a problem that needed to be solved in manufacturing ultrafine wires with high tensile strength.

発明の目的 本発明の目的は上述に鑑み、各種ワイヤ、音響装置や半
導体装置等の電気的装置のリード線やボンディングワイ
ヤ等に使用するのに好適で、引張強度が高い優れたアル
ミニウム極細線を製造する方法を提供することである。
Purpose of the Invention In view of the above, the purpose of the present invention is to provide an excellent ultra-fine aluminum wire with high tensile strength and suitable for use in various wires, lead wires and bonding wires of electrical devices such as audio equipment and semiconductor devices. An object of the present invention is to provide a manufacturing method.

光肌色榎底 本発明による製造方法は、アルミニウムまたはアルミニ
ウム合金溶湯を一方向性凝固鋳造して柱状晶組織からな
る鋳造体を鋳造し、該鋳造体を均質化熱処理した後、中
間段階で焼鈍処理を施すことなく最終線径の線材にまで
塑性加工することを特徴とする。
The manufacturing method according to the present invention involves unidirectional solidification casting of aluminum or molten aluminum alloy to cast a cast body having a columnar crystal structure, homogenization heat treatment of the cast body, and then annealing treatment at an intermediate stage. It is characterized by plastic working to the final diameter of the wire rod without any additional processing.

さらに詳しく説明すれば、先ず素材として、常法により
溶製したアルミニウムまたはアルミニウム合金溶湯を加
熱鋳型または黒鉛等の断熱材を用いた鋳型に供給し、所
要の位置から該溶湯を冷却させることにより一方向性凝
固を生じさせて鋳造体を得る。このように一方向性凝固
により鋳造した素材即ち鋳造体は、一方向に結晶が揃っ
て配向された柱状晶の組織を有することになる。本発明
ではこの柱状晶の組織からなる素材即ち鋳造体を使用す
ることを基本的な特徴とするのである。
To explain in more detail, first, as a raw material, aluminum or aluminum alloy molten metal produced by a conventional method is supplied to a heating mold or a mold using a heat insulating material such as graphite, and the molten metal is cooled from a required position. A cast body is obtained by causing directional solidification. The raw material, that is, the cast body cast by unidirectional solidification in this manner has a columnar crystal structure in which the crystals are aligned and oriented in one direction. The basic feature of the present invention is to use a material, ie, a cast body, made of this columnar crystal structure.

極細線の製造は、この柱状晶の組織からなる素材即ち鋳
造体を均質化熱処理した後、伸線加工して所望の直径の
線材にまで塑性加工して行われるのであるが、この塑性
加工の段階の間に中間焼鈍は一切行わない。発明者は、
柱状晶のU織からなる素材を使用することにより、中間
焼鈍を行わずに極細線までの伸線加工を達成でき、これ
により高強度のアルミニウム極細線が得られること、そ
してこれは用途に応じて適当に最終焼鈍を施すことによ
り引張強度および延性に優れたアルミニウム極細線とな
し得、しかもまたこのようにして製造した極細線を半導
体装置のボンディングワイヤとして使用したときにカー
ル特性に優れていることを見出したのである。
Ultra-fine wires are manufactured by homogenizing and heat-treating a material made of this columnar crystal structure, that is, a cast body, and then drawing it and plastically working it into a wire of the desired diameter. No intermediate annealing is performed between stages. The inventor is
By using a material consisting of columnar crystal U-weave, it is possible to draw up to ultra-fine wire without intermediate annealing, and this results in high-strength ultra-fine aluminum wire, and this can be done depending on the application. By appropriately final annealing, an ultrafine aluminum wire with excellent tensile strength and ductility can be obtained.Furthermore, the ultrafine wire produced in this way has excellent curling properties when used as a bonding wire for semiconductor devices. I discovered that.

ここで鋳造体の均質化熱処理は、それを作る鋳造に際し
て発生した粒内偏析による不均質を解消することにある
。またこの均質化熱処理により鋳造体のガス含有量が大
幅に減少することが認められた。これらの効果が柱状晶
の組織の素材を使用することと関連して、中間焼鈍を一
切行わずに最終線径までの伸線加工を可能にしたのであ
る。
The purpose of the homogenization heat treatment of the cast body is to eliminate the heterogeneity caused by intragranular segregation that occurs during casting. It was also observed that this homogenization heat treatment significantly reduced the gas content of the cast body. These effects, in conjunction with the use of a material with a columnar crystal structure, made it possible to draw the wire to the final wire diameter without any intermediate annealing.

このようにして製造されたアルミニウム極細線は引張強
度が優れているから、例えば半導体チップと外部端子と
を電気的に接続するポンディングワイヤとして使用する
場合に要求される高い引張強度および延性を充分に満足
させることができる他に、各種ワイヤ、音響装置等の電
気的装置のリート′線等としても使用でき、作業性並び
に装置の信頼性を向上させ得るのである。また史に細い
極細線の製造を可能にし、様々な使用目的に関して強度
の高い細線の提供を可能とする。
The ultra-fine aluminum wire manufactured in this way has excellent tensile strength, so it has sufficient tensile strength and ductility required when used, for example, as a bonding wire to electrically connect a semiconductor chip and an external terminal. In addition, it can be used as various wires and wires for electrical equipment such as audio equipment, improving workability and reliability of the equipment. It also makes it possible to manufacture ultra-fine wires that are thinner than ever before, and to provide thin wires with high strength for a variety of purposes.

刻1舛 純度99 、 99%のアルミニウムと純度99゜99
%の珪素とを使用し、加熱鋳型を用いて一方向性凝固を
させ、これにより直径20mmで長さが2000mmの
ワイヤバーを鋳造した。第1表にこの鋳造体の化学組成
を、また第2表に鋳造条件および結晶粒度をそれぞれ示
す。
99% purity, 99% aluminum and 99°99 purity
% silicon and unidirectionally solidified using a heated mold, thereby casting a wire bar with a diameter of 20 mm and a length of 2000 mm. Table 1 shows the chemical composition of this cast body, and Table 2 shows the casting conditions and grain size.

第1表 次ぎに、この鋳造体を均質化のために2種の異なる条件
の下で熱処理した。第3表にその均質化熱処理の条件を
示す。
Table 1 This casting was then heat treated under two different conditions for homogenization. Table 3 shows the conditions for the homogenization heat treatment.

第3表 また、上述した均質化熱処理までの溶湯段階、鋳造後の
段階、および均質化熱処理後の段階におけるガス含有量
を測定した。この測定結果を第4表に示す。
Table 3 Gas contents were also measured at the molten metal stage up to the homogenization heat treatment mentioned above, at the stage after casting, and at the stage after the homogenization heat treatment. The measurement results are shown in Table 4.

第4表に示されるように、何れの均質化熱処理によって
も鋳造体は充分に脱ガスされることが確認されたのであ
る。
As shown in Table 4, it was confirmed that the cast bodies were sufficiently degassed by any of the homogenization heat treatments.

このように鋳造し且つ均質化熱処理した実施例(A)お
よび実施例(B)の鋳造体を通常の単頭伸線機により直
径3mmにまで伸線加工し、次にこれを連続伸線機に掛
けて直径0.8mmにまで伸線加工した。更にこれをダ
イスのスリップ率および潤滑油用等を制御した精密伸線
機に掛けて伸線加工し、最終的に直径30μmの極細線
を製造した。この最終加工における伸線速度は80mm
Z分であり、断線することなく極めて順調・良好Qこ伸
線加」−を遂行できたのである。
The castings of Example (A) and Example (B), which were cast and homogenized in this way, were drawn to a diameter of 3 mm using a normal single-head wire drawing machine, and then they were drawn to a diameter of 3 mm using a continuous wire drawing machine. The wire was drawn to a diameter of 0.8 mm. Further, this was wire-drawn using a precision wire-drawing machine in which the die slip rate and lubricating oil were controlled, and finally an ultra-fine wire with a diameter of 30 μm was produced. The wire drawing speed in this final processing is 80mm
It was Z minutes, and we were able to carry out extremely smooth and good wire drawing without any wire breakage.

この伸線加工の各段階における試験片を切り出し、同一
直径につきそれぞれ10本づつの試験片につき引張強度
および伸びを測定した。測定機は「東洋ボールドウィン
社製万能引張試験機」を使用した。また引張試験条件は
、標点間距離が50mm、引張速度が10mm/分であ
った。この測定結果を第5表に示す。
Test pieces were cut out at each stage of the wire drawing process, and tensile strength and elongation were measured for each of 10 test pieces of the same diameter. A "universal tensile tester manufactured by Toyo Baldwin Co., Ltd." was used as the measuring device. The tensile test conditions were a gage distance of 50 mm and a tensile speed of 10 mm/min. The measurement results are shown in Table 5.

ここで第5表において、減面加工率と番よ極細線径をd
、鋳造体径をDとして次式から算出される値である。
Here, in Table 5, the area reduction processing rate and the ultra-fine wire diameter are d
, is a value calculated from the following equation, where D is the diameter of the cast body.

(1−(d/D)21X 100 以上の結果から、本発明の方法によれば少な(とも30
μm程度の線径までは伸線加工の途中で焼鈍処理を一切
施さずに伸線加工を遂行できること、この伸線加]−は
断線を生じることな(順調・良好に行なえること、そし
て製造されたアルミニウム極細線はその引張強度および
伸びがともに大きく、従来法により製造されたもの(引
張強さが大体30kg/mm2程度)に比較して優れて
い0 ることが確認されたのである。
(1-(d/D)21X 100 From the above results, according to the method of the present invention, the amount of
It is possible to draw wires up to a wire diameter of approximately μm without any annealing during the wire drawing process, and that this wire drawing process can be carried out smoothly and in good condition without causing wire breakage. It was confirmed that the produced ultra-fine aluminum wire had high tensile strength and elongation, and was superior to that produced by conventional methods (tensile strength of about 30 kg/mm2).

尚、線径が0.07mmから0.03mmへの伸線加工
においては引張強さの低下(伸びも低下)が認められる
が、これは加工軟化現象によるものと推察される。
In addition, in the wire drawing process from 0.07 mm to 0.03 mm, a decrease in tensile strength (also a decrease in elongation) was observed, but this is presumed to be due to a softening phenomenon during processing.

また、上述では最終線径までの伸線加工につき説明した
が、勿論ながらその後に適当に最終焼鈍処理を実施する
ことができる。このような焼鈍処理によって所望される
優れた特性の極細線を得ることが可能となる。上述では
材料の組成について深く言及しなかったが、本発明によ
る方法は適正な柱状晶組織の得られる材料に対して同様
に適用できるのである。また本発明は直径0.1mmや
1mm等の成る程度の太さを有する各種線径の細線の製
造にも通用できることは勿論である。
Moreover, although the above description has been made regarding the wire drawing process up to the final wire diameter, it goes without saying that the final annealing process can be performed appropriately thereafter. Such an annealing treatment makes it possible to obtain ultrafine wires with desired excellent properties. Although the composition of the material was not mentioned in detail above, the method according to the present invention can be similarly applied to materials that can obtain a proper columnar crystal structure. It goes without saying that the present invention can also be applied to the production of thin wires of various diameters, such as diameters of 0.1 mm and 1 mm.

光里少侠玉 ■ 中間焼鈍することなく最終線径までの伸線加工が達
成されるので、生産性が向上する。
Hikari Shokyadama ■ Wire drawing to the final wire diameter can be achieved without intermediate annealing, improving productivity.

■ 最終線径まで伸線加工して得た極細線は強度が非常
に高い。
■ The ultra-fine wire obtained by drawing to the final wire diameter has extremely high strength.

1 ■ 従ってこれをjmη:に最終焼鈍処理することによ
り、引張強さ、伸び、カール特性等に非常に優れた極細
線となすことができる。
1. Therefore, by final annealing this wire to jmη:, it is possible to obtain an ultra-fine wire with excellent tensile strength, elongation, curling properties, etc.

■ 今後予想される史に極細の細線の製造を可能にする
技術である。
■ This is a technology that will make it possible to manufacture ultra-fine wires in the future.

Claims (1)

【特許請求の範囲】[Claims] アルミニウム合金溶湯を一方向性凝固鋳造して柱状晶組
織からなる鋳造体を鋳造し、該鋳造体を均質化熱処理し
た後、中間段階で焼鈍処理を施すことなく最終線径の線
材にまで塑性加工することを特徴とするアルミニウム極
細線の製造方法。
Molten aluminum alloy is unidirectionally solidified and cast to form a cast body with a columnar crystal structure, and after the cast body is homogenized and heat treated, it is plastically worked to the final wire diameter without annealing at an intermediate stage. A method for producing ultrafine aluminum wire, characterized by:
JP59092994A 1984-05-11 1984-05-11 Production of ultrafine aluminum wire Granted JPS60238079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59092994A JPS60238079A (en) 1984-05-11 1984-05-11 Production of ultrafine aluminum wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59092994A JPS60238079A (en) 1984-05-11 1984-05-11 Production of ultrafine aluminum wire

Publications (2)

Publication Number Publication Date
JPS60238079A true JPS60238079A (en) 1985-11-26
JPH0330462B2 JPH0330462B2 (en) 1991-04-30

Family

ID=14069918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59092994A Granted JPS60238079A (en) 1984-05-11 1984-05-11 Production of ultrafine aluminum wire

Country Status (1)

Country Link
JP (1) JPS60238079A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170448A (en) * 1986-01-23 1987-07-27 Nippon Light Metal Co Ltd Hyperfine aluminum wire
JPH01221585A (en) * 1988-02-29 1989-09-05 Kobe Steel Ltd Minirope
CN102682921A (en) * 2012-05-14 2012-09-19 广西平果博导铝镁线缆有限公司 Continuous two-stage annealing method for aluminum-magnesium alloy
WO2013180300A1 (en) * 2012-05-29 2013-12-05 国立大学法人茨城大学 Aluminum wire for power semiconductor, semiconductor device using said aluminum wire, and searching method for said aluminum wire
CN112251691A (en) * 2020-10-30 2021-01-22 郑州轻研合金科技有限公司 Preparation method of 5A90 aluminum lithium alloy ultrafine crystal plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170448A (en) * 1986-01-23 1987-07-27 Nippon Light Metal Co Ltd Hyperfine aluminum wire
JPH01221585A (en) * 1988-02-29 1989-09-05 Kobe Steel Ltd Minirope
JPH07109069B2 (en) * 1988-02-29 1995-11-22 株式会社神戸製鋼所 Mini rope
CN102682921A (en) * 2012-05-14 2012-09-19 广西平果博导铝镁线缆有限公司 Continuous two-stage annealing method for aluminum-magnesium alloy
WO2013180300A1 (en) * 2012-05-29 2013-12-05 国立大学法人茨城大学 Aluminum wire for power semiconductor, semiconductor device using said aluminum wire, and searching method for said aluminum wire
JPWO2013180300A1 (en) * 2012-05-29 2016-01-21 国立大学法人茨城大学 Aluminum wire for power semiconductor, semiconductor device using the aluminum wire, and method for searching for aluminum wire
CN112251691A (en) * 2020-10-30 2021-01-22 郑州轻研合金科技有限公司 Preparation method of 5A90 aluminum lithium alloy ultrafine crystal plate

Also Published As

Publication number Publication date
JPH0330462B2 (en) 1991-04-30

Similar Documents

Publication Publication Date Title
DE112010004176T5 (en) Aluminum alloy wire
CN104616715A (en) Aluminum alloy wire
JPS58213840A (en) Metal composition suitable for producing semi-solid semi-liquid state and manufacture
WO2011030898A1 (en) Copper alloy wire and process for producing same
WO2018079047A1 (en) Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal
US3964935A (en) Aluminum-cerium-iron electrical conductor and method for making same
JPS60238079A (en) Production of ultrafine aluminum wire
JPS59139662A (en) Alloy thin wire for wire bonding of semiconductor device
JP2010163677A (en) Aluminum alloy wire rod
JPS59139663A (en) Cu-alloy fine wire for wire bonding on semiconductor device
CN102637485B (en) Aluminum alloy wire and method for preparing aluminum alloy wire
KR101252784B1 (en) Magnesium alloy sheet having high strength and high formability and method for manufacturing the same
JPH049253A (en) Production of copper alloy
JPS6112011B2 (en)
JPH0480981B2 (en)
JP4349631B2 (en) Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts
JPH0480982B2 (en)
JPH0418025B2 (en)
JPS62170448A (en) Hyperfine aluminum wire
JP2018154916A (en) Production method of aluminum alloy wire, production method of wire therewith and production method of wire harness
JPS63243252A (en) Manufacture of high-strength conductive aluminum-alloy conductor
JPH0418026B2 (en)
JPS63230845A (en) Extra fine wire made of al-cu-ni alloy and its production
JPS6357495B2 (en)
JPH06184668A (en) Copper chromium thin wire and its production